
Iterative Feature Engineering Through Text Replays of
Model Errors

ABSTRACT
Feature engineering, the construction of contextual and relevant
features from system log data, is a crucial component of
developing robust and interpretable models in educational data
mining contexts. The practice of feature engineering depends on
domain experts and system developers working in tandem in order
to creatively identify actions and behaviors of interest. In this
paper we outline a method of iterative feature engineering using
the misclassifications of earlier models. By selecting cases where
earlier models and ground truth disagree, we can focus attention
on specific behaviors, or patterns of behavior, that a model is not
using in its predictions. We show that iterative feature engineering
on cases of false positives and false negatives improved a model
predicting quitting in an educational video game by 15%. We
close by discussing applications of this method for addressing
model performance gaps across different classes of learners, as
well as precautions against model overfitting with using this
method of feature engineering.

Keywords

Feature engineering, knowledge engineering, games, text replays

1. INTRODUCTION
Educational games and digital simulations are powerful
educational tools that have seen increasing use in classrooms
within the last decade. These digital environments afford students
rich opportunities to engage deeply with content, adopt new and
different identities [6], explore personally relevant domains [8],
and develop non-cognitive skills such as productive persistence
[17]. The adoption of educational games as tools for learning has
been accompanied with an increasing focus on educational games
as a medium for the application of educational data mining. The
medium of educational games presents challenges for EDM
methodologies, however, as the relative complexity of student
behaviors in games can be quite broad when compared to more
constrained environments such as intelligent tutoring systems
(ITS).

Given the more complex behaviors possible for students in these
environments, researchers studying learning in digital
environments and games are able to identify and predict more

complicated cognitive and non-cognitive constructs. Some
examples of constructs identified in games include persistence
[14], elegant problem solving [13], seriousness [5], carefulness
[4], computational thinking [1], and mental demand [31].

This increased complexity places an increased importance on the
feature engineering and/or knowledge engineering steps of the
data science pipeline. Expert knowledge is often crucial for
understanding specific patterns of behavior within educational
games and simulations. For example, deep understanding of both
gameplay design and conceptual understanding of physics were
needed to develop a model of whether students had implicit
conceptual understanding of physics based on how they responded
to balls of different colors (connoting mass) in a physics game
[22]. This understanding has driven feature engineering in many
of these cases. Previous work by [23] has shown that feature
selection and feature engineering of variables with high construct
validity can lead to better model performance on unseen data. The
question, then, is how we as researchers can quickly and
effectively identify the specific patterns of player behavior that
“matter” – how can we best separate the signal from noise in a
large, complex dataset on student behavior and interaction?

Historically, social sciences researchers have addressed the
complexity of human behaviors by combining qualitative methods
providing “thick description” of actions [7] with quantitative
methods to make scalable and general claims. However, the
considerable amount of behavioral log data generated by modern
learning systems poses a challenge to the qualitative analysis of
human behaviors. One approach, termed “closing the interpretive
loop” [24], is to refine and validate a model by looping back to the
raw data, and checking whether the model and data are consistent.
In an application of this method, [12] constructed a model to
investigate how interactive indicators in the Jaune Fluo dataset
relate to emotions in learning. By returning to and leveraging raw
transcription data, they gained insights about micro-level
interactions between speakers that could be used to drive
modeling.

In this paper we propose a related approach -- a method for
selecting specific cases of relevance from a larger dataset for
further analysis, using instances of model mis-prediction. By
adopting an iterative approach to model selection and feature
engineering, we can use cases of false positives and false
negatives to identify the specific cases where the model fails to
accurately match student data, to better uncover relevant
gameplay behaviors and patterns. We can then employ qualitative
techniques to these cases to better understand what is occurring,
and use these findings for additional feature engineering and
model iteration. By closing the interpretive loop, we not only gain
deeper understanding of the data, but also generate new contextual
features for modeling in a way that is closely tied to observed
patterns of behaviors in the data. We apply this method in the

Stefan Slater
University of Pennsylvania

slater.research@gmail.com

Ryan S. Baker
University of Pennsylvania
rybaker@upenn.edu

Yeyu Wang
University of Wisconsin – Madison

wangyeyu215@gmail.com

Stefan Slater, Ryan Baker and Yeyu Wang "Iterative Feature
Engineering Through Text Replays of Model Error" In:
Proceedings of The 13th International Conference on
Educational Data Mining (EDM 2020), Anna N. Rafferty, Jacob
Whitehill, Violetta Cavalli-Sforza, and Cristobal Romero (eds.)
2020, pp. 503 - 508

503 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

broader context of studying student quitting behavior in the
educational physics simulation game Physics Playground [28].

2. METHODS
Data for this work comes from a series of randomized controlled
trials (RCTs) conducted at middle schools in Pennsylvania and
Florida during the spring of 2019 using the educational physics
simulation game Physics Playground, courtesy of the Physics
Playground team.

Physics Playground teaches elementary physics concepts such as
conservation of momentum and torque through a sandbox
environment where players are tasked with drawing simple
machines that move a ball to a balloon elsewhere in the level.
Students receive badges for successfully solving levels, and are
able to use these badges to unlock different types of music,
custom balls, and other cosmetic changes within the game.
Physics Playground also contains in-game hints and scaffolds,
accessible through a help button on the UI.

Figure 1. Physics Playground. The author has
(unsuccessfully) built a lever and dropped a weight on it in an

attempt to move the ball to the balloon. The help button
(bottom right) and object counter (bottom left) are also

pictured. The author would like to note that they are not a
physicist.

A total of 96 students participated in the study. The RCTs were
designed to test the effectiveness of several types of learning
supports for Physics Playground on learning gains in the game.
Students spent a total of ~110 minutes of class time playing
Physics Playground in between a physics knowledge pretest and
posttest, across four days. In the treatment condition, students
were able to access a help button in the game UI that allowed the
student to select multiple types of scaffolds to watch. Through the
help button, students were able to receive help related to the use
of game tools and mechanics, worked example solutions, and
abstracted physics concepts. Students in the control condition
were automatically prompted to use this button after three minutes
had elapsed, but were unable to access the help button before that
point. Preliminary analyses identified no significant differences in
posttest scores or learning gains between conditions, so for the
current study we combined these two groups and ignored
condition assignment. Additional details on the study and its
overall findings can be found in [29].

2.1 Data Structuring, Preprocessing, and
Labeling
Gameplay data from the study were collected by the game’s
servers and output as .json files. A total of 703,765 records of
student gameplay were collected during the study, where one
record is a single logged student action in the game.

Several pre-processing steps were taken to prepare the data for
analysis. Three students who did not complete the consenting
process for the study were removed from the dataset. Events
which occurred outside of study hours were also removed from
the dataset. These events were due to students continuing to play
the game in their free time. Attempts which were shorter than two
seconds were also removed from the dataset. These attempts often
consisted of students rapidly pressing the spacebar to reset their
current level, without taking any in-game actions.
We also added additional contextual information into the dataset.
We added the Physics Playground q-matrix into the dataset, which
consists of the mapping between levels and physics constructs to
be taught, as well as the simple machines associated with each
level’s solution. We added a series of session, visit, and attempt
IDs to each record. A “session” is a length of time from student
login to student logout. New sessions can begin when a student
begins playing Physics Playground for the first time each day, or,
when a student refreshes their browser. A total of 586 gameplay
sessions were recorded, for an average of six sessions for each
student. It is worth noting that students played the game for four
days within the study; the higher average number of sessions is
because students could accidentally refresh their browsers, or hit
the “back” button, which began the logging of a new session.
Within each session are “visits” – a visit lasts from the beginning
of a level to the end of a level, whether the student solves that
level successfully or quits to go to a different level. We identified
2906 total visits, with an average of 30 visits for each user –
slightly less than the 34 levels available to play in the game for
the current study. Finally, within each visit are “attempts” – an
attempt begins any time that the level is initialized, and ends when
a student either successfully solves the level, restarts the level, or
quits the level. We identified 16,546 total attempts in the game,
with an average of 172 for each user.
Given this structure of sessions, visits, and attempts, we defined a
“quit event” as any time a student begins a new visit, within the
same session, when their previous attempt was not successful.
This represents a student failing to solve a level, leaving that level
entirely, and playing a different level within the game. From each
quit event, we labeled each record that happened up to 120
seconds before the event as “quit”, and all other records as “not
quit”. Previous work on predicting quitting in Physics Playground
used aggregations of 60-second clips within each attempt, e.g.
[10]. In contrast, our method of labeling quitting at the event
level, and up to 120 seconds prior, allows us to identify quitting
across attempts, and sometimes across visits, in order to allow
earlier detection and intervention by automated systems or in-
classroom educators.

2.2 Initial Feature Engineering and Model
Fitting
Drawing on previous literature that has explored Physics
Playground [10,13], we developed an initial set of 32 features to
use in predicting student quit behavior. These features included
counts of each type of object or simple machine (weights, ramps,
levers, pendulums, springboards, freeforms, and pins) that the
student had drawn total and per attempt, the number of times
students went some number of seconds without recording an
action (5, 10, 15, 30, and 60 seconds), and whether students used
each type of scaffold (worked examples, game tools, and physics
animations) as well as the number of scaffolds that they used total
and in each attempt. We also developed features to capture the
amount of time that students spent using scaffolds, as well as the

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 504

amount of time that had passed (in seconds) since the last time a
scaffold was used. Finally, we recorded the elapsed time of each
attempt, as well as the total elapsed time of the session, and the
number of badges that students had earned so far.
For modeling quit behavior, we chose to use a relatively simple
logistic regression model rather than more sophisticated
algorithms such as a decision tree, gradient classifier, or recurrent
neural network. Regression-based models are easier to implement
into Physics Playground’s Unity-based architecture than more
sophisticated machine learning models. We used five-fold
student-level cross validation in RapidMiner 9.4 [15]. We did not
use any feature selection procedures for modeling; each feature
was used as a component in the final model. We did not believe
that our feature space was large enough to warrant feature
selection. We used AUC ROC as our goodness metric, as we were
more interested in overall model performance than optimizing our
quit prediction threshold.
This initial model, which we will call the “original” model with
“original” features in this paper, has an AUC of 0.688.

2.3 Error Identification and Feature Re-
Engineering
Using the confusion matrix of this initial model, we identified all
false positives and false negatives and mapped these events onto
the attempts in the dataset. In other words, if any record within an
attempt contained a case of model mis-prediction, we labeled the
entire attempt as a mis-prediction. This resulted in 1,487 attempts
labeled as cases of false negatives (9% of all attempts) and 298
cases of false positives (2% of all attempts). We then used text
replays [2] to qualitatively code these attempts for patterns of
engagement or behavior that we believed could be related to
quitting behavior in players. Text replays have been used
previously to conduct in-depth study of other constructs such as
gaming the system [19], as well as to obtain training labels for the
development of detectors [21, 23, 5]. [19]’s research shows that
they can be a powerful tool for developing thick descriptions of
learner behavior, and that this deeper understanding can lead to
substantially better models of that behavior [18]. We randomly
selected 100 examples each of false positives and false negatives
for this coding process and conducted text replays on these
attempts, taking notes on potential new features which could
capture behaviors that we observed in the data. This coding
procedure was done by a single researcher. As in [19], reliability
measures were not obtained, as the goal was to develop new
features that could be applied to the data programmatically rather
than to develop a scalable human-based coding method. In our
coding, we also viewed only single attempts, not looking at
preceding or subsequent attempts (as in most prior uses of text
replays).
Overfitting is an inherent concern for iterative feature engineering
processes; we will discuss in the discussion section why
overfitting may be particularly concerning for this paper’s
method. Because we wanted to overfit as little as possible, we
only looked at text replays of false negatives and false positives.
We intentionally did not view text replays of cases of true
positives or true negatives. In other words, when we saw a
behavioral pattern in false positives or false negatives, we did not
double-check whether it was also seen in true positive or true
negative cases, with a goal of deriving more features rather than
attempting to conduct feature selection by hand by looking at the
data (which could increase risk of over-fitting).

Our text replay and qualitative coding processes identified 14
additional features that we then developed software to apply to the
dataset. Four of these new features related to scaffold use:
Multiple Uses Of Same Scaffold, the number of times a student
used the same learning support more than once in the same
attempt; Short Scaffold Time, the number of times a student
spent less than five seconds interacting with a scaffold; Early
Scaffold Use, the number of times that a scaffold use appeared in
the first third of actions that a student took in a given attempt; and
Multiple Scaffolds In Attempt, the number of times that a
student used more than one scaffold in the same attempt. Four
features related to attempt duration: Long Attempt Count, the
total number of attempts over three minutes; Average Last Three
Attempt Times, the average duration of the last three attempts
that a student had; Attempt Time Standard Deviation, the
standard deviation of time across all student attempts so far; and
Previous Attempt Duration, the duration of the attempt
immediately before the current one. Three new features related to
machine drawing and use: Net Objects Drawn, the number of
objects a student drew on the current attempt minus the number of
objects a student erased; Time Spent Drawing, the total elapsed
time between the start and end of a student drawing a machine;
and Unexpected Machine Used, whether a student drew a
machine that was not associated with the knowledge component
of the current level. We also created a feature for Consecutive
Nudges, the number of consecutive times the student clicked on
the ball to attempt to move it (cf. [9]), and a feature for Recently
Restarted, whether the student restarted an attempt within the last
120 seconds. A restart is when a student unsuccessfully solves a
level, but retries the same level rather than quitting and going to a
new one.
The final re-design to our model, which we called Quit Flush,
went beyond just creating a new feature. During coding,
especially for false positives, we noticed that the model would
continue to predict quitting after a quit event when the student did
not subsequently quit. A student would begin a new attempt with
the model already predicting that the student would quit. Then,
some amount of time after the attempt had started, the quit
prediction would drop off, and the student would go on to either
restart the level or complete it successfully. We hypothesized that
this was because the student may have quit in an earlier attempt,
and the model had not yet caught up to the student’s new
behavioral patterns in a different visit. Therefore, we constructed
a separate dataset, which we called the Quit Flush dataset. In this
dataset, we reset the values of all features following a quit event,
starting the model over again from a blank slate whenever a quit
was identified.
Following this feature engineering process, we replicated the
model fitting steps of the original model exactly. We also fit a
series of models where we held out each new feature, to examine
the performance gain from adding each feature into the new
model.

3. RESULTS
3.1 Original Model vs. Enhanced Model
Our enhanced model, using all 14 newly engineered features (but
not including the quit flush), produced an AUC of 0.812 – a gain
of almost 0.10, and a 15% improvement over the original model.
The enhanced model’s performance is comparable to the best
performing models developed by [10], even with the limitation of
a relatively simple logistic regression rather than the more
sophisticated classification algorithm used in that paper. We will

505 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

call this model the “enhanced model” with “enhanced features” in
this paper.

3.2 Enhanced Model vs. Quit Flush Model
The quit flush model, using all 14 newly engineered features and
resetting all features’ values after a quit, produced an AUC of
0.616 – slightly worse than even the original model. The poor
performance of the quit flush model suggests that student quitting
events are “sticky”, and that moving between levels does not
necessarily indicate that a student starts working productively.

An ROC curve comparison between the AUC of the original
model, enhanced model, and quit flush model is given in Figure 2.

Figure 2. Comparison between Original Model AUC,
Enhanced Model AUC, and Quit Flush Model AUC.

3.3 Leave One Out Model Results
Following our fitting of the enhanced model and the quit flush
model, we then fit subsequent iterations of the enhanced model,
holding one feature out each time. The purpose of this analysis
was to identify the contribution that each individual feature made
to the overall performance of the model.

Table 1. Comparison of feature impact on enhanced model
performance.

Feature Name AUC When Held Out Delta

Consecutive Nudges 0.742 -0.070

Early Scaffold Used 0.793 -0.019

Previous Attempt Duration 0.812 --

Short Scaffold Use 0.812 --

Attempt Longer Than 3m 0.812 --

Average Last 3 Attempts 0.812 --

Uses of Same Scaffold 0.812 --

Multiple Scaffold Uses 0.812 --

Recent Restart 0.812 --

StD Attempt Duration 0.812 --

Time Drawing Objects 0.812 --

Unusual Object Used 0.812 --

Net Objects Drawn 0.812 --

We found that the performance increase of the enhanced model
was driven primarily by just two features – consecutive nudges,
and early learning support use. Student use of consecutive
nudges was also found to be associated with student quitting in
research by [9] – it is possible that students using nudges
repeatedly could indicate that the student is trying to make an
ineffective solution work when they cannot figure out a more
productive means of solving the level. Further analysis of this
behavior, perhaps incorporating qualitative interview data from
students during or immediately after gameplay, could contribute
to a better understanding of this behavioral pattern. Early use of
learning support could either indicate a student who is completely
stuck and doesn’t know where to start, or a lack of willingness to
put in effort to solve a level, either of which could lead a student
to quit.

4. DISCUSSION AND CONCLUSION
In this paper we demonstrate that iterative feature engineering
using cases of model mis-prediction, conducting qualitative
coding of text replays on instances of false positives and false
negatives, can enhance model performance. We found that an
“enhanced” model, using features that we developed through this
method, performed 15% better than an “original” model on the
same dataset. This performance gain came from just two of the 14
features that we iteratively engineered. We have several potential
applications for this methodology, and an important caveat to
make.

4.1 Applications of Iterative Feature
Engineering
Educational data mining has been applied to a wide variety of
problems, and we believe that iterative feature engineering may
have specific learning contexts where it is more useful.
Specifically, this technique relies on having rich, nuanced log data
from which specific details of student interaction with the system
can be drawn. For relatively simple contexts, such as students
working on an online quiz system with very few choices or
different components, this method may be more difficult to apply
successfully, as there may not be enough variation in behavior for
iterative feature engineering to be useful. On the other hand,
contexts with rich contextual data may be better suited for this
method. This method may be particularly useful for improving
prediction models that were already developed using text replays
[20, 11, 5, 23], though there is not a principled reason why the
method could not be useful even for models initially developed
using other methods. In applying iterative feature engineering to
models not developed using text replays, it may be relevant to
consider whether the behavior can be identified and understood
from text replays – some forms of affect, for instance, may be
difficult for humans to identify directly from this type of data.

4.2 Using Iterative Feature Engineering to
Address Uneven Quality Across Populations
In this work, we applied our iterative feature engineering process
to the entire dataset. However, recent papers have found that
many EDM models can perform unevenly for different
populations of learners, such as rural students versus urban
students or non-native speakers versus native speakers (see review

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 506

in [3]). We believe that the approach proposed in this paper may
be a useful tool for fixing this type of inequity. Training separate
models on each sub-population within the full dataset, and
conducting qualitative coding on instances of error within these
sub-population, could highlight different behavioral patterns seen
for individuals in different groups. Population-specific features
could then be engineered to equalize the performance of the
model across groups of learners.

4.3 Caveat – The Potential for Overfitting
Consider this technique taken to its logical conclusion – monkeys
on infinite typewriters, endlessly thresholding and re-thresholding
features, defining and re-defining cutoffs, until the billionth
permutation of this process produces a model with no error. This
model, obviously, would be massively overfit and of next to no
use in any broader context, such as on a new class of students. In
practice, there are likely not enough educational data monkeys in
the world to produce a model with no error. That said, conducting
several cycles of iteration on the same dataset does run the risk of
overfitting one’s feature engineering process, and subsequently
the model, to the particulars of the dataset being used. Therefore,
this is likely a method best used only limited times over the course
of model development. Ultimately, fully-withheld test datasets –
or better yet, the collection of new datasets after the fitting process
is complete -- should be used in final evaluation of a model (as
seen in the trajectory of gaming the system modeling between
[19] and [18]). It is not yet known how much iteration of this
nature is beneficial, before diminishing returns or overfitting
occur. It may be a valuable step for future research to investigate
iterating multiple times and observing changes in model
performance, identifying the elbow point for improvement. From
the perspective of quantitative ethnography, researchers might
consider stopping the iterative process when reaching theoretical
saturation, seeing more data but failing to generate new insights
[25].

4.4 Alternative Approaches to Feature
Engineering and Text Replays
In this paper, we started with a model with initial features and
then refined the model by examining the misclassified cases and
deriving new features based on the qualitative interpretations of
game play behaviors. However, this is not the only way that an
iterative process of feature engineering could be conducted. [26]
outline an alternative approach for constructing a theoretical-
based and analytics-driven model by grounding analyses in
qualitative data and exploring the pattern of data before model
construction. Epistemic Network Analysis (ENA) models the co-
occurrence of behaviors based on coded qualitative data and
unpacks the complexity in the learning process [27]. Used first in
epistemic games, other scholars have begun applying ENA
techniques to this same problem. For example, [9] adopted ENA
to explore why learners quit levels in Physics Playground,
investigating cognitive processes based on student interaction
with the game. Their study identified that students who crystalize
their problem-solving strategy at the beginning of gameplay are
more likely to quit the levels. This behavior pattern suggests new
features to be engineered for the future study of quit model
prediction.

4.5 Further Model Development and
Future Directions
Poor performance of the quit flush model suggests that a student-
level model may be beneficial to predicting quitting. Originally,

our justification for creating the quit flush model was that we
observed cases of quitting being predicted at the beginning of an
attempt, and we hypothesized that this could be due to the model
continuing to predict quitting behavior immediately after a quit
event occurs. We anticipated that a quit flush feature would
improve overall model performance by addressing these cases;
however, the quit flush model performed significantly worse than
both the enhanced and original models. Given this difference in
performance, it is possible that an enhanced model which uses
features aggregated across visits or even sessions of play, could be
a more effective predictor than the simple count and duration
features that we used in the current work. Previous work on
Physics Playground has identified the existence of player
typologies [30], representing distinct approaches that groups of
players employ when playing Physics Playground. This work
found that students who played Physics Playground could be
assigned to one of three classes: achievers, motivated by in-game
rewards such as badges; explorers, motivated by the ability to
explore the game space, design interesting and unique machines,
and push the boundaries of the physics simulation, and
disengaged players, those players who did not engage with the
game to the same degree as their peers. These classes of players
could serve as valuable student-level features that inform overall
patterns of play. Further work on this topic may also use features
aggregated up to each level, as previous work has [10, 13]. While
we did not use these features for the current work, because of
difficulties in generating these variables at run-time inside the
game environment, future work that is focused on using the quit
model for analysis entirely outside of the game might benefit from
using these various levels of aggregation.
This work has leveraged qualitative analysis in a somewhat
different fashion than prior efforts within the EDM community.
Qualitative techniques are not new within the fields of educational
data mining and learning analytics. Text replays – human review
of student behavior to generate labels – have been used for over a
decade [2]. Similar work, such as [16] has focused on generating
human-readable samples of student-tutor interactions. However,
these methods are usually used to generate ground truth labels in
order to construct models, or to better understand the relationships
that these behaviors have with one another. In this paper, we
utilize qualitative coding of student behaviors to develop features
that subsequent models can be trained on. By bringing more
qualitative understanding and analysis into educational data
mining and learning analytics, and synthesizing these approaches
with quantitative modeling practices, we can develop models that
perform better and are more understandable by the research
community.

5. ACKNOWLEDGMENTS
We would like to thank the Physics Playground team for their
assistance in producing the datasets used.

6. REFERENCES
[1] Almeda, M.V., Rowe, E., Asbell-Clarke, J., Scruggs, R.,
Baker, R., Bardar, E., Gasca, S. (2019) Modeling Implicit
Computational Thinking in Zoombinis Mudball Wall Puzzle
Gameplay. To appear in Proceedings of the 2019 Technology,
Mind, and Society Conference.

[2] Baker, R.S., & de Carvalho, A.M.J.A. (2008). Labeling
Student Behavior Faster and More Precisely with Text Replays.
Proc. of the 1st Int’l Conf. on Educational Data Mining, 38-47.

507 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

[3] Baker, R.S., Ogan, A.E., Madaio, M., Walker, E. (2019)
Culture in Computer-Based Learning Systems: Challenges and
Opportunities. Computer-Based Learning in Context, 1(1), 1-13.

[4] Banawan, M.P., Rodrigo, M.M.T., & Andres, J.M.A.L.
(2015). An Investigation of Frustration Among Students Using
Physics Playground. Proceedings of the 23rd International
Conference on Computers in Education.

[5] DiCerbo, K., & Kidwai, K. (2013). Detecting player
goals from game log files. Proceedings of the 6th Annoal
Conference on Educational Data Mining.
[6] Gaydos, M.J., & Devane, B.M. (2019). Designing for
identity in game-based learning. Mind, Culture, and Activity,
26(1), 61-74.

[7] Geertz, C. (1973). Thick description: Toward an
interpretive theory of culture. In The interpretation of cultures:
Selected essays (pp. 3–30). New York: Basic Books.

[8] Holbert, N., & Wilensky, U. (2019). Designing
educational video games to be objects-to-think-with. Journal of
the Learning Sciences, 28(1), 32-72.

[9] Karumbaiah, S., Baker, R.S., Barany, A., Shute, V.
(2019) Using Epistemic Networks with Automated Codes to
Understand Why Players Quit Levels in a Learning Game. Proc.
of the 1st Int’l Conference on Quantitative Ethnography, 106-116.

[10] Karumbaiah, S., Baker, R.S., & Shute, V. (2018).
Predicting Quitting in Students Playing a Learning Game.
Proceedings of the 11th International Conference on Educational
Data Mining, 21-31.

[11] Lee, D.M.C., Rodrigo, M.M.T., Baker, R.S., Sugay,
J.O., & Coronel, A. (2011). Exploring the relationship between
novice programmer confusion and achievement. Proceedings of
the 2011 International Conference on Affective Computing and
Intelligent Interaction, 175-184.

[12] Lund, K., Quignard, M., & Shaffer, D.W. (2017).
Gaining Insight by Transforming between Temporal
Representations of Human Interaction. Journal of Learning
Analytics, 4(3), 102-122.

[13] Malkiewich L.J., Baker, R.S., Shute, V., Kai, S.,
Paquette, L. (2016). Classifying behavior to elucidate elegant
problem solving in an educational game. Proceedings of the 9th
International Conference on Educational Data Mining, 448-453.

[14] Malkiewich, L.J., Lee, A., Slater, S., Xing, C., & Chase,
C.C. (2016). No Lives Left: How Common Game Features Could
Undermine Persistence, Challenge-Seeking and Learning to
Program. Proceedings of the 2016 International Conference of
the Learning Sciences, 186-193.

[15] Mierswa, I., & Klinkenberg, R. (2019). RapidMiner
Studio (9.4). Retrieved from https://rapidminer.com.

[16] Mostow, J., Beck, J., Cen, H., Cuneo, A., Gouvea, E., &
Heiner, C. (2005). An educational data mining tool to browse
tutor-student interactions: Time will tell. Proceedings of the
Workshop on Educational Data Mining, National Conference on
Artificial Intelligence , 15-22.

[17] Owen, V.E., Roy, M.H., Thai, K.P., Burnett, V., Jacobs,
D., Keylor, E., & Baker, R.S. (2019). Detecting Wheel-Spinning
and Productive Persistence in Educational Games. Proc. of the
12th International Conf. on Educational Data Mining, 378-383.

[18] Paquette, L., Baker, R.S. (in press) Comparing machine
learning to knowledge engineering for student behavior
modelling: A case study in gaming the system. To appear
in Interactive Learning Environments.

[19] Paquette, L., de Carvalho, A.M.J.A., Baker, R.S., &
Ocumpaugh, J. (2014). Reengineering the Feature Distillation
Process: A Case Study in the Detection of Gaming the System.
Proc. of the 7th Int’l Conf on Educational Data Mining, 284-287.

[20] Richey, J.E., Andres-Bray, J.M.L., Mogessie, M.,
Scruggs, R., Andres, J.M.A.L., Star, R.J., Baker, R.S., McLaren,
B.M. (in press). More Confusion and Frustration, Better Learning:
The Impact of Erroneous Examples. To appear in Computers and
Education.

[21] Rodrigo, M.M.T., Baker, R.S.J.d., McLaren, B., Jayme,
A., Dy, T. (2012) Development of a Workbench to Address the
Educational Data Mining Bottleneck. Proceedings of the 5th
International Conference on Educational Data Mining, 152-155.

[22] Rowe, E., Asbell-Clarke, J., Baker, R.S., Eagle, M.,
Hicks, A.G., Barnes, T.M., Brown, R.A., Edwards, T. (2017)
Assessing Implicit Science Learning in Digital Games. Computers
in Human Behavior, 76C, 617-630.

[23] Sao Pedro, M.A., Baker, R.S.J.d., Gobert, J., Montalvo,
O. Nakama, A. (2013) Leveraging Machine-Learned Detectors of
Systematic Inquiry Behavior to Estimate and Predict Transfer of
Inquiry Skill. User Modeling and User-Adapted Interaction,
23 (1), 1-39.

[24] Shaffer, D. W. (2017). Quantitative ethnography.
Madison, WI: Cathcart Press.

[25] Shaffer, D. W. (2018). Big data for thick description of
deep learning. In K. Millis, D. Long, J. Magliano, and K. Weimer
(Eds.), Deep learning: Multi-disciplinary approaches (pp. 262-
275). NY, NY: Routledge.

[26] Shaffer, D. W. & Ruis, A. R. (2017). Epistemic network
analysis: A worked example of theory-based learning analytics. In
C. Lang, G. Siemens, A. Wise, & D. Grasevic (Eds.), Handbook
of Learning Analytics (pp. 175–187). Society for Learning
Analytics Research.

[27] Shaffer, D. W., Collier, W., & Ruis, A. R. (2016). A
tutorial on epistemic network analysis: Analyzing the structure of
connections in cognitive, social, and interaction data. Journal of
Learning Analytics, 3(3), 9–45.

[28] Shute, V. J., Almond, R. G., & Rahimi, S. (2019).
Physics Playground (Version 1.3) [Computer software].
Tallahassee, FL: Retrieved from
https://pluto.coe.fsu.edu/ppteam/pp-links/

[29] Shute, V., Rahimi, S., & Smith, G. (2019). Game-Based
Learning Analytics in Physics Playground. In Data Analytics
Approaches in Educational Games and Gamification Systems (pp.
69-93). Springer, Singapore.

[30] Slater, S., Bowers, A., Kai, S., & Shute, V. (2017). A
Typology of Players in the Game Physics Playground.
Proceedings of the 2017 DiGRA International Conference.

[31] [32] Wiggins, J.B., Kulkarni, M., Min, W., Mott, B.,
Boyer, K.E., Wiebe, E., & Lester, J. (2018). Affect-based Early
Prediction of Player Mental Demand and Engagement for
Educational Games. Proceedings of the 14th Artificial Intelligence
and Interactive Digital Entertainment Conference, 243-249.

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 508

