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ABSTRACT 
Feature engineering, the construction of contextual and relevant 
features from system log data, is a crucial component of 
developing robust and interpretable models in educational data 
mining contexts. The practice of feature engineering depends on 
domain experts and system developers working in tandem in order 
to creatively identify actions and behaviors of interest. In this 
paper we outline a method of iterative feature engineering using 
the misclassifications of earlier models. By selecting cases where 
earlier models and ground truth disagree, we can focus attention 
on specific behaviors, or patterns of behavior, that a model is not 
using in its predictions. We show that iterative feature engineering 
on cases of false positives and false negatives improved a model 
predicting quitting in an educational video game by 15%. We 
close by discussing applications of this method for addressing 
model performance gaps across different classes of learners, as 
well as precautions against model overfitting with using this 
method of feature engineering. 
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1. INTRODUCTION 
Educational games and digital simulations are powerful 
educational tools that have seen increasing use in classrooms 
within the last decade. These digital environments afford students 
rich opportunities to engage deeply with content, adopt new and 
different identities [6], explore personally relevant domains [8], 
and develop non-cognitive skills such as productive persistence 
[17]. The adoption of educational games as tools for learning has 
been accompanied with an increasing focus on educational games 
as a medium for the application of educational data mining. The 
medium of educational games presents challenges for EDM  
methodologies, however, as the relative complexity of student 
behaviors in games can be quite broad when compared to more 
constrained environments such as intelligent tutoring systems 
(ITS). 

Given the more complex behaviors possible for students in these 
environments, researchers studying learning in digital 
environments and games are able to identify and predict more 

complicated cognitive and non-cognitive constructs. Some 
examples of constructs identified in games include persistence 
[14], elegant problem solving [13], seriousness [5], carefulness 
[4], computational thinking [1], and mental demand [31]. 

This increased complexity places an increased importance on the 
feature engineering and/or knowledge engineering steps of the 
data science pipeline. Expert knowledge is often crucial for 
understanding specific patterns of behavior within educational 
games and simulations.  For example, deep understanding of both 
gameplay design and conceptual understanding of physics were 
needed to develop a model of whether students had implicit 
conceptual understanding of physics based on how they responded 
to balls of different colors (connoting mass) in a physics game 
[22]. This understanding has driven feature engineering in many 
of these cases. Previous work by [23] has shown that feature 
selection and feature engineering of variables with high construct 
validity can lead to better model performance on unseen data. The 
question, then, is how we as researchers can quickly and 
effectively identify the specific patterns of player behavior that 
“matter” – how can we best separate the signal from noise in a 
large, complex dataset on student behavior and interaction? 

Historically, social sciences researchers have addressed the 
complexity of human behaviors by combining qualitative methods 
providing “thick description” of actions [7] with quantitative 
methods to make scalable and general claims. However, the 
considerable amount of behavioral log data generated by modern 
learning systems poses a challenge to the qualitative analysis of 
human behaviors. One approach, termed “closing the interpretive 
loop” [24], is to refine and validate a model by looping back to the 
raw data, and checking whether the model and data are consistent. 
In an application of this method, [12] constructed a model to 
investigate how interactive indicators in the Jaune Fluo dataset 
relate to emotions in learning. By returning to and leveraging raw 
transcription data, they gained insights about micro-level 
interactions between speakers that could be used to drive 
modeling.  

In this paper we propose a related approach -- a method for 
selecting specific cases of relevance from a larger dataset for 
further analysis, using instances of model mis-prediction. By 
adopting an iterative approach to model selection and feature 
engineering, we can use cases of false positives and false 
negatives to identify the specific cases where the model fails to 
accurately match student data, to better uncover relevant 
gameplay behaviors and patterns. We can then employ qualitative 
techniques to these cases to better understand what is occurring, 
and use these findings for additional feature engineering and 
model iteration. By closing the interpretive loop, we not only gain 
deeper understanding of the data, but also generate new contextual 
features for modeling in a way that is closely tied to observed 
patterns of behaviors in the data. We apply this method in the 
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broader context of studying student quitting behavior in the 
educational  physics simulation game Physics Playground [28]. 

2. METHODS 
Data for this work comes from a series of randomized controlled 
trials (RCTs) conducted at middle schools in Pennsylvania and 
Florida during the spring of 2019 using the educational physics 
simulation game Physics Playground, courtesy of the Physics 
Playground team.  

Physics Playground teaches elementary physics concepts such as 
conservation of momentum and torque through a sandbox 
environment where players are tasked with drawing simple 
machines that move a ball to a balloon elsewhere in the level. 
Students receive badges for successfully solving levels, and are 
able to use these badges to unlock different types of music, 
custom balls, and other cosmetic changes within the game. 
Physics Playground also contains in-game hints and scaffolds, 
accessible through a help button on the UI. 

 

Figure 1.  Physics Playground. The author has 
(unsuccessfully) built a lever and dropped a weight on it in an 

attempt to move the ball to the balloon. The help button 
(bottom right) and object counter (bottom left) are also 

pictured. The author would like to note that they are not a 
physicist. 

A total of 96 students participated in the study. The RCTs were 
designed to test the effectiveness of several types of learning 
supports for Physics Playground on learning gains in the game. 
Students spent a total of ~110 minutes of class time playing 
Physics Playground in between a physics knowledge pretest and 
posttest, across four days. In the treatment condition, students 
were able to access a help button in the game UI that allowed the 
student to select multiple types of scaffolds to watch. Through the 
help button, students were able to receive help related to the use 
of game tools and mechanics, worked example solutions, and 
abstracted physics concepts. Students in the control condition 
were automatically prompted to use this button after three minutes 
had elapsed, but were unable to access the help button before that 
point. Preliminary analyses identified no significant differences in 
posttest scores or learning gains between conditions, so for the 
current study we combined these two groups and ignored 
condition assignment. Additional details on the study and its 
overall findings can be found in [29]. 

2.1 Data Structuring, Preprocessing, and 
Labeling 
Gameplay data from the study were collected by the game’s 
servers and output as .json files. A total of 703,765 records of 
student gameplay were collected during the study, where one 
record is a single logged student action in the game. 

Several pre-processing steps were taken to prepare the data for 
analysis. Three students who did not complete the consenting 
process for the study were removed from the dataset. Events 
which occurred outside of study hours were also removed from 
the dataset. These events were due to students continuing to play 
the game in their free time. Attempts which were shorter than two 
seconds were also removed from the dataset. These attempts often 
consisted of students rapidly pressing the spacebar to reset their 
current level, without taking any in-game actions. 
We also added additional contextual information into the dataset. 
We added the Physics Playground q-matrix into the dataset, which 
consists of the mapping between levels and physics constructs to 
be taught, as well as the simple machines associated with each 
level’s solution. We added a series of session, visit, and attempt 
IDs to each record. A “session” is a length of time from student 
login to student logout. New sessions can begin when a student 
begins playing Physics Playground for the first time each day, or, 
when a student refreshes their browser. A total of 586 gameplay 
sessions were recorded, for an average of six sessions for each 
student. It is worth noting that students played the game for four 
days within the study; the higher average number of sessions is 
because students could accidentally refresh their browsers, or hit 
the “back” button, which began the logging of a new session. 
Within each session are “visits” – a visit lasts from the beginning 
of a level to the end of a level, whether the student solves that 
level successfully or quits to go to a different level. We identified 
2906 total visits, with an average of 30 visits for each user – 
slightly less than the 34 levels available to play in the game for 
the current study. Finally, within each visit are “attempts” – an 
attempt begins any time that the level is initialized, and ends when 
a student either successfully solves the level, restarts the level, or 
quits the level. We identified 16,546 total attempts in the game, 
with an average of 172 for each user. 
Given this structure of sessions, visits, and attempts, we defined a 
“quit event” as any time a student begins a new visit, within the 
same session, when their previous attempt was not successful. 
This represents a student failing to solve a level, leaving that level 
entirely, and playing a different level within the game. From each 
quit event, we labeled each record that happened up to 120 
seconds before the event as “quit”, and all other records as “not 
quit”. Previous work on predicting quitting in Physics Playground 
used aggregations of 60-second clips within each attempt, e.g. 
[10]. In contrast, our method of labeling quitting at the event 
level, and up to 120 seconds prior, allows us to identify quitting 
across attempts, and sometimes across visits, in order to allow 
earlier detection and intervention by automated systems or in-
classroom educators. 

2.2 Initial Feature Engineering and Model 
Fitting 
Drawing on previous literature that has explored Physics 
Playground [10,13], we developed an initial set of 32 features to 
use in predicting student quit behavior. These features included 
counts of each type of object or simple machine (weights, ramps, 
levers, pendulums, springboards, freeforms, and pins) that the 
student had drawn total and per attempt, the number of times 
students went some number of seconds without recording an 
action (5, 10, 15, 30, and 60 seconds), and whether students used 
each type of scaffold (worked examples, game tools, and physics 
animations) as well as the number of scaffolds that they used total 
and in each attempt. We also developed features to capture the 
amount of time that students spent using scaffolds, as well as the 
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amount of time that had passed (in seconds) since the last time a 
scaffold was used. Finally, we recorded the elapsed time of each 
attempt, as well as the total elapsed time of the session, and the 
number of badges that students had earned so far.  
For modeling quit behavior, we chose to use a relatively simple 
logistic regression model rather than more sophisticated 
algorithms such as a decision tree, gradient classifier, or recurrent 
neural network. Regression-based models are easier to implement 
into Physics Playground’s Unity-based architecture than more 
sophisticated machine learning models. We used five-fold 
student-level cross validation in RapidMiner 9.4 [15]. We did not 
use any feature selection procedures for modeling; each feature 
was used as a component in the final model. We did not believe 
that our feature space was large enough to warrant feature 
selection. We used AUC ROC as our goodness metric, as we were 
more interested in overall model performance than optimizing our 
quit prediction threshold. 
This initial model, which we will call the “original” model with 
“original” features in this paper, has an AUC of 0.688. 

2.3 Error Identification and Feature Re-
Engineering 
Using the confusion matrix of this initial model, we identified all 
false positives and false negatives and mapped these events onto 
the attempts in the dataset. In other words, if any record within an 
attempt contained a case of model mis-prediction, we labeled the 
entire attempt as a mis-prediction. This resulted in 1,487 attempts 
labeled as cases of false negatives (9% of all attempts) and 298 
cases of false positives (2% of all attempts). We then used text 
replays [2] to qualitatively code these attempts for patterns of 
engagement or behavior that we believed could be related to 
quitting behavior in players. Text replays have been used 
previously to conduct in-depth study of other constructs such as 
gaming the system [19], as well as to obtain training labels for the 
development of detectors [21, 23, 5]. [19]’s research shows that 
they can be a powerful tool for developing thick descriptions of 
learner behavior, and that this deeper understanding can lead to 
substantially better models of that behavior [18]. We randomly 
selected 100 examples each of false positives and false negatives 
for this coding process and conducted text replays on these 
attempts, taking notes on potential new features which could 
capture behaviors that we observed in the data. This coding 
procedure was done by a single researcher. As in [19], reliability 
measures were not obtained, as the goal was to develop new 
features that could be applied to the data programmatically rather 
than to develop a scalable human-based coding method. In our 
coding, we also viewed only single attempts, not looking at 
preceding or subsequent attempts (as in most prior uses of text 
replays). 
Overfitting is an inherent concern for iterative feature engineering 
processes; we will discuss in the discussion section why 
overfitting may be particularly concerning for this paper’s 
method. Because we wanted to overfit  as little as possible, we 
only looked at text replays of false negatives and false positives. 
We intentionally did not view text replays of cases of true 
positives or true negatives. In other words, when we saw a 
behavioral pattern in false positives or false negatives, we did not 
double-check whether it was also seen in true positive or true 
negative cases, with a goal of deriving more features rather than 
attempting to conduct feature selection by hand by looking at the 
data (which could increase risk of over-fitting).  

Our text replay and qualitative coding processes identified 14 
additional features that we then developed software to apply to the 
dataset. Four of these new features related to scaffold use: 
Multiple Uses Of Same Scaffold, the number of times a student 
used the same learning support more than once in the same 
attempt; Short Scaffold Time, the number of times a student 
spent less than five seconds interacting with a scaffold; Early 
Scaffold Use, the number of times that a scaffold use appeared in 
the first third of actions that a student took in a given attempt; and 
Multiple Scaffolds In Attempt, the number of times that a 
student used more than one scaffold in the same attempt. Four 
features related to attempt duration: Long Attempt Count, the 
total number of attempts over three minutes; Average Last Three 
Attempt Times, the average duration of the last three attempts 
that a student had; Attempt Time Standard Deviation, the 
standard deviation of time across all student attempts so far; and 
Previous Attempt Duration, the duration of the attempt 
immediately before the current one. Three new features related to 
machine drawing and use: Net Objects Drawn, the number of 
objects a student drew on the current attempt minus the number of 
objects a student erased; Time Spent Drawing, the total elapsed 
time between the start and end of a student drawing a machine; 
and Unexpected Machine Used, whether a student drew a 
machine that was not associated with the knowledge component 
of the current level. We also created a feature for Consecutive 
Nudges, the number of consecutive times the student clicked on 
the ball to attempt to move it (cf. [9]), and a feature for Recently 
Restarted, whether the student restarted an attempt within the last 
120 seconds. A restart is when a student unsuccessfully solves a 
level, but retries the same level rather than quitting and going to a 
new one. 
The final re-design to our model, which we called Quit Flush, 
went beyond just creating a new feature. During coding, 
especially for false positives, we noticed that the model would 
continue to predict quitting after a quit event when the student did 
not subsequently quit. A student would begin a new attempt with 
the model already predicting that the student would quit. Then, 
some amount of time after the attempt had started, the quit 
prediction would drop off, and the student would go on to either 
restart the level or complete it successfully. We hypothesized that 
this was because the student may have quit in an earlier attempt, 
and the model had not yet caught up to the student’s new 
behavioral patterns in a different visit. Therefore, we constructed 
a separate dataset, which we called the Quit Flush dataset. In this 
dataset, we reset the values of all features following a quit event, 
starting the model over again from a blank slate whenever a quit 
was identified. 
Following this feature engineering process, we replicated the 
model fitting steps of the original model exactly. We also fit a 
series of models where we held out each new feature, to examine 
the performance gain from adding each feature into the new 
model. 

3. RESULTS 
3.1 Original Model vs. Enhanced Model 
Our enhanced model, using all 14 newly engineered features (but 
not including the quit flush), produced an AUC of 0.812 – a gain 
of almost 0.10, and a 15% improvement over the original model. 
The enhanced model’s performance is comparable to the best 
performing models developed by [10], even with the limitation of 
a relatively simple logistic regression rather than the more 
sophisticated classification algorithm used in that paper. We will 
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call this model the “enhanced model” with “enhanced features” in 
this paper. 

3.2 Enhanced Model vs. Quit Flush Model 
The quit flush model, using all 14 newly engineered features and 
resetting all features’ values after a quit, produced an AUC of 
0.616 – slightly worse than even the original model. The poor 
performance of the quit flush model suggests that student quitting 
events are “sticky”, and that moving between levels does not 
necessarily indicate that a student starts working productively. 

An ROC curve comparison between the AUC of the original 
model, enhanced model, and quit flush model is given in Figure 2. 

 

Figure 2. Comparison between Original Model AUC, 
Enhanced Model AUC, and Quit Flush Model AUC. 

3.3 Leave One Out Model Results 
Following our fitting of the enhanced model and the quit flush 
model, we then fit subsequent iterations of the enhanced model, 
holding one feature out each time. The purpose of this analysis 
was to identify the contribution that each individual feature made 
to the overall performance of the model. 

Table 1. Comparison of feature impact on enhanced model 
performance. 

Feature Name AUC When Held Out Delta 

Consecutive Nudges 0.742 -0.070 

Early Scaffold Used 0.793 -0.019 

Previous Attempt Duration 0.812 -- 

Short Scaffold Use 0.812 -- 

Attempt Longer Than 3m 0.812 -- 

Average Last 3 Attempts 0.812 -- 

Uses of Same Scaffold 0.812 -- 

Multiple Scaffold Uses 0.812 -- 

Recent Restart 0.812 -- 

StD Attempt Duration 0.812 -- 

Time Drawing Objects 0.812 -- 

Unusual Object Used 0.812 -- 

Net Objects Drawn 0.812 -- 

 

We found that the performance increase of the enhanced model 
was driven primarily by just two features – consecutive nudges, 
and early learning support use. Student use of consecutive 
nudges was also found to be associated with student quitting in 
research by [9] – it is possible that students using nudges 
repeatedly could indicate that the student is trying to make an 
ineffective solution work when they cannot figure out a more 
productive means of solving the level. Further analysis of this 
behavior, perhaps incorporating qualitative interview data from 
students during or immediately after gameplay, could contribute 
to a better understanding of this behavioral pattern. Early use of 
learning support could either indicate a student who is completely 
stuck and doesn’t know where to start, or a lack of willingness to 
put in effort to solve a level, either of which could lead a student 
to quit. 

4. DISCUSSION AND CONCLUSION 
In this paper we demonstrate that iterative feature engineering 
using cases of model mis-prediction, conducting qualitative 
coding of text replays on instances of false positives and false 
negatives, can enhance model performance. We found that an 
“enhanced” model, using features that we developed through this 
method, performed 15% better than an “original” model on the 
same dataset. This performance gain came from just two of the 14 
features that we iteratively engineered. We have several potential 
applications for this methodology, and an important caveat to 
make. 

4.1 Applications of Iterative Feature 
Engineering 
Educational data mining has been applied to a wide variety of 
problems, and we believe that iterative feature engineering may 
have specific learning contexts where it is more useful. 
Specifically, this technique relies on having rich, nuanced log data 
from which specific details of student interaction with the system 
can be drawn. For relatively simple contexts, such as students 
working on an online quiz system with very few choices or 
different components, this method may be more difficult to apply 
successfully, as there may not be enough variation in behavior for 
iterative feature engineering to be useful. On the other hand, 
contexts with rich contextual data may be better suited for this 
method. This method may be particularly useful for improving 
prediction models that were already developed using  text replays 
[20, 11, 5, 23], though there is not a principled reason why the 
method could not be useful even for models initially developed 
using other methods. In applying iterative feature engineering to 
models not developed using text replays, it may be relevant to 
consider whether the behavior can be identified and understood 
from text replays – some forms of affect, for instance, may be 
difficult for humans to identify directly from this type of data. 

4.2 Using Iterative Feature Engineering to 
Address Uneven Quality Across Populations  
In this work, we applied our iterative feature engineering process 
to the entire dataset. However, recent papers have found that 
many EDM models can perform unevenly for different 
populations of learners, such as rural students versus urban 
students or non-native speakers versus native speakers (see review 
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in [3]). We believe that the approach proposed in this paper may 
be a useful tool for fixing this type of inequity. Training separate 
models on each sub-population within the full dataset, and 
conducting qualitative coding on instances of error within these 
sub-population, could highlight different behavioral patterns seen 
for individuals in different groups. Population-specific features 
could then be engineered to equalize the performance of the 
model across groups of learners. 

4.3 Caveat – The Potential for Overfitting 
Consider this technique taken to its logical conclusion – monkeys 
on infinite typewriters, endlessly thresholding and re-thresholding 
features, defining and re-defining cutoffs, until the billionth 
permutation of this process produces a model with no error. This 
model, obviously, would be massively overfit and of next to no 
use in any broader context, such as on a new class of students. In 
practice, there are likely not enough educational data monkeys in 
the world to produce a model with no error. That said, conducting 
several cycles of iteration on the same dataset does run the risk of 
overfitting one’s feature engineering process, and subsequently 
the model, to the particulars of the dataset being used. Therefore, 
this is likely a method best used only limited times over the course 
of model development. Ultimately, fully-withheld test datasets – 
or better yet, the collection of new datasets after the fitting process 
is complete -- should be used in final evaluation of a model (as 
seen in the trajectory of gaming the system modeling between 
[19] and [18]). It is not yet known how much iteration of this 
nature is beneficial, before diminishing returns or overfitting 
occur. It may be a valuable step for future research to investigate 
iterating multiple times and observing changes in model 
performance, identifying the elbow point for improvement. From 
the perspective of quantitative ethnography, researchers might 
consider stopping the iterative process when reaching theoretical 
saturation, seeing more data but failing to generate new insights 
[25]. 

4.4 Alternative Approaches to Feature 
Engineering and Text Replays 
In this paper, we started with a model with initial features and 
then refined the model by examining the misclassified cases and 
deriving new features based on the qualitative interpretations of 
game play behaviors. However, this is not the only way that an 
iterative process of feature engineering could be conducted. [26] 
outline an alternative approach for constructing a theoretical-
based and analytics-driven model by grounding analyses in 
qualitative data and exploring the pattern of data before model 
construction. Epistemic Network Analysis (ENA) models the co-
occurrence of behaviors based on coded qualitative data and 
unpacks the complexity in the learning process [27]. Used first in 
epistemic games, other scholars have begun applying ENA 
techniques to this same problem. For example, [9] adopted ENA 
to explore why learners quit levels in Physics Playground, 
investigating cognitive processes based on student interaction 
with the game. Their study identified that students who crystalize 
their problem-solving strategy at the beginning of gameplay are 
more likely to quit the levels. This behavior pattern suggests new 
features to be engineered for the future study of quit model 
prediction.  

4.5 Further Model Development and 
Future Directions 
Poor performance of the quit flush model suggests that a student-
level model may be beneficial to predicting quitting.  Originally, 

our justification for creating the quit flush model was that we 
observed cases of quitting being predicted at the beginning of an 
attempt, and we hypothesized that this could be due to the model 
continuing to predict quitting behavior immediately after a quit 
event occurs. We anticipated that a quit flush feature would 
improve overall model performance by addressing these cases; 
however, the quit flush model performed significantly worse than 
both the enhanced and original models. Given this difference in 
performance, it is possible that an enhanced model which uses 
features aggregated across visits or even sessions of play, could be 
a more effective predictor than the simple count and duration 
features that we used in the current work. Previous work on 
Physics Playground has identified the existence of player 
typologies [30], representing distinct approaches that groups of 
players employ when playing Physics Playground. This work 
found that students who played Physics Playground could be 
assigned to one of three classes: achievers, motivated by in-game 
rewards such as badges; explorers, motivated by the ability to 
explore the game space, design interesting and unique machines, 
and push the boundaries of the physics simulation, and 
disengaged players, those players who did not engage with the 
game to the same degree as their peers. These classes of players 
could serve as valuable student-level features that inform overall 
patterns of play. Further work on this topic may also use features 
aggregated up to each level, as previous work has [10, 13]. While 
we did not use these features for the current work, because of 
difficulties in generating these variables at run-time inside the 
game environment, future work that is focused on using the quit 
model for analysis entirely outside of the game might benefit from 
using these various levels of aggregation. 
This work has leveraged qualitative analysis in a somewhat 
different fashion than prior efforts within the EDM community. 
Qualitative techniques are not new within the fields of educational 
data mining and learning analytics. Text replays – human review 
of student behavior to generate labels – have been used for over a 
decade [2]. Similar work, such as [16] has focused on generating 
human-readable samples of student-tutor interactions. However, 
these methods are usually used to generate ground truth labels in 
order to construct models, or to better understand the relationships 
that these behaviors have with one another. In this paper, we 
utilize qualitative coding of student behaviors to develop features 
that subsequent models can be trained on. By bringing more 
qualitative understanding and analysis into educational data 
mining and learning analytics, and synthesizing these approaches 
with quantitative modeling practices, we can develop models that 
perform better and are more understandable by the research 
community.  
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