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In this research report, the question of the role of the teacher in problem-solving contexts is 
addressed, particularly in relation to the development of mathematical concepts. Data extracts 
from a problem-solving session are used to draw out three sorts of teaching actions that aim to 
push forward the mathematics in the classroom. These teaching actions are discussed in light of 
verbatim extracts and of available theoretical constructs from the research literature. 
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Introduction 
The literature abounds with work conducted on mathematical problem-solving from a variety 

of perspectives, illustrating the beneficial outcomes for students of a sustained practice of solving 
problems in classrooms: on the meaning given to mathematical concepts and their relevance for 
everyday life; on the development of critical, logical and autonomous thinking; on the active 
engagement in doing mathematics; on the development of positive relationships with 
mathematics, and so on (Boaler, 1998; Borasi, 1992, 1996; English & Gainsburg, 2015). 
Through this literature, one dimension that appears in need of further research concerns the role 
of the teacher in problem-solving contexts. As Stein, Boaler and Silver (2004) explain, problem-
solving work is mostly focused on students – who are plunged into authentic mathematical 
practices as are mathematicians – hence the problem-solving literature says little about teachers, 
their role, and classroom events or actions in which teachers interact. This leads to wonder about 
What is the role of the teacher in problem-solving contexts? In parallel, another salient issue that 
remains little studied, as English and Gainsburg (2015) illustrate, concerns the development of 
content in problem-solving contexts. There is a need to investigate the interplay of mathematical 
concept development and problem-solving endeavors in the classroom, and How is problem-
solving used as a powerful means to develop mathematical concepts? It is these two issues that 
orient this research report, namely teachers’ actions in problem-solving contexts that aim at 
covering content and developing concepts, that is, at pushing forward mathematics in the 
classroom. As Jaworski (e.g., 2011) often noted, we have numerous theories about students’ 
learning and mathematical activity, but the same is not true for teaching and the teacher’s role. 
There is thus an important need to conduct studies that aim to develop conceptualisations of the 
teacher’s roles in the action of teaching in problem-solving contexts: this research report aims to 
contribute to reflections and conceptualizations on these teacher’s roles.  

In order to do this, an analysis is conducted on an extract taken from a session in a Grade-10 
classroom. Once aspects of the research are grounded both theoretically and methodologically, 
the extract is presented and then analyzed in relation to three kinds of teaching actions that 
contributed to concept development – that is, that pushed forward the mathematics of the 
classroom – using theoretical concepts and verbatim extract as supporting illustrations to clarify 
the nature of these teaching actions. 

Theoretical Grounding – Problem Solving as Engaging in a Dynamic Process 
Grounded in the enactivist theory of cognition for conceptualizing problem-solving 

environments as non-linear endeavors (Proulx & Simmt, 2016), the research is also strongly 
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inspired by the work of Borasi (1992) and Lampert (1990) on inquiry and problem-solving, who 
aim to place students in authentic problem-solving situations. In their work, mathematical 
problem-solving is conceived of as a process that does not follow a pre-specified thread of events 
– analogous to the development of mathematics itself as a discipline – where numerous questions 
and ideas arise amid problem-solving endeavors, these often becoming central issues that can 
redirect the inquiry being undertaken (see also Cobb et al., 1994). 

Remillard and Kaye Geist (2003) termed these “emergent” events as openings in the 
curriculum, where occasions offer themselves to inquiry and (can) redirect the flow of classroom 
events; something akin to Van Zoest et al. (2015) notion of building on ideas unfolding in the 
classroom. Borasi (1992, p. 202) addressed these matters in terms of flexibility, where authentic 
mathematical problem-solving spaces are conceived for tackling unanticipated events: 

The open-endedness that characterizes inquiry requires extreme flexibility in terms of 
curriculum content and choices. A teacher will often need to deviate from the original lesson 
plan in order to follow a new lead, pursue valuable questions raised by the students, or let the 
class fully engage in a debate stimulated by difference in opinion or different solutions. 

Mathematics teaching is thus here conceived as a dynamic process that emerges amid 
interactions between teacher and students. As Curcio and Artzt (2004) assert, teachers are 
themselves engaged in problem-solving when they teach through problem-solving, deploying an 
expertise in action, while teaching, in reaction to the events of the classroom. Teachers navigate 
through the “material” of the classroom, act with what happens, and attempt to push the 
mathematics of the classroom forward through analyzing and synthesizing on-the-spot the 
mathematical ideas shared and produced. It is in this sense that, in Bednarz and Proulx (2009), 
teachers’ actions are conceived along three interconnected dimensions. First, following work on 
mathematics teachers’ practices (e.g., Roditi, 2005), teaching is conceived of as an event that 
happens in the action of, in relation to, the task in which the teacher is engaged: teaching is 
enacted in action. Second, along a situated cognition perspective (Lave, 1988), teaching is 
conceived of as situated, deployed in relation to a specific context. As Roditi (2005) insists, 
teaching actions are not independent of students’ learning or the classroom environment, a 
context that plays an immense role in the kinds of actions deployed in the act of teaching: 
teaching is a situated practice. Third, aligned with Mason and Spence’s (1999) knowing-to act in 
the moment, teaching is conceived of as a practice adapted in real time to events of the 
classroom. Teachers constantly need to adapt their responses to the dynamics of the classroom as 
situations often drift from the planned script: teaching is a practice deployed in the moment, 
while it is enacted. Along these dimensions, teachers are seen as continually reflecting on 
possibilities, offering and inventing new avenues and representations in relation to students, 
thinking of additional explanations to clarify or resituate the tasks offered, choosing to 
emphasize some aspects and not others, knowing that an explanation or a representation may 
eventually benefit students’ understanding, and so on. Teaching practice can thus hardly be 
considered as a preestablished practice designed in advance for reacting to situations, but rather 
an expertise enacted in context, in action, as a knowing-to act adapted to situations and deployed 
on-the-spot in (inter)relation to classroom events. It is along this theoretical perspective that 
teachers’ actions for pushing forward the mathematics of the classroom, are considered. 

Methodological Considerations 
This research report is part of a wider research program focused on studying the teaching of 

mathematics through problem-solving in elementary and secondary classrooms. We collaborate 
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with groups of teachers who regularly invite us into their classrooms to experiment various kinds 
of problem-solving approaches and to interact, assess and reflect with us on the teaching that 
goes on in these sessions. Because it inserts itself in regular classrooms, the research does not 
want to be disruptive and follows the teachers’ teaching plans, with the tasks given in class to 
students being chosen by and with teachers (often coming from their teaching materials and 
workbooks). The problem-solving sessions usually follow the same trend, starting with a task 
presented to students, written on the board or handed on paper, where students are given relative 
amounts of time to address it. After this, in a plenary manner, students are asked to share their 
strategies/solutions and thoughts with the group, while making sure that these are clearly 
explained and justified for other students to understand and ask additional questions if necessary. 
Students are also invited to interact between each other in relation to the ideas shared, to question 
or challenge them, add to them, etc., thus aiming to create a community of inquiry (Borasi, 1992; 
Lampert, 1990). These various interactions in turn often provoke new inquiries, where students 
can be asked to explore new issues or additional questions (Cobb et al., 1994). 

Data-collection focuses on classroom discussions and interactions, as well as traces left on 
the board, all chronologically recorded as field notes by a research assistant (RA) or videotaped. 
Data analysis is carried out in two phases. The first phase consists of on-the-spot meetings (PI, 
RA, and teachers) to discuss teaching events that occurred during the sessions that stood out and 
deserved attention (in this case, on teaching actions that pushed the mathematics forward). These 
meetings offer a first level of analysis, which also affords interpretations of teaching events from 
the teachers’ perspectives and permits refinement of, and adds to, the observational notes. This 
first level of analysis revealed salient issues about three explicit teaching actions that succeeded 
in pushing forward the mathematics of the classroom, that is, actions that enabled mathematical 
concept development: validation practices, reformulation practices, and summarizing practices. 
This three-pronged orientation toward teaching actions was used to orient the subsequent data 
analysis. This second phase consisted of attending to the data in relation to Desgagné’s (1998) 
notion of available constructs from the mathematics education literature, which could give these 
teaching actions deeper theoretical meaning: here, e.g., Forman and Ansell’s (2001) revoicing, 
Shimuru’s (2004) yamada, Lampert’s (1990) establishment of a community of validation.  

Data Extract from the Problem-Solving Session 
The extract is taken from a session in a Grade-10 classroom of about 30 students, who were 

working on analytical geometry in relation to distances (points, midpoints, lines, etc.) and had 
been initiated to usual algebraic formulas. This extract was chosen for its capacity to illustrate 
patterns of teacher and student interactions that were common to almost every session 
conducted/experimented in classrooms. For this precise session, the teacher wished to 
experiment with tasks along a mental computation context (following our work on mental 
computation, e.g., Proulx, 2014), with the intention to see how students would engage in it. One 
task given to students was “Find the distance between (0,0) and (4,3) in the plane” (given orally, 
with points drawn on a Cartesian plane on the front board), who had 15 seconds to answer 
without recourse to paper and pencil or any other material. When time was up, students were 
invited to share and justify their solutions to the group. The following is a synthesis of the 
strategies engaged in and the discussions, questions, and explorations that ensued. 

The first strategy referred to applying the usual distance formula (D="($% − $')' +	(+% − +')'), 
leading to 5 as a distance. A second strategy suggested drawing a triangle in the plane, with sides 
3 and 4, for then finding the hypotenuse by using Pythagoras (Figure 1a). 
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Figure 1a – Drawing the right triangle  Figure 1b – Close-up on the triangle 

Another student then suggested a third strategy: coming to the board to trace a red segment to 
count directly on it from (0,0) to (4,3) as in Figure 1b. Starting from (0,0), she counted “the 
number of points” to arrive at (4,3), counting the number of whole-number coordinate points 
from (0,0) to (4,3). While doing this at the board, she suddenly stopped and mentioned that her 
red segment did not go through the points she envisaged, which made the counting difficult. The 
teacher then traced another segment going through square diagonals linking two separate points, 
which could enable counting the number of (whole-number) coordinate points from one point to 
the next (giving 4 as a distance, Figure 2). The student agreed that for this case, it would work. 
 

 
Figure 2 – Line drawn through square diagonals 

The teacher then asked if the measure obtained with square diagonal lengths was identical to that 
obtained with the side of the square (drawing  on the board). 

One student asserted that both lengths were not identical, because the diagonal of the square 
was not of the same length as the square’s side. Another explained that both lengths were 
different, because the hypotenuse is always the longer side in a triangle. Finally, a student 
claimed that the diagonal was longer, because it faces the wider angle. 

The teacher then asked if that last assertion about facing the wider angle was always true, and if 
so why (drawing on the board a random right triangle ). 

One student, pointing at the triangle, stated that it was indeed the case in this drawn triangle. 
Another student explained that, in a triangle, the bigger the angle the longer the opposite side, 
mentioning that if the side-hypotenuse had been longer, the opposite angle would have been 
wider. And, because the sum of the (measures of the) angles in a triangle is 180o, then the 90o 
angle is always the wider one, the other 90o being shared between the remaining two angles. 

Using the drawing of the triangle, the teacher simulated the variation of the right angle toward an 
obtuse one and traced the resulting side obtained, showing how it would become longer (drawing 

 on the board). He then moved it toward producing an acute angle, asking students if their 
“theory” about opposite side of the angle worked for any angle, like acute ones. 

One student asserted that it works for isosceles triangles, with equal sides facing equal 
angles, and another mentioned that it is the same for the equilateral triangle, since it is 
“everywhere the same” with same angles and same side lengths. 

The teacher explained that these ideas about the diagonals being longer than the side underlined 
the fact that this initial strategy amounted to counting diagonals, that is, the number of diagonals 
of a unit square. And, that this offered a different sort of measure for the (same) distance 
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between the two points: one in terms of units and one in terms of diagonals. A student added that 
if one knows the value of the diagonal, then one could find the number of unit squares for the 
diagonal-segment by multiplying by that factor.  

One student offered a fourth strategy to find the distance, suggesting to use the sine law with 
angles of 45o. The teacher asked the student how he knew that both angles were 45o in the 
triangle. As skepticism grew in the classroom, the teacher suggested that students inquire, in 
small groups or individually, if the triangle’s angle were 45o or not, and to be able to convince 
others. After 5-6 minutes of exploration, students were invited to share their findings.  

One student explained that on her exam checklist there is an isosceles right triangle with 45o 
angles. Thus with this triangle of side length of 4 and 3, one cannot directly assert that it is 
45o because it is not an isosceles triangle as its sides are not of equal measure. Another 
student illustrated at the board that if one “completes” the initial triangle into a rectangle  
( , see Figure 3a), then the hypotenuses of both triangles are the rectangle’s diagonal 
which cuts it in two equal parts and thus cuts its angle in two equal 45o parts. 
As the teacher highlighted that the two arguments were opposed, one student replied not in 

agreement with the last argument, drawing on the board a random rectangle with its diagonal 
(Figure 3b), and asserting that in this rectangle it was not certain that the angle was divided into 
two equal parts. Another student added that because the sides of the triangle were not identical 
(of 3 and 4), then the diagonal would not necessarily cut the 90o angle in two equal parts of 45o. 

 

       
  

Figure 3a – The “completed” rectangle  Figure 3b – The “counter” rectangle 

The teacher highlighted that this last argument reused aspects of the precedent “theory” that the 
longer side faces the wider angle in the triangle. Hence, following this, a longer side needed to 
face a wider angle. Then a counter-example was offered to the group. 

The student who made reference to the checklist asserted that it happens in their exams that 
right triangles don’t have 45o angles, for example, one with 32o and 58o; coming to the board 
to draw it (Figure 4). She completed her drawing to create a rectangle, explaining that the 
diagonal cuts as well this rectangle in two parts, but that the angles obtained are not of 45o. 

 
 

Figure 4 – The triangle counter-example 
with angles of 32o and 58o, and the rectangle 

Figure 5 – Comparing triangles within a 
square 

 
The teacher asserted that this offered a counter-example, with a type of right triangle frequently 
met that did not have angles of 45o. One student added that because all sides were different, then 
their associated angles would be different, the longer side needed to face a wider angle, leading 
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to different angles. The teacher then highlighted the work of one student who drew a square in 
his notebook to assess the 45o situation. Drawing a triangle of sides 3-4-5, he extended the 
cathetus of 3 toward one of 4 to create a 4x4 square. Then, because in the previous unit-square 
the angles were of 45o, in this 4x4 they were 45o as well (Figure 5). Comparing hypotenuses of 
both triangles, it illustrated that in the initial 3-4-5 right triangle the angle is smaller than the 
right triangle of side 4 and 4. All this led students to appear to agree with the fact that the angle 
was not 45o, ending the explorations (and leading to offer another task to be solved by the 
students). 
Pushing Forward the Mathematics: Validating Practices 

One kind of teaching actions enacted in the session are validation practices. These, in 
problem-solving contexts, are related to the consideration of the classroom as a mathematical 
community of validation as Boaler (1998), Borasi (1992) and Lampert (1990) call it. In this 
community, members are encouraged to generate ideas, questions, and problems, to solve them, 
to share their understanding, to negotiate meaning, to develop explanations and justifications to 
support their solutions, to question others’ solutions, and so on. As Lampert (1990) explains it is 
the teacher’s role to makes sure that students’ justifications are adequate, that arguments are 
clearly stated, that solutions are expressed in an intelligible manner and are accessible; essential 
conditions for the mathematical community to take shape and flourish. In sum, it is the teacher’s 
role to create and sustain this mathematical community. As a way of example, when Max 
mentioned that the triangle’s angle was 45o for using the sine law, the following interaction led 
to a request for validation from the classroom community: 

Teacher: And, how do you know that the angle is 45o? [some students appeared opposed] 
Max: Because it is 45o for both angles [some students agree, others express disagreement] 
Teacher: Ok, so maybe 45o maybe not. We are not sure. But we need to arrive at something, 

we need to agree, we need to know if it is or not 45o. So, I will ask you to take a couple of 
minutes, alone or in small groups, to see if it is or not 45o, and to be able to explain it and 
even be able to convince others of it. You can use all you have, workbooks, textbooks, 
notes, whatever. After that, we will share your findings. Ok, go! [students start to work] 

For Cobb et al. (1994) and Lampert (1990), a community of validation develops, analyzes, 
questions, and argues for what is or not mathematically acceptable. Hence the mathematics 
produced within the classroom community is validated by the community itself (in which the 
teacher takes part). The teacher’s requirement for and establishment of these validation practices 
aim to give status to the mathematical productions of the classroom, to make official the ideas 
shared by making them accessible and reusable in the future as they are justified and argued for. 
These validation practices contribute to the advancement of mathematical ideas in the classroom. 
Pushing Forward the Mathematics: Reformulating Practices 

Another sort of teaching actions relates to the reformulation of students’ ideas. While 
students share their strategies, as Cobb and Yackel (1998) underline, the teacher can re-describe 
students’ reasoning and reformulate it in different terms: one in which they would not necessarily 
have used but that are aligned with the meaning they are making. As an example, when Sandra 
explained her strategy of counting the points on the red segment, the teacher not only asked her 
to clarify what she did, but also re-explained and reformulated the underlying idea. 

Sandra: Well, I just counted the points. 
Teacher: What do you mean exactly by this? 
Sandra: (coming to the board) Well, if you draw a line from here to here, it gives 1, 2, 3… 
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Teacher: Ah, OK, you trace a segment from one point to the other, so from (0,0) to (4,3). 
Sandra: Yes. But, finally, this thing does not work as I thought. 
Teacher: Ok, it is difficult to count directly on the plane. So, Sandra, you wanted to count the 

number of coordinate points that your segment crosses from (0,0) to (4,3). And it’s 
difficult because it does not cross them directly. But it could work! If you take this 
segment and link these two other points (Figure 2). Then, here, it goes though the square 
diagonals and we can directly count the points crossed on the plane. 

The teacher here resumed and reformulated Sandra’s explanations, not to correct them (even if 
some adjustments could be made), but mostly to clarify them, deepening them, drawing out its 
key elements for all to see. This is aligned with what Forman and Ansell (2001) call revoicing: 

there is a greater tendency for students to provide the explanations […] and for the teacher to 
repeat, expand, recast, or translate students’ explanations for the speaker and the rest of the 
class. The teacher revoices students’ contributions to the conversation so as to articulate 
presupposed information, emphasize particular aspects of the explanation. (p. 119) 

These reformulating practices are a way for the teacher to insert him or herself into students’ 
explanations and work with the mathematical ideas produced in the moment. It is also a way to 
make ideas accessible to the classroom community for engaging in subsequent validation 
practices, since some ideas are not always mathematically adequate (like numerous arguments 
made around the 45o angle). These are then also clarified and reformulated for students to 
understand and validate as a community. By making the mathematical ideas accessible to all and 
highlighting them, the teacher is making the mathematics of the classroom advance. 
Pushing Forward the Mathematics: Summarizing Practices 

A third sort of teaching action is about summarizing practices. At different moments in the 
classroom, when ideas are shared in the problem-solving process, the teacher underlines 
explicitly some ideas produced that have important mathematical potential and to which students 
need to pay attention: those that will be useful or reused in the future. Hence in problem-solving 
contexts, the teacher has an important role to play in underlying the important mathematical 
ideas produced and making sure that these are clear and accessible, as Stein et al. (2004) 
mention. These summarizing practices can happen at varying moments during a problem-solving 
session, and the teacher at any moment can opt to underline, validate, put forth, thus summarize, 
the mathematical ideas shared for leaving traces about the mathematical productions of the 
classroom. For example, in relation to the query about the square diagonal, after arguments and 
ideas were shared, the teacher summed up the ideas and came back on Sandra’s strategy, 
extending it to the calculation of distances: 

Teacher: Let’s go back to the square diagonal. It is longer than the side. In Sandra’s strategy, 
we count the number of diagonals, the ones from one point to the other, from (0,0) to 
(4,3). We talked about points crossing. We would here have 4 diagonals, which is also a 
possible measure of the distance between (0,0) and (4,3). We would thus have two 
measures: one of 5 in terms of square-sides and one of 4 in terms of square-diagonals. 
Same distance, measured in two different ways, hence offering two different measures. 

When it is done at the end of the inquiry, as Shimizu (2004) mentions, this summing up is an 
occasion to conclude by highlighting the mathematical ideas worked on during that inquiry, what 
is called in Japanese the yamada of the activity. For example, the strategy offered for concluding 
the 45o exploration was a way of summing up most ideas shared in class and of settling the issue. 

Articles published in the Proceedings are copyrighted by the authors.



Teaching and Classroom Practice 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1067	

Summarizing practices in problem-solving contexts are essential acts that contributes to leaving 
mathematical traces of what was covered in the classroom, enabling students to pay attention to 
important mathematical concepts, hence pushing the mathematics forward. 

Final Remarks 
These three teaching actions succeeded in pushing the mathematics forward in the classroom, 

highlighting the important role of the teacher in the evolution of the classroom and how 
mathematics is tackled and develops in it. The analysis of these teaching actions offers an initial 
way, albeit preliminary, to address the questions that triggered this research report, namely, 
about the possible teacher actions that aim to contribute to the development of mathematical 
concepts in problem-solving contexts. Much more needs to be studied in terms of the outcomes 
of these practices, for example, on student’s personal concept-development and how they 
operationalize these in various situations. But, at this point, this initial analysis offers promise for 
better understanding and conceptualization of teachers’ roles in problem-solving contexts. 
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