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Abstract The purpose of this study was to apply a random item mixture nominal
item response model (RIM-MixNRM) for investigating instruction effects. The host
study design was a pre-test-and-post-test, school-based cluster randomized trial.
A RIM-MixNRM was used to identify students’ error patterns in mathematics at the
pre-test and the post-test. Instruction effects were investigated in terms of students’
transitioning in error patterns. That is, we compared students’ error patterns in the
Enhanced Anchored Instruction (EAI) condition with students’ error patterns in a
business-as-usual (BAU) instructional condition following each instruction. We also
compared error patterns of students with math disabilities and students without math
disabilities following the two types of instruction.

Keywords Random item model • Mixture IRT model • Nominal responses model

1 Introduction

Mixture item response theory (MixIRT) models have been used for modeling
population heterogeneity (e.g., Mislevy & Verhelst 1990; Rost 1990). Most mixture
models consider only persons random but items fixed. Random item IRT models
(De Boeck 2008), however, consider both item and person parameters as random.
This is more appealing as (1) both items and persons are typically assumed to be
random samples from some population and (2) treating both items and persons as
random permits inclusion of covariates on both item and person parameters to help
explain differences in both item and examinee parameters (Van den Noortgate, De
Boeck, & Meulders, 2003; Wang 2011).

Also, to date, most MixIRT models have primarily focused on dichotomously
or polytomously scored items. MixIRT models can be usefully applied to nominal
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responses items. For example, MixIRT models can effectively model to capture
information about specific error patterns which individual distractors for multiple
choice items may contain.

The purpose of this study was to apply a random item mixture nominal response
model to an empirical data set for investigating instructional effects. An important
benefit of such a model is that it is possible to explicitly model randomness of item
and ability parameters as well as specific aspects of students’ response patterns.
We provide a brief description of the random item mixture nominal model (RIM-
MixNRM) and a simulation study to evaluate the quality of the estimation method.
Then, we provide an empirical example in which a RIM-MixNRM is applied
to mathematic test data to investigate effects of an experimental instruction on
students’ error patterns on fractions computation.

2 A Random Item Mixture Nominal Response Model

The probability of selecting individual categories in an item with two or more
nominal categories can be written as a linear function of item category and person
parameters. Bock (1972), for instance, introduces a nominal model in which the
probability of selecting category k of item i, Pik.�j/, is defined as a multinomial
logistic function:

Pik.�j/ D exp.	ik�j C �ik/
PK

kD1 exp.	ik�j C �ik/
; (1)

where

i D 1; : : : ; n items,
k D 1; : : : ; K response categories,
j D 1; : : : ; N examinees,
�ik denotes the intercept for category k of item i,
	ik denotes the slope for category k of item i, and
�j denotes the person parameter of person j.

Bolt, Cohen, and Wollack (2001) extended this model to a mixture nominal
IRT model as a way of detecting heterogeneity in a population. In doing so, Bolt
et al. (2001) included a class-specific category intercept parameter to specify the
propensity of selecting a given category of item i for members of latent class g. The
class-specific probability of a response is given by

Pgik.�j/ D exp.	ik�j C �gik/
PK

kD1 exp.	ik�j C �gik/
; (2)

with marginal probability

Pik.�j/ D
GX

g

�gPgik.�j/ ; (3)
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where �gik denotes the class-specific category intercept, g D 1 : : : ; G latent classes,
and �g mixing proportion (

PG
g �g D 1). For resolving an indeterminacy for the item

category parameters, constraints of
PK

k 	ik D 0 and
PK

k �gik D 0 were set for all
items and all classes.

Bolt et al. (2001) applied Markov chain Monte Carlo (MCMC) algorithm to
estimate the model in a general hierarchical framework and a fully Bayesian
approach as implemented in the computer software computer software WinBUGS.
They used following conjugate priors:

cj � Multinomial.1j�1; : : : ; �G/

� D .�1; : : : ; �G/ � Dirichlet.˛1; : : : ; ˛G/

�jjcj D g � N.
�g ; �2
�g

/

	ik � N.
	; �2
	/

�gik � N.
�g ; �2
�g

/:

In their model, however, item parameters were treated as fixed as in the
conventional mixture item response models. In the current study, we extended their
model to a model where both item and person parameters are treated as random.

3 Simulation Study

The simulation study described below was designed to examine the behavior of the
RIM-MixNRM under practical testing conditions.

3.1 Simulation Design

Hundred sets of 20 four-choice item responses were simulated from a standard
normal distributions, N.0; 1/. Six hundred examinees for three latent classes were
simulated and mixing proportions were 0.33 and ability was generated as N.0; 1/

for each class. Item parameter estimates adopted from Bolt et al. (2001) were used
to select item generating parameters. Generating values for model parameters are
given in Table 1. As can be seen in Eq. (2), in this particular RIM-MixNRM, �gik is
the parameter to distinguish latent classes.

The parameters for hyperpriors were used: ˛1 D : : : D ˛G D 0:5; 
�g � N.0; 1/;
1=�2

�g
� Gamma.2; 4/; 
	 � N.0; 1/; 1=�2

	 � Gamma.2; 4/, 
�g � N.0; 1/;

1=�2
�g

� Gamma.2; 4/. These parameters were similar with ones used by Bolt et al.
(2001) and only provided minimum information for each parameter. In addition to
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PK
k 	ik D 0,

PK
k �gik D 0, and

PG
g �g D 1, for identification, 
� and �� set to

zero and one for the first class. These priors, hyperpriors, and constraints were also
used for analyzing the empirical data set in the later section. The computer software
computer software WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2007) was
used for both simulation and empirical studies.

Convergence of the MCMC algorithm was examined using the Geweke test
(1992) with a single chain as implemented in the computer program Convergence
Diagnosis and Output Analysis for MCMC (CODA: Plummer, Best, Cowles, &
Vines, 2006). Based on the Geweke test (1992) with a single chain and plots of
autocorrelations, kernel density estimates of the marginal posterior distributions,
and history plots of draws from posteriors, a burn-in of 3000 iterations was sufficient
to achieve stationarity for all parameter estimates. Following this burn-in, an
additional 5000 iterations were drawn to obtain estimates for each of the posterior
distributions of model parameter estimates.

3.2 Simulation Study Results

3.2.0.1 Model Selection To investigate whether model fit indices could identify
the correct number of latent classes, one- to four-class RIM-MixNRMs were fit to
the data sets. The Bayesian information criterion (BIC: Schwarz 1978) and Akaike’s
information criterion (AIC: Akaike 1974) were chosen as model fit indices because
of their popularity among researchers. Both indices were able to identify the correct
model, that is, both indicated the three-class model was the best fit model for 93 of
100 replications. For the remaining replications, BIC suggested a two-class model
and AIC a four-class model.

Label Switching Label switching is a well-known problem in finite mixture
modeling. Two types of label switching can occur with mixture modeling (Cho,
Cohen, & Kim, 2013). The first occurs over a single MCMC chain: the labels of the
latent classes switch during estimation. The second type of label switching may be
observed when labels switch between multiple data sets or multiple analyses in both
Bayesian and maximum likelihood estimation. In the context of a simulation study,
one needs to be aware of the possibility of label switching, as when labels switch on
different replicate data sets, this may cause confusion when interpreting results. In
the current study, the possibility of occurrence of label switching was investigated
by inspecting profiles of item estimates across latent classes. When label switching
was detected, latent classes were renamed by matching the profiles of parameter
estimates across replications before calculating bias, mean squared error (MSE),
and classification accuracy rates.

Recovery of Parameters A recovery analysis was done to determine whether
the MCMC algorithm accurately recovered the model parameters of the
RIM-MixNRM. In addition to inspection of label switching, parameter estimates
had been placed on the metric of the generating parameters and then bias and MSEs
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of parameter estimates were calculated. Correlations between generation values and
estimates also used for the recovery analysis.

Results showed that most of the parameters of the RIM-MixNRM were recovered
well: bias of item slopes, person ability and mixing proportion were about or less
than 0.05; MSE were about or less than 0.16; and correlations were about or higher
than 0.93. Correlations between item threshold parameters and estimates, �, was
0.94, but bias and MSE were �0:16 and 0.16, respectively, and appeared to depart
slightly from generated values than other parameters. The RIM-MixNRM correctly
classified examinees into their true (i.e., simulated) classes 87.85 % of the time.

4 Empirical Study: Instruction Effects on Students’
Fractions Computation

In this section, we illustrate how a RIM-MixNRM can be used to help investigate
effects of instruction on students’ learning process. In this example, students’
error patterns were examined on a test of fractions computation in a multi-year
cluster randomized instructional intervention. The main purpose of the study was to
investigate an experimental instructional condition effects on students’ error patterns
in computing fractions.

4.1 Data Description

Study Design The host study design was a school-based cluster randomized trial.
Participants included 446 middle school students in Grades 6–8 in 25 general educa-
tion math classrooms in 12 middle schools in and around a large metropolitan area
in the Southeast. Students were randomly assigned to an experimental instructional
condition (N D 214) or to a business-as-usual (BAU) condition (N D 232).
There were 123 students with learning disabilities and 323 students without learning
disabilities in the study.

The experimental condition implemented Enhanced Anchored Instruction
(EAI; Bottge, Ma, Toland, Gassaway, & Butler, 2012). EAI was designed for
use in helping to improve computation and problem solving skills of adolescents,
including low-performing students with learning disabilities by including practical,
hands-on applications to help students visualize the abstract concepts present in
the problem. Teachers ask probing questions and offer instructional guidance to
students as they view the video and help them identify relevant information to solve
the problem. This eliminates the need for reading, a skill many low-achieving math
students also lack.

Fractions Computation Test A Fractions Computation Test (FCT) consisting of 20
partial credit items (14-addition and 6-subtraction items) was designed by Bottge
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et al. (2012) to measure students’ ability to add and subtract simple fractions and
mixed numbers with like and unlike denominators. The FCT was administered
for the pre-test and the post-test. Math education experts identified 11 types of
errors from students’ incorrect responses to these items. The most common were
Combining (C) and Selecting Denominator (SD). The remaining nine other types
of errors occurred less frequently and were combined into a single Other (O) for
this study. In the current study, the focus was on these three types of errors as they
reflect students’ misunderstandings about computing with fractions as well as the
correct response (i.e., No errors). Combining and SelectingDenominator errors are
described below:

• Combining (C): Student combines numerators and combines denominators,
consistently applying the same operation to numerator and denominator.

• Select Denominator (SD): Student selects one of the denominators listed in the
problem and makes no attempt to make equivalent fraction. Denominator given
in the answer must be present in the problem.

4.2 Model Estimation

To investigate EAI effects on students’ error patterns in fractions computation,
we applied RIM-MixNRMs to take into account randomness in students and
items parameters. The instructional method (i.e., EAI vs BAU) and students’ math
learning disability status (MD) were included in the model as covariates to predict
the latent class membership as this could reflect of EAI effects on students’ error
patterns. This was done by substituting �g in Eq. (3) with �gjX as given by

�gjX D exp.ˇg0 C ˇ0
gX/

PG
gD1 exp.ˇg0 C ˇ0

gX/
(4)

where ˇg0 denotes an intercept for class g, and ˇg D .ˇg1; ˇg2; : : : ; ˇgp/ is a vector
of logistic regression coefficients of covariates in the model. For this study, those
covariates were the instructional method and students’ math learning disability.

For those ˇ0s, normal distributions with mean of zero and standard deviation of
10 were used as conjugate priors and for rest parameters, the same priors were used
as in the simulation study. For identification, the first class was used as a reference
group.

The Geweke test, for convergence diagnosis, indicated that a burn-in of 4000
iterations was sufficient to achieve stationarity for all parameters. A subsequent
6000 iterations were used for estimating the model parameters. An exploratory
analysis was applied to determine the number of latent classes in the data. That is,
RIM-MixNRMs with from one- to five-class were fit to the pre- and post-test data.
Based on BIC results, a four-class and a three-class RIM-MixNRMs for pre-test and
post-test data, respectively were chosen for this study.
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Fig. 1 Item category characteristic curves for item 16 showing latent class differences in students’
error patterns on fractions computation

4.3 Results

4.3.1 Characteristics of Latent Classes

Item category characteristic curves (ICCC’s) for Item 16 are shown in Fig. 1 for each
latent class. These plots illustrate differences in types of errors made by students
of the individual latent classes. The plots in the upper panel are for the pre-test
and the plots in the lower panel are for the post-test. Students in all classes had
a greater probability of not making any errors as they possessed more ability (i.e.,
Category 4). However, there were distinct error patterns which students in middle or
lower ability in individual latent classes tended to make. Some students in middle or
lower ability tended to mistakenly combine each numerator and each denominator
(i.e., Category 1), some had a greater probability of making an error of selecting
denominator (i.e., Category 2), some had a greater probability of making other errors
(i.e., Category 3), and others had a greater probability of making either combining
or selecting denominators (i.e., Category 1 or 2). Based on these patterns, each
class is labeled as Combining, SD, Other, or Mixed shown in Fig. 1. These distinct
differences can be interpreted as reflecting students’ error pattern on the FCT.

4.3.2 Instruction Effects

Table 2 presents a cross-tabulation of the frequencies of students in each latent class
on the pre- and the post-test. This shows a general pattern of students’ transitioning
in class membership from the pre-test to the post-test. To investigate effects of
students’ learning disability status and instructional type on such transitioning,
those were included as covariates. On the pre-test, neither types of instruc-
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Table 2 Transitioning
pre-test to post-test latent
classes

Post-test

Pre-test Combine SD Other Total

Combine 57 27 82 166

SD 3 25 33 61

Other 12 1 96 109

Mixed 19 16 75 110

Total 91 69 286 446

tion nor students’ learning disability status did significantly impact on students
membership in latent classes except that students with learning disability had
significantly lower odds of belonging to Other error class than Combining error class
(i.e., ˇ20 D �1:11, 0.33 times). After the intervention, however, EAI had significant
impact on students’ error patterns on fraction computation. Students in EAI had
significantly higher odds of belonging to Other or SD error classes than Combining
error class (i.e., ˇ22 D 1:06; 2:89 times and ˇ32 D 0:85, 2.34 times, respectively).
After the instruction, students might better understand about denominators and
could distinguish them from numerators but still not fully understand the concept
of common denominator in fractions.

5 Conclusion and Discussions

It is not uncommon that researchers or practitioners design an instrument to require
nominal responses with a specific purpose in educational and psychological research
area. For instance, in creating multiple choice items, item writers typically construct
distractors in order to represent specific errors students might make. Nominal IRT
models can be used to obtain information regarding these errors. Further, a mixture
nominal IRT model can be used to take into account population heterogeneity;
however, it does not consider randomness in items. In this study, we used a
RIM-MixNRM in which both items and person parameters were considered a
random sample from a population and taken into account their randomness. Results
from a simulation study suggested that the model parameters were well recovered
and both AIC and BIC provided useful information for model selection. Results
from the middle school fractions computation data revealed there were four latent
classes and three latent classes on the pre-test and the post-test, respectively, which
could reflect students’ error pattern on fractions computation. The results also
show that instructional type had an significant impact on transitioning these error
patterns subsequent to an instructional intervention. It is also possible to include
item covariates. Inclusion of a Q-matrix (e.g., Tatsuoka 1983), for instance, as a
covariate for individual categories of an item could be implemented to describe
components of knowledge required for correctly answering a given question.
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