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During the past decade, cognitive diagnostic models (CDMs) have become prevalent in
providing diagnostic information for learning. Cognitive diagnostic models have generally
focused on single cross-sectional time points. However, longitudinal assessments have
been commonly used in education to assess students’ learning progress as well
as evaluating intervention effects. Thus, it becomes natural to identify longitudinal
growth in skills profiles mastery, which can yield meaningful inferences on learning.
This study proposes longitudinal CDMs that incorporate latent growth curve modeling
and covariate extensions, with the aim to measure the growth of skills mastery and
to evaluate attribute-level intervention effects over time. Using real-world data, this
study demonstrates applications of unconditional and conditional latent growth CDMs.
Simulation studies show stable parameter recovery and classification of latent classes
for different sample sizes. These findings suggest that building on the well-established
growth modeling frameworks, applications of covariate-based longitudinal CDM can
help understand the effect of explanatory factors and intervention on the change of
attribute mastery.

Keywords: cognitive diagnostic model, covariate extension, latent growth curve, longitudinal analysis, learning
progression

INTRODUCTION

Growth of knowledge and skills are important indicators of learning, which commonly results from
the implementation of interventions such as course materials, instructional curriculum, teaching
methods, and policies. For educational systems and educators, it is important to understand the
changes in learning by evaluating the intervention effects. To quantify these effects, longitudinal
assessments or pre-and post-test designs have been widely used and the raw score has been
examined to reveal the progress in learning. Longitudinal assessment designs involve repeated
observations of variables over a period of time while pre-and post-test designs focus on two
measurements that are taken before and after a treatment. However, simple comparison between
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time points may lack reliability and validity (Linn and Slinde,
1977); therefore, researchers may seek applying psychometric
models to measure students’ knowledge and aptitude that are
characterized as latent constructs. Item response theory (IRT)
allows psychometrically specifying students’ ability as continues
latent variables and has a tradition to employ longitudinal
models to assess the growth in ability (Andersen, 1985; Fischer,
1989; Embretson, 1991). The multidimensional IRT models are
useful to measure how the unidimensional ability increase over
a period of time, yet it is hard to diagnose the increment
when the latent constructs are correlated with one another over
repeated measures.

In recent years, cognitive diagnostic models (CDMs), also
known as diagnostic classification models (DCMs), have drawn
increasing attention from researchers, as provides diagnostic
information for learning and instruction (Bradshaw and Levy,
2019). Several CDMs and assessments have been developed to
evaluate examinees’ mastery status on a set of cognitive skills
(e.g., DiBello et al., 1995; Bradshaw et al., 2014; Culpepper, 2019;
Culpepper and Chen, 2019). Most commonly, CDMs have been
used to assess students’ skills profiles at a single time point rather
than measuring changes in skills proficiency over time. However,
it is important for educators to know the students’ learning
trajectories to achieve learning goals as well as the effects of
intervention on the growth of student skills.

In this regard, latent transition analysis (LTA; Collins and
Wugalter, 1992) has been incorporated to the recent development
of CDM to evaluate changes in skills mastery. For example, Li
et al. (2016) employed DINA model as the measurement model in
an LTA to demonstrate a means of analyzing change in cognitive
skills over time. Similarly, Kaya and Leite (2017) developed
a model combining the LTA and deterministic input noisy
“and” gate (DINA; Junker and Sijtsma, 2001) and deterministic
input noisy “or” gate (DINO; Templin and Henson, 2006)
CDMs to address within-individual and between-groups change
in follow-up measurements of learning. In addition, Madison
and Bradshaw (2018a) proposed the Transition Diagnostic
Classification Model (TDCM) that combined log-linear cognitive
diagnosis model (LCDM; Henson et al., 2009) and with LTA
to provide a more general framework for measuring growth
in cognitive diagnostic modeling. Compared to the models
proposed by Li et al. (2016) and Kaya and Leite (2017) that
assume specific item response structures and place constraints on
parameters, TCDM use a general DCM framework that subsume
early models and combine it with LTA. They further extended the
TDCM to model multiple groups (MG-TDCM), thereby enabling
the examination of group differential growth in attribute mastery
in pre-and posttest design (Madison and Bradshaw, 2018b).

To model the learning trajectory, Wang et al. (2018) proposed
a family of learning models that use higher-order, hidden
Markov model (HO-HMM) to model attribute transition and
incorporate CDM framework to understand individualized
learning trajectory. Furthermore, Chen et al. (2018) proposed a
class of dynamic CDM models to trace learning trajectories. They
focused on investigating different types of learning trajectories
and developed a Bayesian Modeling framework to estimate
these learning trajectories. Focusing on modeling the growth in

the higher-order latent trait, Lee (2017) proposed longitudinal
growth curve cognitive diagnosis models (GC-CDM) that trace
changes in the higher-order latent traits to incorporate learning
over time into the cognitive assessment framework. Likewise,
Huang (2017) embedded a multilevel structure into higher
order latent traits and extended the generalized deterministic
input, noisy “and” gate (G-DINA) mode to a multilevel higher
order CDM, which enable the measurement of changes in
the latent trait in longitudinal data. Most recently, Zhan
et al. (2019) proposed a longitudinal diagnostic classification
modeling approach for assessing learning growth in both
repeated measures design and anchor-item design. Different
from the LTA-based methods providing attribute-level transition
probability matrix, the proposed longitudinal DINA model
(Long-DINA) is able to provide quantitative values of overall and
individual growth.

Although various longitudinal CDMs have been developed to
measure the transition of examinees’ attribute mastery statuses
over time, fewer studies focus on the intervention effects that
drive the changes in skill mastery from the perspectives of
covariates extension and latent growth curve model. In this
research study, we proposed two latent growth CDMs by using
unconditional and conditional approaches to trace changes
in latent attributes over time as well as allowing a flexible
parameterization to specify covariates that can be meaningful in
studying a longitudinal data structure.

Different from other longitudinal CDMs in the literature,
the latent growth CDMs proposed in this study is motivated
by the well-established growth curve modeling framework
that are commonly used in social sciences to measure latent
growth (e.g., Duncan et al., 2013). And as such, it becomes
important to link the longitudinal CDM framework to existing
techniques in the social sciences, to prompt more generalizable
and flexible model extensions. Although some previous studies
have incorporated growth curve model into CDM, they mainly
focused on extending the higher-order latent trait to model the
growth in learning, which assumes associations between different
latent attributes, that the probability of having the skills depends
on a higher order overall ability. Moreover, a focus on attribute-
level changes and their impact over time can be handled and
specified in the latent growth CDM framework, as proposed in
this paper. In this study, we incorporate covariate extensions
and latent growth curve model into the attribute-level of CDM
framework instead of the higher-order latent trait level. In this
way, we can monitor changes in the attribute level directly under
the independence assumption for attributes probabilities.

The study consists of three parts: A real-world data analysis
and two simulation studies. We first demonstrate the model
application using real-world data to motivate the rationale
for the latent growth framework and to monitor changes in
students’ skills mastery and intervention effects. The ensuing
sections include two simulation studies conducted separately to
examine the parameter recovery of the proposed models. In this
manner, the simulation studies with varying longitudinal design
components provide comprehensive inference for different
number of time points, sample sizes, and covariate specification
conditions. Findings from this study could help researchers
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apply the latent growth CDMs in practice and promote the
development of longitudinal CDMs.

COGNITIVE DIAGNOSTIC MODELS

Cognitive diagnostic models were designed to classify examinees
into skill profiles that indicate their mastery in fine-grained
skills or attributes based on their performance on a set of items
(Rupp et al., 2010). It refers to a class of psychometric models
where patterns of attributes mastery have been represented as
latent classes. Distinguish from IRT models that latent traits are
continuous, CDMs examine categorical latent traits. Different
kinds of CDMs have been developed in literature and various
generalizations of CDMs have also been proposed including the
LCDM (Henson et al., 2009), general diagnostic model (GDM;
von Davier, 2008), and the generalized DINA model (G-DINA;
de la Torre, 2011).

Reparameterized DINA (RDINA) Model
In this study, we use the DINA model to demonstrate the
framework, which can be applied to other CDM families and
generalizations of DINA models (e.g., von Davier, 2008; de la
Torre, 2011). The DINA model is developed with the idea that
in order to answer an item j correctly, the examinee i must
have mastered all of the required skills (Tatsuoka, 1985). The

binary latent variable ηij =
k∏

k=1
α

qik
ik indicate whether the ith

examinee has mastered the set of attributes α [i.e., attributes,
α = (α1, α2, ..., αk,)′] to solve the jth item, where ηij = 1
means the presence of the necessary set of attributes, and ηij = 0
otherwise. As specified by the Q-matrix, qik is either zero or one,
indicating whether the attribute k is required for solving item j.
This study uses the reparameterized deterministic inputs noisy
“and” gate (DeCarlo, 2011) to apply the longitudinal framework,
as it facilitates incorporating covariates as intervention effects in
latent growth curve model. The RDINA takes the logit of the
traditional DINA model

logit p(Yij = 1|ηij) = fj + djηij (1)

The fj parameter indicates the log odds of a false alarm that is the
probability of getting item j correct given the examinee do not
have the requisite skills. The parameter dj provides a measure of
how well the item can discriminate an examinee with or without
the mastery of required skills. The guessing and slip parameters
used in the DINA model can be recovered by exponentiating the
RDINA parameters (DeCarlo, 2011)as:

gj = exp
(
fj
)
/
[
1+ exp

(
fj
)]

(1.1)

sj = 1− exp(fj + dj)/
[
1+ exp(fj + dj)

]
(1.2)

Covariate Extension to the RDINA Model
Various latent class models have incorporated covariates as
extensions (Dayton and Macready, 1988; DeCarlo, unpublished).
In the DINA model, covariates can be specified either at the
item level and/or attribute level. Park and Lee (2014) proposed

a covariate extension to the RDINA model by applying a latent
class regression framework. In particular, when a discrete or a
continuous covariate, Z, is introduced into a latent class model,
an examinee’s response probability can be expressed as

p(Yi1,Yi2, . . . ,Yij|Z) =
∑
α

p(α|Z)
∏

j

p(Yij|α,Z) (2)

where p(Yi1,Yi2, . . . ,Yij|Z) represents response probability
conditioning on covariate Z, p(α|Z) represents the covariate
affecting the attribute probability, p(Yij|α, Z) represents the
covariate affecting the response probability. In particular, the
effects of the covariate on the response probability and attribute
probability are shown as following:

logitp(Yij|α,Z) = fj + djηij + ljZ (3)

logitp(αk|Z) = bk + hkZ (4)

where the parameter lj reflects the changes in the guessing and
slip parameter for a unit change in Z. Similarly, the parameter
hk indicates the changes in the attribute difficulty parameter (bk),
when the covariate Z is conditional on the attribute level.

Relationship Between RDINA and
General Diagnostic Model
The RDINA model was employed in this study to establish the
framework; however, the parameterization used in its covariate
extension can be extended and reparameterized as special cases
of the GDM (von Davier, 2005; Park and Lee, 2019). In the
GDM, the observed response X is modeled for i items, x response
categories, and j respondents as follows:

P
(
X = x|i, j

)
= exp

[
f (λxi, θj)

]
/

{
1+

∑
m

exp
[
f (λxi, θj)

]}
(5)

GDM item parameters are the λxi = (βxi,qi, γxi), which include
slope parameters and the Q-matrix specification, qi. In the DINA
where attributes are binary, the skill vector for examinee j, θj =

(αj1, ..., αjk), are binary values. As shown in von Davier (2014,
p. 58), the DINA can be parameterized as a special case of the
GDM as follows:

P
(
Xvi = 1|q∗i,, a

∗
)
=

exp(βi +
∑

k γika∗kq∗ik)
1+ exp(βi +

∑
k γika∗kq∗ik)

(6)

When a covariate Z introduced to Eq. 5, the following hk
parameters are added:

P
(
Xvi = 1|q∗i,, a

∗,Z
)
=

exp(βi +
∑

k γika∗kq∗ik + hkZ)
1+ exp(βi +

∑
k γika∗kq∗ik + hkZ)

(7)

Taking the logit simplifies the model to the item-level of
covariate extension approach as presented in Eq. 4.

Latent Growth Curve Model
Latent growth curve model has been widely used in longitudinal
analysis to estimate growth over time, such as examining
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the treatment effects in the pre-post intervention study. As a
special case of structural equation model (SEM), latent growth
modeling formwork extend SEM to represent repeated measures
of dependent variables as a function of time and other measures.
Based on the research of Tucker (1958), Rao (1958), Meredith
and Tisak (1984) and Meredith and Tisak (1990) furthered
SEM to model the interindividual differences in change. To
model the changes in a variable over time, latent growth curve
model assumes that there is a systematic trajectory of change
underlying the repeated measures of the variable. In particular,
for i (i = 1,2,. . .,n) subjects measured at j (j = 1,2,. . .,t) occasions,
the measurement model of latent growth curve model can be
expressed as

yij = λ0jη0i + λ1jη1i + εij (8)

where yij is the outcome variable for individual i at time j. η0i
and η1i represent latent trajectory parameters: individual’s initial
level (i.e., intercept) and rate of change over time (i.e. slopes). εij
represent time-specific error for person i. In the structural model
of latent growth curve model, these latent trajectory parameters
become outcome variables that can be expressed as:

η0i = µ0 + e0i (8.1)

η1i = µ1 + e1j (8.2)

where µ0 represents the sample mean initial level, e0i represents
the deviations from mean initial level for individual i; µ1
represents the sample mean rate of change, e1i represents the
deviations from mean rate of change for individual i.

In latent growth curve model, λ0j is fixed at 1 for all j
occasions. It should be noted that the equations presented
above are considered as an unconditional latent growth curve
model because there is no covariate involved. A conditional
latent growth curve model that contains covariates can be
specified by adding predictors of the outcome variable into Eq
8. The corresponding covariates effects on the latent trajectory
parameters could be included in Eqs 8.1 and 8.2.

The Latent Growth Cognitive Diagnostic
Model
Motivated from latent growth curve models and RDINA
model with covariate extensions, we propose two latent growth
curve CDMs (LG-CDMs) using unconditional and conditional
approaches to track the changes in examinees’ latent attributes as
well as evaluating the effects of covariate at the latent attributes
level. For the LG-CDMs, an examinee i’s response probability
p(Yij = 1|ηij) was specified by the RDINA model, which was
shown in the above Eq. 1.

Unconditional LG-CDM
Motivated from the unconditional latent growth curve model
with random intercept and random slope, we develop an
Unconditional LG-CDM that includes unconditional latent
growth curve to the attribute level of CDM framework as linear
model. At the attribute level αk = (α1, α2, ..., αk,)′, we assume
a linear relationship between time and attributes to model the
changes in attributes over time. When no covariate is specified,

Eq. (9) shows the latent growth model with time effect on the
probabilities of the K attributes p(αk|time) as

logit p(αk|time) = bk + γk (time)+ ζk + εtk, εtk ∼ N(0, 1)

(9)

Equation 9 represents time is conditioned on the attributes
probability, which can be viewed as a predictor of the
attribute patterns. Following the interpretation of the RDINA
model with covariate extension, bk represents the fixed-effect
attributes difficulty parameter. ζk represents the random intercept
parameter for attribute k, which allows estimation for each
attribute, accounting for individual examinee differences at
baseline. Similarly, γk represents the random slope parameter for
attribute k, which allows differences in examinee rates of growth.
εtk represents time-specific error for attribute k. Eq. 9.1 shows
the associated equation for the random intercept that follows a
normal distribution with mean µ0k and variance of σ0k . Eq. 9.2
shows the association equation for the random slope that also
follows a normal distribution with mean µ1ki and variance of
σ1k. e0k and e1k represent the deviations from mean initial level
and mean rate of change for attribute k, which are random-effect
parameters introduced by the latent growth curve model. In this
study, the mean and variance of both random effects are fixed to
0 and 1, respectively.

ζk = η0k = µ0k + e0k (9.1)

γk = η1k = µ1k + e1k (9.2)

Where η0 and η1 represent latent trajectory parameters:
individual’s initial level and rate of change over time, which was
specified in the latent growth curve model framework.

Conditional LG-CDM
In addition, we also propose a Conditional LG-CDM based
on the conditional latent growth curve model with random
intercept and random slope to evaluate the effects of covariate
(e.g., intervention effect) on changes in the attribute level. In
particular, covariate vector Z, is introduced into the latent growth
curve model effecting on the random effects. Z could be either
discrete or continuous covariate. Equation (10) represents the
latent growth model with both time and covariate effects on the
attribute probability p(αk|time,Z) as

logit p(αk|time,Z) = bk + γk (time)+ hk
(
Z
)
+ ζk + εtk,

εtk ∼ N(0, 1)
(10)

The interpretation of Conditional LG-CDM is similar to the
Unconditional LG-CDM that bk represents the attributes
difficulty parameter, ζk represents the random intercept
parameter, and γk represents the random slope parameter. Both
random effects follow the normal distribution with fixed mean
of 0 and variance of 1 for model identification. εtk represents
time-specific error for attribute k. What’s more, the parameter
hk represents the regression coefficient of the covariate vector
Z, which reflects the shift in the attribute difficulty bk, random
intercept ζk and random slope γk when the covariate is present to
affect the attribute. Specifically, Eq. 10.1 shows the term for the
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respective covariate coefficient (h0k) affecting random intercept
parameter for each attribute k. Equation 10.2 shows the term for
the respective covariate coefficient (h1k) affecting random slope
parameter for each attribute k.

ζk = η0k + h0k(Z) (10.1)

γk = η1k + h1k(Z) (10.2)

Likewise, η0k and η1k represent attribute’s initial level and rate of
change, which can be extended as shown in Eqs 8.1 and 8.2.

From the perspective of multilevel model, Unconditional LG-
CDM and Conditional LG-CDM can be viewed as three-level
model where the first level is the time level that involves multiple
repeated measures of the same examinee (shown in Eqs 9.1 and
9.2; Eqs 10.1 and 10.2). The second level is the item at individual
level that the RDINA model was used to specify an examinee i’s
item response (shown in Eq. 1). And the third level is the attribute
at individual level that the latent growth curve model was used
to specify the change of attributes over time and the covariate
effect (Eqs 9 and 10).

In addition, time effect could be specified at the item level as
well. Modeled with the RDINA, we let Yijt be an examinee i’s
response for item j at time t, given the binary latent variable ηijt
and time. The response probability of a person i getting item j
correctly at time t is shown as following:

logit p(Yijt = 1|ηijt,time) = fj + djηijt + ρj(time)+ ξijt + ϕijt

(11)

ξijt = η0i = µ0 + e0i (11.1)

ρj = η1i = µ1 + e1i (11.2)

where ξijt represents the random intercept parameter that allows
variation in baseline for item response probability p(Yijt = 1|ηijt,
time). The ρj represents the random slope parameter that allows
growth rate of item response probability vary across time. ϕijt
is the error term.

Taken together, this study focuses on applying the latent
growth curve model into the attribute-level of CDM to analyze
how the attributes mastery change over time. There are
several advantages to using the Unconditional LG-CDM and
Conditional LG-CDM, including that they directly estimate the
learning trajectory parameters on the attribute level but also
allow covariates effects involved to estimate the intervention
effects simultaneously.

REAL-WORLD DATA ANALYSIS

Methods
Real-world data analysis was conducted to motivate the potential
of the LG-CDMs and demonstrate its application. We used the
pretest and posttest data of a mathematics test (N = 879) in
the real-world analysis. The mathematic test was developed in a
large scale education study that investigated the difficulties for
the disabled students in solving mathematic problems (Bottge
et al., 2014, 2015). Specifically, an instructional method of

Enhanced Anchored Instruction (EAI) was employed in the
study to help improve the mathematics achievement of disabled
students (Bottge et al., 2003). The design of cluster-randomized
controlled trial was used to assign clusters of middle school
students to a treatment group or a control group. In the treatment
group, students received EAI video sessions about mathematics
problem-solving and in the control group, students received
instruction method as usual. To evaluate effectiveness of EAI
instructional method, the mathematics test was administrated
before and after the instructional period and the assessment
data was collected. Thus, the dataset consisted of 21-item
responses to the test measured four attributes over two time
points. A Q-matrix was identified for the four attributes that
corresponded to the four instructional units, including α1: ratios
and proportional relationships, α2: measurement and data, α3:
number systems (fractions), and α4: geometry (graphing). Each
test item was mapped to one attribute (Appendix). Two latent
growth curve CDMs were fit, Unconditional LG-CDM and
Conditional LG-CDM.

Data analyses were conducted using Latent GOLD 5.0
(Vermunt and Magidson, 2013).

Two statistics were used to examine attribute classification –
(1) proportion correctly classified (Pc) and (2) Lambda (λ)
(Clogg, 1995), where both are based on the maximum posterior
probability to examine the quality of classification. In particular,
Eq. (12) shows the use of estimated posterior probabilities
in obtaining an estimate of the expected proportion of cases
correctly classified for attribute k (αk):

Pc =
∑

s

[
ns ×max p(αk|Yi1,Yi2, . . . ,YiJ)

]
/N (12)

where s represents each unique response pattern, ns is the
frequency of each pattern (i.e., number of cases with a
particular pattern), max p(αk|Yi1,Yi2, . . . ,YiJ) represents the
maximum posterior probability for a given response pattern
vector (Yi1,Yi2, . . . ,YiJ), N is the total number of cases in a latent
class response pattern.

λ makes a correction for classification that can occur by
chance, which can be expressed as

λ =
Pc −max p(αk)

1−max p(αk)
(13)

where p(αk) represents the latent class size with p (αk) > 0.
Meanwhile, λ also reflects the relative reduction in classification
error (Kruskal and Goodman, 1954; Clogg, 1995).

Both expectation-maximization (EM) and Newton-Raphson
algorithms were used to obtain maximum likelihood (ML) or
posterior mode (PM) estimates. The PM estimation uses a prior
distribution to smooth solutions that are near the boundary of the
parameter space. Therefore, this method can avoid a boundary
estimation issues that are commonly associated with latent class
models (DeCarlo, 2011). In addition, to avoid problems of local
maxima, 100 sets of starting values were used to obtain the global
maximum. Finally, to check for local identification, the rank of
the Jacobian matrix was examined to be of full rank as specified
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as a required condition for local identification in latent class
regression models (Huang and Bandeen-Roche, 2004).

Results
Model Fit and Classification
Real-world data converged successfully for the two models,
unconditional latent growth curve CDM (Unconditional LG-
CDM) and conditional latent growth curve CDM (Conditional
LG-CDM). Table 1 shows the classification results. The results
show that the Pc estimates are the same for the two LG-CDMs
across four mathematics attributes, indicating a satisfactory
classification as all statistics are greater than 0.91. For example,
with Pc of 0.96 for attribute 2, one would expect that 96% of
the cases would be correctly classified into attribute 2. However,
it should be noted that if simply classifies all the cases into the
attribute with the largest size, then the correctly classification
can be achieved but may due to the chance. λ provides a
correction for this situation when calculating the proportion
correctly classified. The results show that λ are similar for the four
attributes across two models and are slightly lower than Pc. For
example, the λ classification on attribute 1 in Conditional LG-
CDM is 0.70, indicating that the proportion correctly classified
increase 70% by using the observers’ response pattern over simply
classifying all cases into the attribute with the largest size.

Attribute Prevalence
Table 2 shows the attribute prevalence for the four attributes.
The attribute prevalence represents the latent class sizes of the
four attributes (DeCarlo, 2011). Overall, the attribute prevalence
was consistent across the two models. The probabilities of
all attributes prevalence are above 0.50, indicating that more
than half of the students mastered each of the attribute. The
attribute prevalence for Attribute 2 (Measurement and Data)

TABLE 1 | Classification: proportion correctly classified (Pc) and Lambda (λ).

Models Classification Attributes

α1 α2 α3 α4

Unconditional LG-CDM Pc 0.91 0.96 0.92 0.93

λ 0.79 0.90 0.84 0.82

Conditional LG-CDM Pc 0.91 0.96 0.92 0.93

λ 0.70 0.90 0.84 0.82

Classification statistics based on Clogg (1995). Conditional LG-CDM
considered EAI instruction. Attributes as follows: α1: Ratios and Proportional
Relationships; α2: Measurement and Data; α3: Number Systems (Fractions); α4:
Geometry (Graphing).

TABLE 2 | Attribute prevalence.

Model α1 α2 α3 α4

Unconditional LG-CDM 0.57 (0.03) 0.62 (0.02) 0.53 (0.03) 0.62 (0.08)

Conditional LG-CDM 0.57 (0.03) 0.62 (0.02) 0.53 (0.03) 0.62 (0.02)

Values in parenthesis are standard errors. Attributes based on the EAI instruction
are as follows: α1: Ratios and Proportional Relationships; α2: Measurement and
Data; α3: Number Systems (Fractions); α4: Geometry (Graphing).

and Attribute 4 (Geometry) had slightly higher probabilities than
the attribute prevalence for Attribute 1 (Ratios and Proportional
Relationships) and Attribute 3 (Number Systems).

Item Parameters
Table 3 shows the item parameters (f j and dj) for the
Unconditional LG-CDM and Conditional LG-CDM, which are
estimated from the RDINA model. Calculating the exponential
of the f j and dj parameters, one can obtain guessing and slip
parameters of the DINA model (shown in Eqs 1.1 and 1.2).
Overall, the item parameters are consistent across the two models.
Derived from Eqs 1.1 and 1.2, the average guessing and slip
parameters estimates for Unconditional LG-CDM were 0.22 and
0.35; for Conditional LG-CDM were 0.22 and 0.36. With respect
to each attribute, the average guessing and slip parameters were
respectively the same across the two models: for the attribute of
Ratios and Proportional Relationships were 0.14 and 0.49; for
the attribute of Measurement and Data were 0.28 and 0.23; for
the attribute of Number Systems (Fractions) were 0.28 and 0.23;
for the attribute of Geometry (Graphing) were 0.25 and 0.36.
In particular, for both Unconditional LG-CDM and Conditional
LG-CDM, Item 2 (Attribute of Measurement and Data) has the
greatest guessing estimates while Item 17 (Attribute of Ratios and
Proportional Relationships) has the greatest slip estimates.

Attribute Parameters and Growth
Table 4 summarized the attribute-level parameters for the
Unconditional LG-CDM and Conditional LG-CDM, which

TABLE 3 | Item parameters for Unconditional and Conditional LG-CDM.

Unconditional LG-CDM Conditional LG-CDM

Item Attributes fj dj fj dj

Y1 α1 −2.09 (0.02) 1.97 (0.17) −2.10 (0.16) 1.98 (0.17)

Y2 α2 −0.24 (0.08) 2.06 (0.13) −0.24 (0.08) 2.06 (0.13)

Y3 α2 −2.61 (0.17) 1.92 (0.19) −2.62 (0.18) 1.92 (0.19)

Y4 α3 −1.87 (0.13) 1.87 (0.14) −1.88 (0.13) 1.87 (0.14)

Y5 α3 −1.14 (0.11) 2.34 (0.13) −1.14 (0.11) 2.34 (0.13)

Y6 α3 −0.74 (0.09) 1.88 (0.12) −0.74 (0.09) 1.89 (0.12)

Y7 α3 −3.73 (0.42) 3.57 (0.41) −3.75 (0.43) 3.58 (0.42)

Y8 α3 −0.96 (0.09) 1.14 (0.12) −0.96 (0.09) 1.14 (0.12)

Y9 α2 −0.76 (0.09) 2.21 (0.12) −0.76 (0.09) 2.21 (0.12)

Y10 α2 −0.97 (0.10) 2.84 (0.13) −0.97 (0.10) 2.84 (0.13)

Y11 α2 −0.59 (0.09) 3.09 (0.15) −0.59 (0.09) 3.09 (0.15)

Y12 α2 −1.38 (0.11) 3.03 (0.14) −1.38 (0.11) 3.02 (0.14)

Y13 α1 −0.64 (0.10) 2.01 (0.13) −0.63 (0.10) 1.99 (0.13)

Y14 α1 −2.61 (0.23) 2.93 (0.22) −2.60 (0.22) 2.91 (0.22)

Y15 α4 −0.99 (0.10) 1.91 (0.13) −0.99 (0.10) 1.91 (0.13)

Y16 α4 −0.70 (0.10) 1.82 (0.12) −0.70 (0.10) 1.82 (0.12)

Y17 α1 −3.41 (0.27) 1.94 (0.29) −3.49 (0.28) 2.02 (0.30)

Y18 α4 −0.27 (0.09) 2.35 (0.14) −0.27 (0.09) 2.35 (0.14)

Y19 α4 −1.77 (0.13) 1.96 (0.15) −1.76 (0.13) 1.96 (0.15)

Y20 α4 −1.41 (0.11) 1.47 (0.13) −1.41 (0.11) 1.47 (0.13)

Y21 α4 −1.92 (0.14) 1.63 (0.15) −1.93 (0.14) 1.64 (0.15)

Values in parenthesis are standard errors. Attributes based on the EAI instruction
are as follows: α1: Ratios and Proportional Relationships; α2: Measurement and
Data; α3: Number Systems (Fractions); α4: Geometry (Graphing).
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include attribute difficulty (bk), intercept and slope of
latent growth curve (η0 and η1), and regression coefficients
(hk) for the intervention effect. In general, the estimates
of random intercept and random slope were very close,
indicating that the examinees’ initial level and growth rate
are similar for the two models. As the Conditional LG-CDM
incorporates covariate in addition to the Unconditional LG-
CDM, regression coefficients (hk) of the covariate indicate
shifts in the attributes difficulty as a result of the treatment
effect (EAI). Results show that the parameter estimates of
four attributes difficulty are all lower in the Conditional
LG-CDM than the Unconditional LG-CDM, suggesting that
all attributes were easier to be mastered when involving
the treatment effect. In particular, Attribute 1 (Ratios and
Proportional Relationships) and Attribute 4 (Geometry)
yielded greater differences between the two models then
Attribute 2 (Measurement and Data) and Attribute 3 (Number
Systems), with a difference of 0.34 and 0.37 units. While
most treatment effects were not significant, Attribute 4
(Geometry) had significant treatment effect, shifting the
difficulty parameter by 0.24 units.

SIMULATION STUDY I

Methods
Simulation studies were conducted to evaluate parameter
recovery and classification of the two models: (a) Unconditional
LG-CDM; (b) Conditional LG-CDM. In simulation study 1,

TABLE 4 | Attribute difficulty, growth curve and intervention effect parameters.

Unconditional LG-CDM Conditional LG-CDM

Parameter Estimate p value Estimate p value

η0 (Random Intercept) 0.44 (0.11) 0.46 (0.15)

η1 (Random Slope) 0.04 (0.00) 0.03 (0.00)

h0k (Treatment Effect on
random intercept)

– – 0.30 (0.19) 0.13

h1k (Treatment Effect on
random slope)

– – 0.09 (0.00) <0.001

b1 (Attribute 1 Difficulty) −0.11 (0.09) −0.45 (0.11)

h1 (Treatment Effect for
Attribute 1)

– – 0.40 (0.27) 0.13

b2 (Attribute 2 Difficulty) 0.16 (0.07) −0.04 (0.09)

h2 (Treatment Effect for
Attribute 2)

– – 0.09 (.25) 0.72

b3 (Attribute 3 Difficulty) −0.23 (0.08) −0.44 (0.10)

h3 (Treatment Effect for
Attribute 3)

– – 0.02 (0.26) 0.95

b4 (Attribute 4 Difficulty) 0.16 (0.04) −0.11 (0.04)

h4 (Treatment Effect for
Attribute 4)

– – 0.24 (0.00) <0.001

(1) Parameter hk indicates shift in the attributes difficulty due to mastery in treatment
effect (EAI), based on the Conditional LG-CDM model. (2) Values in parenthesis
represent standard errors. (3) Attributes based on the EAI instruction are as follows:
α1: Ratios and Proportional Relationships; α2: Measurement and Data; α3: Number
Systems (Fractions); α4: Geometry (Graphing).

the EAI real-world results were used as generating population
(true) values. Following the data structure of the real-world
data example, the 21-item response data were generated for
two time points; four attributes and Q-matrix were specified as
well. Two sample size of 1000 and 2000 were examined across
a specification of the four attributes. Therefore, the simulation
study includes a total of four simulation conditions ( = 2
models× 2 sample size conditions).

Data were generated and fit using Latent GOLD 5.0 (Vermunt
and Magidson, 2013). One hundred replications were fitted for
each condition. Parameters were estimated using PM estimation
and the parameter recovery were evaluated for each condition
using three measures: (a) Bias, (b) % Bias, and (c) mean square

error (MSE). Here, Bias (x) = 1
N

N∑
n=1

[ên (x)− e(x)], % Bias =

|Bias(x)/e(x)| × 100%, MSE (x) = 1
N

N∑
n=1

[ên (x)− e(x)]2, where

x is an arbitrary indicator of a parameter, e(x) is the generating
(true) parameter value, and ên (x) is the nth replicate estimate of
parameter x among a total of N = 100 replications. Similar to
the real-world data analysis, we set up 100 starting values, and
the Jacobian matrix was examined to be of full rank for local
identification. EM (expectation-maximization) and Newton-
Raphson algorithms were used to avoid a boundary estimation
issue using PM estimation. The syntax of unconditional and
conditional models is available from the authors upon request.

Results
Parameter Recovery
Table 5 shows the parameter recovery results (Bias, % Bias, and
MSE) by sample size (1,000 and 2,000) for the two models.
Overall, the parameter recovery revealed consistent estimates.
Percent bias for item-level parameters were very close in the
two models except item discrimination parameter dj was slightly
higher in the Conditional LG-CDM model. The parameter dj
provides a measure of how well the item can discriminate an
examinee with or without the mastery of required skills. The
overall % bias associated with random effects were all less than
2.0% regardless of models. In Conditional LG-CDM, % bias of
random effects were lower (≤ 1.0%). The intervention effect on
attributes in the conditional model had % bias of 37.4% when
sample size is 1000. However, it dramatically dropped to 4% when
the sample size increase to 2000. The % bias of attribute difficulty
parameter are lower in the Unconditional LG-CDM model (6.7
and 3% at the sample sizes of 1,000 and 2,000).

Classification
Simulation classification indices were summarized in Table 6.
The results of the two LG-CDM models agree very much. Both Pc
and λ showed excellent classification rates on the four attributes
in the two models. The classification index was little influenced
by the sample sizes.

Cross Fitting of Simulated Data to Other Models
What’s more, a cross fitting analysis was conducted to examine
the consequences on parameter estimates and classification
on fitting incorrect models. Data were generated using the
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TABLE 5 | Simulation I results: parameter recovery.

Model Level Parameter Sample n = 1,000 Sample n = 2,000

Bias % Bias MSE Bias % Bias MSE

Unconditional LG-CDM Random Effects λ 0.007 1.8% 0.002 −0.002 0.5% 0.001

Attribute Difficulty bk −0.002 6.7% 0.002 0.000 3.1% 0.001

Item fj −0.013 1.6% 0.024 −0.001 0.6% 0.007

dj 0.015 0.9% 0.030 0.002 0.4% 0.009

Conditional LG-CDM Random Effects λ 0.001 0.3% 0.001 −0.002 0.4% 0.001

hk 0.002 0.7% 0.003 −0.003 1.0% 0.004

Attribute Difficulty bk 0.000 18.2% 0.022 0.000 16.9% 0.002

Intervention Effect hk 0.002 37.4% 0.018 −0.001 4.0% 0.018

Item fj −0.009 1.6% 0.022 −0.002 0.7% 0.007

dj 0.011 1.5% 0.030 0.003 0.5% 0.010

Simulation based on 100 data replications.

Unconditional LG-CDM and Conditional LG-CDM and fit
with incorrect models one-off, including RDINA model and
RDINA model with covariate. The RDINA and RDINA with
covariate models do not have a longitudinal component, thereby
providing a relative comparison for ignoring the longitudinal
component to the model. Model fit indices, Pc and % bias
of parameters (random effects, intervention effect, item, and
attribute) are presented in the Table 7. All the statistics
selected the correct models. For the sample size of 2000, the
correct models had higher Pc, lower AIC/BIC value as well as
lower % bias in both item and attribute parameter estimates.
Meanwhile, when fitting with the incorrect models, lower Pc,
higher AIC/BIC and higher % bias were shown in the outputs.
The greatest impact of fitting incorrect models was found in
the % bias of attribute and item parameters. When using
Conditional LG-CDM generated data and fit with the RDINA
with covariates, % bias was more than 101% for the item
parameter and attribute difficulty parameter. Similarly, when
fitting generated data with RDINA, % bias were also high for the
attribute parameter. It is noticeable when data generated using
Conditional LG-CDM were fit using Unconditional LG-CDM,
% bias are lower than the incorrect RDINA and RDINA with
covariate model.

TABLE 6 | Simulation classification I: proportion correctly classified (Pc) and
Lambda (λ).

Models Classification α1 α2 α3 α4

Unconditional LG-CDM (n = 1,000) Pc 0.91 0.98 0.94 0.94

λ 0.80 0.95 0.87 0.84

Conditional LG-CDM (n = 1,000) Pc 0.91 0.98 0.94 0.94

λ 0.80 0.94 0.87 0.84

Unconditional LG-CDM (n = 2,000) Pc 0.97 0.99 0.98 0.98

λ 0.93 0.99 0.97 0.96

Conditional LG-CDM (n = 2,000) Pc 0.97 0.99 0.98 0.98

λ 0.93 0.99 0.97 0.96

Classification statistics based on Clogg (1995).

SIMULATION STUDY II

Methods
We conducted an additional simulation study, where three
time points were simulated to examine parameter recovery and
classification of the proposed Unconditional and Conditional
LG-CDMs. As the data of simulation study I were generated
using population (true) values derived from the empirical
data that was limited to two time points, the condition was
expanded to include more time points in simulation study II
so that the potentials of the Unconditional and Conditional
LG-CDMs can be fully discussed. In simulation study II, to
generate data, we referred to the simulation study design
conducted by De La Torre and Douglas (2004) to specify the
Q-matrix and item parameters, as generating population (true)
value: 30 items with five attributes and 1,000 examinees were
used across 100 replications. Table 8 shows the transposed
Q-matrix that each attribute appears alone, in pair, or in a
triple the same number of times as other attributes. Similar to
Simulation Study I, 100 data replications were generated and
fit using Latent GOLD 5.0 (Vermunt and Magidson, 2013).
Parameters were estimated using PM full name estimation
and the parameter recovery were evaluated for each condition
using three measures: (a) Bias, (b) % Bias, and (c) mean
square error (MSE).

Results
Parameter Recovery
Table 9 shows the parameter recovery results of three time
points simulation by sample size 1,000 for the two models.
Bias, % bias and MSE were lower for item level parameters
(discrimination parameter dj and false rate parameter f j) in the
two models, indicating model estimates are consistent in the item
level. The results of parameter recovery for attribute difficulty are
slightly high as well as for the intervention effect on attribute
difficulty. Furthermore, the bias and % bias of random effects
(random intercept and random slope) are noticeably high in
both models, probably because more time points are involved
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TABLE 7 | Cross fitting of simulated data.

Data fit Statistics Data generating conditions (Sample n = 2,000)

Unconditional LG-CDM Conditional LG-CDM

RDINA AIC 98964.26 98945.77

BIC 99234.79 99235.29

Pc 0.87 0.87

Attribute Difficulty (% Bias) 91.1% 88.4%

Item (% Bias) 28.1% 28.0%

RDINA with covariates AIC – 98847.14

BIC – 99161.84

Pc – 0.87

Attribute Difficulty (% Bias) – 101.1%

Intervention Effect (% Bias) – 64.5%

Item (% Bias) – 101.2%

Unconditional LG-CDM AIC 91921.67 98728.2

BIC 92157.24 98997.04

Pc 0.98 0.97

Random Effects (% Bias) 0.5% 13.3%

Attribute Difficulty (% Bias) 3.1% 46.1%

Item (% Bias) 0.5% 1.1%

Conditional LG-CDM AIC – 91971.63

BIC – 92236.65

Pc – 0.98

Random Effects (% Bias) – 0.7%

Attribute Difficulty (% Bias) – 16.9%

Intervention Effect (% Bias) – 4.0%

Item (% Bias) – 0.6%

Results of the correct model fit were bolded.

in the simulation study that ask for more estimations to reach
consistent recovery.

Classification
Table 10 summarized classification results of three time
points simulation. For both LG-CDMs, Pc estimates suggested
satisfactory proportion of cases are correctly classified for

TABLE 8 | The transposed Q-matrix for the simulation study II.

Item

Attribute 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0

2 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1

3 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1

4 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

5 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0

Attribute 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

2 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0

3 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1

4 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1

5 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1

all attributes (Pc > 0.85). Yet, it should be noted that the
classification rates of λ were lower on the second and fourth
attributes compared to the other attributes, which may due to the
over correction for classification error.

TABLE 9 | Simulation II results: parameter recovery.

Model Level Parameter Sample n = 1,000

Bias % Bias MSE

Unconditional LG-CDM Random Intercept λo −0.592 118.4% 0.354

Random Slope λ1 0.312 62.4% 0.098

Attribute Difficulty bk −0.311 39.0% 0.123

Item fj 0.073 5.1% 0.059

dj −0.046 2.7% 0.088

Conditional LG-CDM Random Intercept λo −0.548 109.6% 0.304

h0k 0.035 11.8% 0.007

Random Slope λ1 0.315 63.1% 0.101

h1k −0.222 74.1% 0.053

Attribute Difficulty bk −0.297 37.7% 0.122

Intervention Effect hk 0.001 20.6% 0.173

Item fj 0.065 4.7% 0.058

dj −0.038 2.5% 0.082

Simulation based on 100 data replications.
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TABLE 10 | Simulation classification II: proportion correctly classified (Pc) and
lambda (λ).

Models Classification α1 α2 α3 α4 α5

Unconditional LG-CDM (n = 1,000) Pc 0.89 0.86 0.98 0.96 0.95

λ 0.72 0.47 0.79 0.36 0.76

Conditional LG-CDM (n = 1,000) Pc 0.90 0.88 0.98 0.97 0.94

λ 0.76 0.50 0.81 0.35 0.81

Classification statistics based on Clogg (1995).

DISCUSSION AND CONCLUSION

Cognitive diagnostic models have become increasingly important
in educational measurement by estimating skill profiles that
indicate the examinee’s mastery in fine-grained skills based on
their performance (Rupp et al., 2010). In most prior studies,
CDMs have been applied to single cross-sectional time diagnosis
instead of tracking the changes in skills or attributes. However,
learning is a process during which students acquire knowledge
and improve their skills. As learning progress, students’ skills
mastery and knowledge could change over time. In addition,
the implementation of particular intervention may influence
students’ learning trajectory, which is important for educators
to know in order to evaluate learning and instruction. In this
study, we propose two latent growth CDMs, Unconditional LG-
CDM and Conditional LG-CDM, to assess students’ change in
skills mastery over time and evaluate the intervention effect on
the growth of skill mastery.

Results from the real-world data analysis showed that the
latent growth curve model and covariate extension such as
intervention effect, could be used to link with a CDM. The
statistics of model classification and attribute prevalence agree
very much and are excellent for the two LG-CDMs, indicating
both models are well specified to provide consistency results.
In particular, although the latent class size of Attribute 1 and
Attribute 3 are slightly lower than Attribute 2 and Attribute 4,
more than half of the students mastered each attribute. Moreover,
results showed that the estimates of attribute difficulty of the
Conditional LG-CDM was generally lower than the estimates of
the Unconditional LG-CDM. The decrease in attribute difficulty
indicated that the attributes have been shifted and implies
that it become easier for students to master the attributes
when involving educational intervention, which was further
confirmed by the results of growth curve and intervention effect
parameters. Both the Unconditional LG-CDM and Conditional
LG-CDM examined the students’ performance at baseline and
the growth rate. Although the baseline performance is slightly
different, the grow rates are similar across the two models.
Thus, the LG-CDMs could inform the researchers and educators
that the EAI method has little effect on the growth rate of
student’ ability. However, with the help of Conditional LG-
CDM that incorporate the covariates extension into CDM, we
can tell that the treatment EAI method does improve students’
mastery on the attribute 1 and attribute 4. In other words,
if the students were assigned to the treatment group that
receiving the EAI teaching method, they would show progress

in math learning, especially in the skills of geometry and
ratio/proportional relationships.

The simulation studies showed that the parameters were
consistently recovered in general, indicating that incorporating
latent growth curve and covariate extension at the attribute
level did not affect model estimation. In simulation study I,
both attribute and item level estimates were stable with sample
size of 1,000 and 2,000 for the Unconditional LG-CDM. For
the Conditional LG-CDM, additional attention may be given
to the attribute difficulty parameter (bk) and intervention effect
parameter (hk), percentage bias of 18.2% and 37.4% for the
sample size of 1,000. However, with the sample size increase to
2,000, the % bias of intervention effect declines rapidly to 4%. The
recovery of random parameters was excellent across two models,
with bias of random intercepts are less than 2.0% in the sample
size of 1,000 and 2,000.

In Simulation Study II, more time points and items were
involved to fully examine the performance of proposed LG-
CDMs in terms of parameter recovery. The item level estimates
were satisfactory with sample size of 1,000. Although the bias
and % bias of attribute difficulty parameter and intervention
effect parameters are slightly high, it is expected that they would
decrease obviously when the sample size increase. However,
it should be noted that the recovery of random effects for
data with three time-point specifications were modest and may
depend on study design. Thus, latent growth models may need
more specifications or constrains on random intercept and
random slope parameters to achieve stable recovery. Besides,
the classification indices of the both simulation studies were
consistent across different conditions. The results obtained from
this study help to advance CDMs to better measuring the change
in learning over time.

Researchers and educators have long used pre-post assessment
to evaluate the effects of new curriculum and teaching method
on students’ learning. Meanwhile, it is important to know
students’ learning trajectory to achieve learning goal. Cognitive
diagnostic models have provided a diagnostic framework to
measure students’ mastery in fine-grained skills and different
kinds of longitudinal analysis have been incorporate to the CDM
to evaluate changes in skills profile mastery (e.g., Li et al.,
2016; Kaya and Leite, 2017). Different from other longitudinal
CDMs, the LG-CDMs described in this article incorporate well-
established latent growth curve model that is more widely
used in the social studies. Additionally, covariate extension
was integrated to signify the intervention effect. Dayton and
Macready (1988) introduced the use of covariate to affect the
attribute. Park et al. (2017) included both observed and latent
explanatory variables as covariates in the explanatory CDM to
inform learning and practice. Thus, this approach is meaningful
in the CDM for its diagnostic purpose. In this study, latent
growth curve and covariates are both specified at the attribute
level. In addition, latent growth curve could be also specified at
the item level, contributing to the multilevel studies on CDMs.
Meanwhile, more attributes and covariates could be incorporated
in specifying the items and explaining the relationship among
them. In the empirical study, it is likely to have items that are
of high slip and guessing estimates in the test (Lee et al., 2011),
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therefore, it is important for the researchers to carefully develop
and validate the Q-matrix used for CDM analyses.

For the future studies, different types of variance-covariance
structures could be specified in the model. For example,
all the parameters could be freely estimated (unstructured)
in the covariance structure to explore their relationships in
model estimation. Meanwhile, future studies could conduct a
comprehensive investigation of the measurement invariance,
building on the foundational simulation studies conducted in this
paper. For example, additional parameters could be included to
examine their effects on model identification and their impact
on the measurement invariance. Furthermore, the item level fit
statistics could be developed in the future studies for the item-
level effects in the LG-CDMs, which provides suitable item level
fit information for the studies that involve multiple time points.
In the current field of education, individualized learning has been
emphasized, which allows students to construct learning progress
at own pace. This study provides a flexible framework to diagnose
skill mastery as well as advancing the longitudinal CDMs to better
measuring the change in learning over time.
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APPENDIX

TABLE A1 | The Q-matrix for the real-world data analysis.

Attribute

Item α1 α2 α3 α4

1 1 0 0 0

2 0 1 0 0

3 0 1 0 0

4 0 0 1 0

5 0 0 1 0

6 0 0 1 0

7 0 0 1 0

8 0 0 1 0

9 0 1 0 0

10 0 1 0 0

11 0 1 0 0

12 0 1 0 0

13 1 0 0 0

14 1 0 0 0

15 0 0 0 1

16 0 0 0 1

17 1 0 0 0

18 0 0 0 1

19 0 0 0 1

20 0 0 0 1

21 0 0 0 1
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