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ABSTRACT
The design of the Cognitive Tutor Algebra I (CTA1) intel-
ligent tutoring system assumes that students work through
sections of material following a pre-specified order, and only
move on from one section to the next after mastering the
first section’s skills. However, the software gives teachers the
flexibility to override that structure, by reassigning students
to different sections of the curriculum. Which students get
reassigned? Does reassignment hurt student learning? Does
it help? This paper used data from the treatment arm of
a large effectiveness study of the CTA1 curriculum to esti-
mate the effects of reassignment on students’ scores on an
Algebra I posttest. Since reassignment is not randomized,
we used a multilevel propensity score matching design, along
with assessments of sensitivity to bias from unmeasured con-
founding, to estimate the effects of reassignment. We found
that reassignment reduces posttest scores by roughly 0.2
standard deviations—–about the same as the overall CTA1
treatment effect—that unmeasured confounding is unlikely
to completely explain this observed effect, and that the effect
of reassignment may vary widely between classrooms.

1. INTRODUCTION
Two closely related pillars of intelligent tutoring systems
are sequencing and mastery learning. It has long been ob-
vious that the sequence in which students learn different
topics is an important component of a curriculum, due to
prerequisites—for instance, students must master arithmetic
in order to learn how to solve algebraic equations. A related
example is scaffolding, in which learners gradually achieve
independence over a sequence of problems; scaffolding “con-
sists essentially of the adult ‘controling’ those elements of
the task that are initially beyond the learner’s capacity, thus
permitting him to concentrate upon and complete only those
elements that are within his range of competence”[33]. How-
ever, measuring the effects of sequencing [21] [9] and de-
termining prerequisites or optimal sequences [29] [31] [17]
remains an active area of research.

By“mastery learning,”we mean the idea that students should
“progress through topics as they master them,” [22] as op-
posed to at a fixed pace. This typically results in students
within the same classroom working on different parts of a
curriculum at the same time.

The Cognitive Tutor Algebra I (CTA1) system [8] includes
both features. A particular Algebra I curriculum is pro-
grammed into the software, so that students, if left alone,
will encounter topics in a specific, intentional sequence. Mas-
tery learning governs how they progress from one section to
the next: an underlying knowledge tracing model estimates
the probability students have mastered a set of pre-defined
skills as they work through problems that incorporate those
skills. Students ideally progress from one section to the next
only after demonstrating mastery on the previous section’s
skills.

Mastery learning does not always proceed this way in the
CTA1 software. After a student has worked a certain, pre-
specified number of problems in a particular section, he or
she is automatically promoted to the next section, even if
he or she has not mastered its skills [28]. Teachers can also
reassign students working on one section to work on an en-
tirely different section. If a teacher reassigns a student to
a section other than the next one in the sequence, reassign-
ment violates the intended sequencing as well as mastery
learning.

There are a number of reasons teachers may want to meddle
in the automatic progress of students through a curriculum
[16]. If a teacher observes an advanced student spending
time on basic skills, the teacher may move the student to
more advanced sections. If certain skills will be on a stan-
dardized test, and a teacher wants all students to have had
exposure to those skills before the test, the teacher may re-
assign all of his or her students to work on a section covering
those skills. If a teacher notices a student falling behind his
or her peers in the classroom, the teacher may choose to re-
assign the student to the section that the rest of the class is
working on, even if the student has not demonstrated mas-
tery on prerequisite skills (at least, within the tutor). If a
teacher disagrees with the method a certain CTA1 section
employs in teaching an Algebra topic, the teacher may reas-
sign students out of that section, perhaps to the next unit
or section in the curriculum.

It is unclear whether reassignment benefits students. On the
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one hand, it violates the design principles of the software.
On the other hand, it allows teachers flexibility to teach
the material as they see fit, and use the tutor to meet the
particular needs of their classrooms.

This paper uses data from a large randomized trial of the
CTA1 curriculum to estimate the effect of reassignment.
Unfortunately for our purposes, reassignment itself was not
randomized—the study was designed to estimate CTA1’s ef-
fectiveness, so access to the tutor was randomized instead.
Still, log data from study participants includes data on how
often each student was reassigned from one section to an-
other, and posttests measure their algebra skills at the end
of the study. For those reasons, this data provides a rare
opportunity to measure the effect of reassignment, and, by
extension, the (joint) importance of topic sequencing and
mastery learning.

The following section gives background on the effectiveness
trial and describes the data we will use for the study. Sec-
tion 3 describes propensity score matching, the method we
employ. Section 4 describes the propensity score models,
which in turn describe characteristics of students who are
reassigned. Section 5 describes the matching algorithm and
covariate balance. Section 6 gives our main results on the
effects of reassignment, including sensitivity analysis to con-
founding from unmeasured covariates and between-classroom
effect heterogeneity. Section 7 concludes.

2. DATA: THE RAND CTA1 EFFECTIVE-
NESS STUDY

In the years 2007–2010, the RAND Corporation conducted
a randomized study to test the effectiveness of the CTA1
curriculum relative to business as usual. The study tested
CTA1 under authentic, natural conditions—that is, over-
sight and support of CTA1’s use was the same as it would
have been outside of an RCT. The study population con-
sisted of over 25,000 students in 73 high schools and 74 mid-
dle schools located in 52 diverse school districts in seven
states. Students in Algebra I classrooms in participating
schools took an algebra I pretest and a posttest, both from
the CTB/McGraw-Hill Acuity series. The pretest was the
Algebra Readiness Exam, a 40-item multiple-choice exam
testing students’ algebra I prerequisite skills. The posttest
was the Algebra Proficiency Exam, a 32-item multiple-choice
exam testing algebra I skills including solving equations for
an unknown, graphing linear and quadratic functions, calcu-
lating complex algebraic expressions and other skills. Data
from both exams were scored with a three-parameter item
response theory (IRT) model.

Results [19] were reported separately for middle and high
schools, in the first and second years of implementation. In
the first year, estimated effects were close to zero in middle
schools and slightly negative in high schools, with confidence
intervals including negative, null, and positive effects in both
cases. In the second year, estimated effects were positive—
roughly one fifth of a standard deviation—in both middle
and high schools, and were statistically significant in high
schools. In the high school sample, the difference between
the effects in the first and second years was statistically sig-
nificant as well.

Table 1: The number and percent of students in each
study year of the dataset who were never reassigned,
or reassigned once, twice, three times, or four or
more times

# Reassignments

year 0 1 2 3 4+

n 1621 552 133 43 34
1

% 68 23 6 2 1

n 1056 297 193 95 194
2

% 58 16 11 5 11

As part of the study, RAND collected basic demographic
data from students, including gender, race/ethnicity, prior
standardized test scores, and special education, free or reduced-
price lunch, and English language learner status.

Carnegie Learning collected computer log data from most
users in the treatment arm of the study. At the prob-
lem level, this dataset records which problems students at-
tempted, along with timestamps and the numbers of hints
and errors for each attempted problem. The dataset also
contains data on which sections of CTA1 students attempted,
and the result: whether the student mastered the section,
was promoted automatically without mastery, was reassigned
by the teacher to a new section, or stopped using the tutor
altogether midway through the section.

The current study analyzes data from the high school treat-
ment group only, assessing the effect of teachers reassigning
students from one CTA1 section to another. Since students
in the control arm of the study did not have access to the
tutor, section reassignment is not relevant for them. We fo-
cus on high school, as opposed to middle school, since the
characteristics of Algebra I students tend to differ between
the two levels: 8th-grade students only take Algebra I if they
are sufficiently advanced, whereas most 9th grade students
(who have not taken it already) take Algebra I regardless.
Thus, the high school sample was not only larger but also
more broadly representative than middle school sample.

Unfortunately, log data was not available for every student
in the treatment arm of the study, primarily for two reasons:
some students in CTA1 schools nevertheless did not use the
tutor, and some students used the tutor but their log data
was irretrievable or could not be reliably linked to posttest
scores and covariates. This study omitted schools in which
data was missing for over 20% of students in either year,
leaving 18 schools. Among the students at these schools, we
omitted 164 who had no log data, and 242 who worked—but
did not complete—only one section or who had no section
completion data for some other reason. A total of 4,218
students in 282 classrooms remained in the analysis sample,
roughly 70% of the full treatment group.

Table 1 shows the number of included students in each year
of the experiment who were reassigned zero, one, two, three,
or four or more times. Since the sample size decreases
quickly with the number of reassignments, and for the sake
of simplicity, we chose to dichotomize reassignment, esti-
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mating the effect of being reassigned at least once versus
never.

3. STATISTICAL APPROACH
For subjects i = 1, . . . , N in the treatment arm of the CTA1
trial, let Yi denote subject i’s posttest score, and let Zi ∈
{0, 1} indicate whether i was ever reassigned. Following [18]
and [25], let y0i and y1i denote i’s posttest score were Zi = 0
or 1—i.e., had i not been reassigned, or had i been reas-
signed, perhaps counterfactually—and let τi = y1i − y0i be
the effect of reassignment on i’s posttest score. Since y1i
and y0i are never simultaneously observed, τi is unidenti-
fied; however, weighted average treatment effects of the form
τw =

∑
i wiτi, with wi ≥ 0 and

∑
i wi = 1 may be identi-

fied under the right causal assumptions. For instance, had
Z been randomized, the average treatment effect, τw with
wi = 1/N , could be estimated without bias by the differ-
ence in the mean of Y between subjects with Z = 1 and
with Z = 0. Of course, reassignment Z was not random,
so identifying average treatment effects requires some com-
bination of control for observed covariates and assumptions
about unobserved covariates.

Let xi denote a vector of covariates for subject i. These
include pretest scores, special education, gifted, and English
language learner (ELL) status, race/ethnicity (white, black,
Latinx1), received free or reduced-price lunch (FRL). Let
Classi be i’s classroom; since reassignment occurred within
classrooms, Class is a covariate as well. If reassignment were
randomly assigned, the (theoretical) distribution of x and
Class would be equal between reassigned and not-reassigned
students—x and Class would be balanced. Our strategy
will be to construct a randomization scheme in which x,
and, to the extent possible, Class are balanced, and conduct
inference under that randomization scheme.

Specifically, we use propensity score matching [23] [27]. The
propensity score for subject i, ei(xi, Classi) = Pr(Zi =
1|xi, Classi) is the probability of i being reassigned condi-
tional on covariates x and classroom. [24] showed that un-
der two conditions, described below, estimates of the average
treatment effect conditional on e(x, Class) are unbiased. To
estimate effects, we first estimate propensity scores (Section
4), then identify groups of reassigned and not-reassigned stu-
dents with similar estimated propensity scores—a“match”—
and verify that covariates are sufficiently balanced within
the matched sample (Section 5), and, finally, estimate ef-
fects within the matched sample 6.

The first condition for propensity score matching is that
there is some randomness in the treatment assignment:

0 < ei(xi, Classi) < 1 for all i. (1)

When (1) fails for a subset of the analysis sample, common
practice is to drop that subset and estimate average effects
for the remainder of the analysis sample, i.e. the subset for
which (1) holds; this subset is referred to as the “region of

1For the sake of parsimony, these categories were collapsed
from a larger set in the original dataset, so that 8 Amer-
ican Indian/Alaskan Native students were categorized as
Latinx, 23 Asian/Pacific Islander students and 118 stu-
dents with missing data were categorized as white, and 22
Other/Multiracial students were categorized as black.

common support” [4] [30]. In this study, including Class
among the covariates leads to violations of (1). Of the 282
classrooms over the two years of the study, 95 contained no
reassigned students, and in 52 classrooms every student was
reassigned at least once. In this subset of the data, including
44% of students, Pr(Z = 1|Class) = 0 or 1. Our solution
is to drop classrooms in which no one or everyone was reas-
signed, and only estimate effects for students in classrooms
with some reassignment variance, a student-level analysis.

We attempted a parallel classroom-level analysis, in which
we matched classrooms in which all students were reassigned
to classrooms in which no one was. However, we were un-
able to construct a match with adequate covariate balance
(there were few no-reassigned classrooms with similar mean
pretest scores to the all-reassigned classrooms that were of
similar sizes). For that reason, we dropped the classroom-
level analysis.

The second condition for propensity score matching is that
there are no unmeasured confounders:

(y1, y0) ⊥⊥ Z|x, Class (2)

Assumption (2) is well known as the Achilles heel of causal
inference outside of RCTs. (2) is untestable; its believabil-
ity depends on what is understood about the process that
underlies treatment assignment Z, and what covariates are
available for control. In our case, reassignment is poorly
understood, and appears highly idiosyncratic [16]. Fortu-
nately, our study includes a pretest measure, and observa-
tional studies controlling for pretest scores tend to perform
well, and replicate experimental estimates [6] [7]. Section 6.1
discusses a sensitivity analysis that relaxes 2 and assumes
reasonable levels of unmeasured confounding.

Our attitude towards propensity score matching is agnostic.
If the propensity score models in the following section were
approximately correct, and yielded good estimates of the
true propensity scores, then the theory underlying propen-
sity score adjustment holds. If not, the process of propensity
score matching may still result in a set of matched reas-
signed and not reassigned students that, on average, resem-
ble each other on all measured covariates. In other words,
the (mis)estimated propensity scores ê may still be approx-
imate “balancing” scores, satisfying

x ⊥⊥ Z|ê. (3)

Causal inference based on comparisons within these matched
sets will still be plausible; indeed, [24] showed that in order
to estimate average treatment effects, it is sufficient to con-
dition on a balancing score, rather than the propensity score
itself.

Following that logic, we choose propensity score models, and
matching schemes based on the fitted models, in order to
satisfy (3). Since posttest scores play no role in propensity
score estimation and matching, the process may be iterative
without affecting the objectivity of the final causal estimate.
That is, we may try a series of candidate propensity score
models and matches, and choose the one that results in the
best covariate balance. Only then do posttests enter the
picture, so that we may estimate effects.
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All data analysis was done in R [20] using the tidy-

verse suite of packages [32] for data manipulation, plot-
ting, and other tasks. This document was produced dy-
namically with knitr [34]. Source code is available at
www.github.com/adamSales/cpEffect.

4. PROPENSITY SCORES: WHO GETS
REASSIGNED?

We use multilevel logistic regression [10] to estimate stu-
dent level propensity scores. The multilevel regression ac-
counts for the nesting of students within classrooms, class-
rooms within teachers, and teachers within schools. In con-
structing the model, we give special consideration to the
role of pretest scores, a proxy for student mathematical abil-
ity at the beginning of the school year, in predicting reas-
signment. First, we decompose pretest scores into student-
and classroom-level components. If wi is student i’s pretest
score, let wi = w̄j[i] + w̃i, where w̄j[i] is the average pretest
score in i’s classroom j[i], and w̃i is the difference between i’s
pretest score and the classroom mean. This decomposition
was motivated by the possibility that reassignment patterns
may differ between high- and low-achieving classrooms, and
that a teacher’s decision to reassign a student depends on
the student’s ability relative to the classroom than his or
her absolute ability. Second, we modeled the effect of w̃
on Z as linear in the logit scale, but allowed the slope to
vary by classroom. This was motivated by the possibility
that some teachers use reassignment to help struggling stu-
dents catch up to their peers, so lower w̃ would predict Z,
and other teachers use it to help high-achievers skip sec-
tions related to basic skills, so higher w̃ would predict Z.
We also considered models incorporating non-linear effects
of w̃, via natural splines [14] but found no evidence that the
non-linearity improved the model fit. We fit the model using
the lme4 package in R [1].

All in all, the propensity score model was:

logit {Pr(Zi = 1|xi, Classi = j)} =

β0state[i] + β1w̃i + β2w̄j[i]+

β3Blacki + β4Latinxi + β5Malei+

β6Freshmani + β7SpEdi + β8giftedi+

β9ESLi + β10FRLi + β11FRLmisi + β12yeari+

γj[i]w̃i + εCls
j[i] + εTeach

k[i] + εSchl
l[i]

(4)

where logit(x) = log(x/(1−x)) is the logit function, β0state[i]
is a (fixed) intercept for each state in the sample, FRLmisi
is an indicator for missing data in FRL (which was mode-
imputed), and yeari = 1, 2 is the study year for subject i.

Finally, γj[i], ε
Cls
j[i] , ε

Teach
k[i] , and εSchl

l[i] are random effects. The
subscripts j, k and l refer to classroom, teacher, and school,
respectively; the [i] refers to student, so that j[i] is i’s class-
room, k[i] is i’s teacher, and l[i] is i’s school.

γj[i] is a random slope for w̃i, varying at the classroom level.
This is essentially an interaction term, allowing the slope for
(classroom centered) pretest scores to vary from one class-
room to the next. However, unlike standard regression in-
teractions, random slopes are modeled as being drawn from
a normal distribution, with a standard deviation estimated
from the data. This is a form of regularization, shrinking
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Figure 1: Estimated coefficients and 95% confidence
intervals for student and class-level covariates from
model (4).

the classroom-level slopes towards a common value, and al-
lowing stable estimation even with very few observations
from each classroom [10] [26]. The set of random slopes γj
has a mean of zero—the average slope across classrooms is
the fixed intercept β1. Therefore, the slope for pretest in
classroom j is β1 + γj .

εCls
j , εTeach

k , and εSchl
l are random intercepts for classroom,

teacher, and school. These were also modeled as normal with
a mean of zero and a standard deviation estimated from the
data. Including them in the regression accounts the fact that
two students in the same classroom or with the same teacher
or in the same school may be more likely to have the same
Z—either both be reassigned or neither—than two students
in different classrooms, with different teachers, or in different
schools.

Figure 1 gives estimated coefficients and 95% confidence in-
tervals for the propensity score model (4). Reassignment
was much more prevalent in the second year of implemen-
tation than in the first, and classrooms with low average
pretest scores reassigned students more often—though the
magnitude of this trend is hard to determine, ranging from
moderate to very large (the coefficients for w̄ and w̃ were
scaled by the standard deviations of these variables in the
data). Latinx students were reassigned more often than their
White classmates.

Students with lower pretest scores were reassigned more fre-
quently than their classmates with higher scores. However,
this may vary by classroom. On average, classroom-specific
β1j was approximately -0.31 standard deviations, but the
95% confidence interval for the mean includes slightly posi-
tive values as well. The standard deviation of β1j , varying
by classroom, was estimated as 0.83, suggesting that in some
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classrooms the slope on w̃ was moderately positive, and in
others it was negative. However, the model was not able
to estimate the variance of β1j precisely; the p-value test-
ing the null hypothesis of zero variance was 0.07.2 When
model (4) was modified so that β1 was not allowed to vary
by classroom, it was estimated as -0.32±0.27.

5. MATCHING AND COVARIATE BAL-
ANCE

We construct a student-level match based on propensity
scores on the log-odds scale, i.e. log(ê/(1 − ê). Instead
of a pair-matching design, which would necessitate discard-
ing non-reassigned students who would make good matched
comparisons, we use a restricted full match design [11]. In
this design, the numbers of reassigned and not-reassigned
students in each matched set is allowed to vary, so that in
some cases several reassigned students may be matched with
a single non-reassigned student, and vice-versa. We use the R
package optmatch [13] to choose the matched sets optimally.
The fullmatch() routine takes a matrix of discrepancies
(e.g. differences in propensity scores) between treatment
and control subjects, and arranges them into matched sets
so that the sum of absolute discrepancies between matched
subjects is minimized.

As described at the end of Section 3, the post-test scores
played no role in this process. Hence, we were able to it-
eratively match students, check covariate balance, modify
the propensity score model and/or the matching routine if
necessary, and repeat until adequate balance was achieved.
Here we present the final match; a record of attempts is
available on the first author’s github site.

The initial full match based on the log-odds propensity
scores yielded decent covariate balance. However, pretest
scores were slightly unbalanced, and since we consider
pretest to be the most important covariate, we decided to
match on the Mahalanobis distances between reassigned and
not reassigned students combining propensity scores and
pretest scores. Additionally, as displayed in Figure 2, the
distributions of propensity scores among reassigned and not-
reassigned students do not entirely overlap. Although this
is at least partially due to overfitting the propensity score
model (4), matching students with highly discrepant propen-
sity scores may hinder the believability of the result. Hence,
in our final match we imposed a caliper of 0.3 pooled stan-
dard deviations of the Mahalanobis distances. This pre-
vented students with very different pretest scores or propen-
sity scores to be matched. On the other hand, matches
were unavailable for 25% of the students in the sample (21%
of reassigned students and 28% of not-reassigned students).
Propensity scores for these students are colored red in Fig-
ure 2. Our effect estimates pertain only to the remaining
75% of students—all in all, 1480 students, 604 reassigned
and 876 not reassigned.

Covariate balance after matching was excellent. Figure 3
and Table 2 give covariate balance (standardized differences)
before and after matching. They were produced with the RI-

2This hypothesis was tested with a likelihood ratio χ2 test
comparing (4) to a model in which β1 did not vary by class-
room.
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Figure 2: Estimated propensity scores for reassigned
and not-reassigned students. Scores for students
who were excluded from the ultimate match are col-
ored red.

Standardized Differences

−0.5 0.0 0.5

●

●Student    
Class mean    

Pretest

●

●

●Latinx    
Black    
White    

Race

●

●M    
F    
Sex

●

●9    
10+    
Grade

●

●

●

●

●

●Year
FRL Missing

FRL
ESL

Gifted
Special Ed.

●

Before.Match
After.Match
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ences) before and after matching, for student level
data. Dotted lines indicate standardized differences
of 0.25 and 0.05, following the What Works Clear-
inghouse standards.
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Table 2: Balance (standardized differences) on stu-
dent level covariates before and after propensity
score match. Omnibus p-values testing covariate
balance are p<0.001 before matching and p=0.95
after matching.

Before Match After Match

std.diff std.diff

Pretest
Class Mean -0.09 . 0.00
Class Centered -0.09 . -0.01

Race/Ethnicity
White -0.53 *** 0.06
Black 0.06 -0.02
Latinx 0.59 *** -0.05

Sex
F -0.01 -0.01
M 0.01 0.01

Grade
10+ 0.14 ** -0.03
9 -0.14 ** 0.03

Special Ed. 0.12 * -0.05
Gifted -0.04 0.00
ESL 0.22 *** -0.02
FRL -0.02 0.00
FRL Missing -0.28 *** 0.06
Year 0.11 * 0.00

tools package in R [3]. Before matching, several covariates
were unbalanced, especially race. Table 2 shows stars reflect-
ing p-values from individual covariate balance tests; nearly
all covariates were unbalanced at the α = 0.1 level. An om-
nibus balance test [12] gives p < 0.001. Figure 3 shows, as
benchmarks, standardized differences of ± 0.25 and 0.5, cor-
responding to thresholds given in the What Works Clearing-
house (WWC) handbook3 [5]. Before matching, imbalances
in race and FRL missingness exceeded 0.25, and most other
imbalances were greater than 0.05.

Matching improved nearly all of these imbalances. Most
importantly, pretest measures were nearly exactly balanced.
None of the individual covariate balance tests was significant
at the 10% level or had standardized differences greater than
0.25, and, with the exception of race, and FRL missingness
none of the covariates was imbalanced with a standardized
difference greater than 0.05. The omnibus p-value testing
overall balance was 0.95.

The match also balanced classroom indicators. Before
matching, the omnibus p-value testing balance of classroom
indicators was < 0.001; after matching it was 0.99.

6. THE EFFECT OF REASSIGNMENT

Table 3 gives five estimates for the effect of reassignment in
classrooms where some students, but not all, were reassigned
at some point. The first column gives the estimate itself, the
second gives the sample size N for that estimate, the third,
“Std Error” gives the standard error, and the fourth, “CI,”
gives a 95% confidence interval. The last two columns con-
tain sensitivity analyses, described in the following section.
All the estimates used a regression routine from the esti-

matr package in R [2], with “HC2” heteroskedasticity-robust
standard errors.

The first row, labeled “Raw,” is an an unadjusted estimate,
comparing all students in the sample who were reassigned to
all students who weren’t. There is little difference in their
average posttest scores.

The next row, labeled “Matched+Regression,” gives the ef-
fect estimate based on the match from Section 5. The lower
sample size 1480 reflects the fact that some students were
excluded from the match; this estimate only pertains to
those who were included. To estimate the effect, we regress
posttests on Z including a fixed effects for each match. Let
τ̂m be the estimated effect in match m. If m is a pair—
one reassigned student matched with one non-reassigned
student—then ˆtaum is the difference between the two stu-
dents’ posttest scores. If there are more than two students
in the match, τ̂m is difference in posttest means between
reassigned and not-reassigned students within matched-set
m. If treatment assignment is unconfounded within each
match, Z ⊥⊥ {yC , yT }|match, then τ̂m is unbiased for the
average effect of Z on posttest scores in match m. Then the
regression estimate is a weighted average of τ̂m, with weights
wm ∝ (1/n1m + 1/n0m)−1; this weighing scheme minimizes
the standard error under standard linear regression assump-
tions (if the regressions assumptions do not hold, but Z is
still unconfounded within the match, then the estimate is
still unbiased but the weights are sub-optimal).

The next row, labeled “Match+Regression” uses the same
regression model as the “Matched” estimator, but addition-
ally controls for pretest scores (with a natural spline with
five degrees of freedom), and indicators for special education
status, missing free or reduced-price lunch data, and race.
This strategy controls for differences in these covariates left
over after the match, accounting for the fact that the match
was imperfect.

The “Matched” and “Match+Regression” estimates were al-
most identical—effect sizes of -0.2 and -0.19, respectively,
with 95% confidence intervals of [-0.29,-0.12] an [-0.28,-0.11].
These negative effect estimates suggest that reassignment
hurts student learning. The effect size of a fifth of a standard
deviation is roughly the same as the overall average effect
of CTA1 in high schools in the second year of implementa-
tion, as estimated in [19], suggesting that reassignment may
negate most of the positive effect of using CTA1.

The next two rows of Table 3, however, suggest that the

3In the context of a randomized experiment with attrition,
covariate imbalances with standardized differences greater
than 0.25 invalidate a study, whereas differences between
0.05 and 0.25 require statistical adjustment and differences
less than 0.05 are acceptable as is.
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Estimate N Std. Error CI [Pretest] [State]
Raw -0.04 1981 0.03 [-0.11,0.03] [-0.15,0.07] [-0.16,0.08]

Matched -0.20 1480 0.04 [-0.29,-0.12] [-0.35,-0.06] [-0.36,-0.05]
Match+Regression -0.19 1480 0.04 [-0.28,-0.11] [-0.33,-0.05] [-0.34,-0.04]

Year 1 -0.24 1008 0.06 [-0.34,-0.13] [-0.42,-0.06] [-0.43,-0.04]
Year 2 -0.11 472 0.07 [-0.25,0.02] [-0.33,0.11] [-0.35,0.12]

Within-Class -0.17 1981 0.04 [-0.24,-0.10] [-0.29,-0.05] [-0.30,-0.04]

Table 3: Estimates of the effect of reassignment without controlling for confounding (“Raw”), controlling for
confounding with propensity score matching (“Matched”), with matching and further regression adjustment
(“Match+Regression”), overall and separately for each year, and matching by classroom, with further re-
gression adjustment (“Within-Class”). The table gives estimates, standard errors, 95% confidence intervals,
and 95% sensitivity intervals assuming an unobserved confounder with properties similar to pretest scores
(“[Pretest]”) and to State (“[State]”)

effect of reassignment may depend on context. Each row
uses the “Match+Regression” approach, but separately in
data from implementation years 1 and 2. It appears that
reassignment may have hurt students’ posttest scores more
in the first than in the second year of implementation—in
the first year, we estimate an effect of -0.24 and in the second
year we estimate an effect of -0.11. That said, the difference
between the two effects is not itself statistically significant—
that is, it may be the result of statistical noise.

The final row of Table 3, labeled “Within-Class,” uses a dif-
ferent confounder control strategy altogether. This estimate
matches students by classroom, as if reassignment were ran-
domized within classrooms. To weaken that assumption,
the “Within-Class” estimate incorporates additional regres-
sion controls: a natural spline with five degrees of freedom
for pretest, and indicator variables for the remaining covari-
ates. This strategy estimates a similar negative effect as the
others, NA, with a 95% confidence interval of [-0.24,-0.10].

6.1 Unobserved Confounding
The estimates in Table 3 all assumed (2), that there was
no unobserved confounding. This assumption is strong,
untestable, and could undermine all of the inference in Sec-
tion 6. For instance, the estimated negative effect may be
due to baseline differences in ability, beyond what is cap-
tured in pretest scores.

[15] suggest a method of estimating the sensitivity of a re-
gression to an omitted confounder based on benchmarking
from observed confounders. Roughly speaking, the idea is
to widen the confidence interval from an ostensibly causal
linear model to account for the possibility of a hypothetical
unmeasured confounder, U , that predicts reassignment and
posttests to the same extent as one of the observed covari-
ates. These “sensitivity intervals” account for uncertainty
from two sources: random error, and systematic error due
to the omission of a confounder.

In order to confound the causal relationship between reas-
signment and posttests, a confounder would have to predict
both. Capturing these two requirements, the method of [15]
is based on two sensitivity parameters: first, TZ encodes the
extent to which U predicts Z, after accounting for observed
covariates x. Formally, TZ is the t-statistic on the U co-
efficient from an ordinary least squares regression of Z on
U and X. The second parameter is ρ2, the squared partial

correlation between posttest scores and U , conditional on
x. Of course, since U is unobserved, neither TZ nor ρ2 is
known; [15] suggest benchmarking them using observed co-
variates. That is, imagine each observed covariate, in turn,
were unobserved, and calculate its TZ and ρ2 given the rest
of the observed covariates.

Table 3 includes two such sensitivity intervals. The column
labeled “[Pretest]” includes sensitivity intervals for an unob-
served confounder that predicts reassignment and posttests
as well as do pretest scores—typically the most impor-
tant confounder. That is, these intervals are 95% confi-
dence intervals that assume the possible existence of an
unmeasured covariate as important as pretest. It turns
out, in the current analysis, that omitting state indica-
tors would cause more bias than omitting pretest scores;
for that reason, the column labeled “[State]” gives sensi-
tivity intervals for an unobserved confounder that predicts
reassignment and posttest scores as well as state indica-
tors. Both sets of sensitivity intervals are considerably wider
than the corresponding confidence intervals, including both
large and small negative effects. Sensitivity intervals for
the“Matched”, “Match+Regression,”“Year 1,” and“Within-
Class” estimates, whose confidence intervals excluded zero,
excluded zero as well. That is, confounding from an un-
observed variable as important as pretest or state may have
led us to over-estimate the negative effect of reassignment; it
may have also led us to under-estimate the effect. However,
such confounding cannot explain the sign of the effect we
estimated—even assuming the existence of an unobserved
confounder as important as our most important covariates,
the effect must be negative.

That said, an even stronger confounder, or more complex
confounding from several unobserved covariates, may ex-
plain the observed results. Without a randomized trial, it is
impossible to entirely rule out unobserved confounding.

6.2 Treatment Effect Heterogeneity
Previous research [16] has found evidence for a wide variety
of uses for reassignment. In some cases, teachers reassign
students who are falling behind their classmates, in other
cases teachers reassign nearly the entire class to work on a
particular section of the tutor, and in other cases teachers
will simultaneously reassign all students working on a par-
ticular section out of that section. Along similar lines, our
(inconclusive) evidence for variance between classrooms in
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Figure 4: Classroom-specific effects of reassignment
(β̂1 + γ̂j) from model (5). Error bars represent stan-
dard errors.

the relationship between pretest scores and the probability
of a student being reassigned points towards varying uses
for reassignment.

If reassignment is used differently from classroom to class-
room, it stands to reason that it might have different effects
in different classrooms, as well. To test that assumption,
we fit a multilevel model with random effects for reassign-
ment, varying by classroom. The model had the same fixed
effects as model underlying the “Match+Regression” results
described above, as well as random intercepts for classroom
and random slopes for reassignment, varying by classroom.
Formally, the model is:

Posttesti = β0,m[i] + β1Zi + β2SpEdi+

β3frlMISi + β4Blacki + β5Hispi+

ns5(pretesti,α) + γj[i]Zi + εCls
j[i] + εInd

i

(5)

where β0,m[i] is a fixed intercept for each match,

ns5(pretesti,α) is a natural spline for pretest, with five de-
grees of freedom and coefficient vector α, and γj[i], ε

Cls
j[i] , and

εInd
i are random effects, modeled as normal with mean zero

and standard deviation estimated from the data. Symbols
α, β, γ, and ε do not represent the same quantities as in
equation (4). γj[i] is the random slope for reassignment,
varying by classroom; the effect of reassignment in class-
room j is estimated as β̂1 + γ̂j . That is, β1 represents the
effect of reassignment, averaged over all classrooms, and γj
represents the difference between classroom j’s effect and
the average. While precisely estimating the effect of reas-
signment in any particular classroom is beyond the scope
of our data, this model allows us to estimate the variance
across those effects, as the variance of γjs.

The results are displayed in Figure 4. The effect of reassign-
ment in an average classroom is estimated as similar to the
effects in Table 3. This effect varies with a standard devi-
ation of approximately 0.25. To test for between-classroom
variance, we compared the fit of the multilevel model to an
analogous model without random slopes, with a likelihood
ratio χ2 test; the p-value was 0.004. This standard devia-
tion is large enough to imply that the effect will be positive
in some classrooms—indeed, Figure 4 shows a number of
classrooms with positive effects. That said, the confidence
intervals (based on estimates for the conditional variance
of random slopes, combined with the standard error of the
main effect of reassignment) are all rather wide and nearly
all contain zero.

Therefore, while the effect of reassignment was negative, on
average, it may have been positive in some classrooms.

This variation could be due to a number of factors, includ-
ing differences in the composition of classrooms and in when
or how reassignment is used. We considered two simple hy-
potheses about classroom-level predictors of heterogeneous
treatment effects. The first hypothesis was that variance in
students’ pretest scores within a classroom predicts the ef-
fect of reassignment in that classroom. The idea is that some
teachers may use reassignment as a tool to address vary-
ing student ability—for instance, they may reassign lagging
students to help them keep up with their classmates. Class-
rooms with higher variance in pretest scores afford more op-
portunities for teachers to use this reassignment strategy. If
the strategy is widely used, and either particularly effective
or ineffective at boosting students’ posttest scores, there will
be a correlation between classroom-level variance in pretest
scores and the effect of reassignment.

Our second hypothesis was that the proportion of stu-
dents in a classroom who have been reassigned may predict
classroom-level effects. The idea here is that in classrooms
with a low proportion of students reassigned, teachers use
reassignment in a more targeted fashion, so it may be more
beneficial.

Figure 5 plots random effects γ̂j from model (5) as a func-
tion of classroom level pretest variance and the proportion
of students reassigned, respectively, with simple OLS fits.
A positive relationship between pretest variance and γ̂, and
a negative relationship between proportion reassigned and
γ̂ are apparent, but with wide standard errors. To test
these hypotheses more formally, we re-fit model (5), adding
fixed effects for the variance in pretest scores and propor-
tion reassigned, as main effects and interacted with Zi. The
model reduced the unexplained variance in classroom-level
effects from 0.25 to 0.21—these variables explained about
27% of the unexplained variance in treatment effects. The
coefficient on the interaction beween pretest variance and
reassignment—measuring the extent to which pretest vari-
ance explains treatment effects—was estimated as 0.09, with
a 95% confidence interval of [-0.75,0.93], so the data are
compatible with large associations in either direction be-
tween pretest variance and treatment effects. No firm con-
clusions may be drawn. The coefficient on the interaction
beween proportion reassigned and reassignment—measuring
the extent to which classroom proportion reassigned ex-
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Figure 5: The random effects γj from model (5) (with error bars for one standard error) as a function
of classroom-level variance in pretest scores and the proportion of students in a classroom who were ever
reassigned. OLS fits are added for interpretation.

plains treatment effects—was estimated as -0.3, with a 95%
confidence interval of [-0.57,-0.03], and a p-value of p = 0.03.
This suggests that the effect of reassignment may be lower—
more negative—in classrooms in which a higher proportion
of students were reassigned. This aligns with our second
hypothesis.

These effect heterogeneity analyses assume (2), no unmea-
sured confounding. Unfortunately, we are not aware of
methods for sensitivity analysis of the type presented in Sec-
tion 6.1, applied towards estimates of effect heterogeneity.
In particular, unobserved confounding may vary by class-
room; for instance, the structure of the propensity score
match may vary with the proportion of students ever reas-
signed, since within-classroom matches will be scarce when
this proportion is high. For those reasons, the conclusions in
this section should be taken as suggestive and exploratory.

7. DISCUSSION
A deeper understanding of the use of reassignment and its ef-
fects can yield practical and theoretical dividends. Teachers
would benefit from clear guidelines as to when and whether
reassigning students to a new section may benefit that stu-
dent’s learning. A better understanding of if and when reas-
signment helps or hurts student learning can contribute to
our understanding of the importance of sequence and mas-
tery learning in intelligent tutoring systems.

Here, we estimate that, on average, reassignment hurts stu-
dent learning, perhaps as much as CTA1 helps. That con-
clusion comes with two important caveats: first, although it
appears unlikely that the entire reassignment effect we esti-
mated is due to confounding from unmeasured variables, a
large portion of the effect might be. That is, the magnitude
of the reassignment effect we estimated may be an artifact of
unmeasured confounding—reassignment may not be as bad

as we estimate, or it may be worse. (Of course, we cannot
rule out that the entire effect is due to confounding, or that
the direction of our estimated effect is wrong.)

Secondly, there is evidence that the effect of reassignment
varies widely between classes. Even if it hurts on average,
used properly it may help.

More broadly, these issues illustrate the opportunities and
perils of analyses of log data from randomized trials of ed-
ucational technology. Even when the randomization itself
does not contribute to an analysis, the combination of log
data collected under natural conditions and a long period of
time and a posttest measuring student ability at the end of
the study can be used to gain insights on tutor use and ef-
fects. On the other hand, log data, even from a randomized
trial, is observational, and therefore messy and subject to
confounding and other threats. Causal modeling of log data
from randomized experiments is crucial, but difficult.
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