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The body of research examining students’ graphing understandings across STEM fields indicates 
students are not developing productive meanings for graphs. We conjecture such failings may, in 
part, be explainable by features of students’ use of coordinate systems and graphing activity that 
are under examined. In this theoretical report, we present a conceptual analysis of different ways 
students may reason about graphs and coordinate systems. Specifically, we describe two 
different uses of coordinate systems—spatial and quantitative—students might leverage and two 
ways of reasoning—static and emergent—students might engage in as they construct or interpret 
graphs. We characterize how a student may engage in each kind of reasoning in each use of 
coordinate system. We intend this paper to serve as a theoretical lens for future empirical studies 
examining students’ developing graphing understandings.  
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There is a need for U.S. students to enter STEM fields, with mathematics often serving as a 
“gatekeeper” for student success in these fields (Crisp, Nora, & Taggart, 2009). As such, it is 
important for students to have experiences in their K–12 schooling that are attentive to the needs 
of potential STEM coursework and careers. A common way STEM fields communicate 
information is through graphical representations. Paoletti, Rahman, Vishnubhotla, Seventko, and 
Basu (2016) analyzed the graphs depicted in commonly used STEM textbooks and practitioner 
journals, finding the most common uses of graphs were to mathematize a spatial situation or 
phenomena (e.g., Figure 1, left) or to represent two covarying quantities (e.g., Figure 1, center). 
In contrast, the researchers noted most graphs in popular precalculus and calculus textbooks were 
used to represent two decontextualized quantities (e.g., Figure 1, right). Hence, there are 
discrepancies between the graphs students experience in their math classes and are expected to 
interpret in other STEM fields. 

Researchers have identified persistent difficulties students experience as they engage in 
constructing and interpreting graphs in their mathematics (e.g., Leinhardt, Zaslavsky, & Stein, 
1990) and science courses (e.g., Potgieter, Harding, & Engelbrecht, 2008). For instance, 
researchers have identified a range of difficulties including (a) drawing graphs by connecting 
points without considering what happens between points (Yavuz, 2010); (b) treating graphs as 
literal representations of a situation (e.g., interpreting a time-speed graph of a biker as the biker’s 
traveled path) (Clement, 1989); and (c) attending to one quantity while ignoring other quantities 
(i.e. reasoning variationally) (Leinhardt et al., 1990). Collectively, this research indicates 
instructional approaches have not provided students sustained opportunities to develop 
meaningful ways of understanding and interpreting graphs. 

Dewey (1910) stated, “vagueness disguises the unconscious mixing together of different 
meanings, and facilitates the substitution of one meaning for another, and covers up the failure to 
have any precise meaning” (p. 130). In this report, we attempt to clarify a vagueness, in Dewey’s 
terms, regarding how students may think about graphs and coordinate systems. We hypothesize 
supporting students becoming explicitly aware of the subsequent distinctions may alleviate some 
difficulties students experience as they engage in graphing activity. In this theoretical report, we 
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present a conceptual analysis of different ways students may reason about coordinate systems 
and graphs. Specifically, we describe two different uses of coordinate systems—spatial and 
quantitative (Lee & Hardison, 2016)—and two ways students might reason as they construct or 
interpret graphs within these coordinate systems—static and emergent thinking (Moore & 
Thompson, 2015). For each use of coordinate system, we characterize how a student may engage 
in each kind of graphical reasoning, creating a framework that will be useful for future studies.   

 

   
Figure 1. Examples of using coordinate systems to (left) mathematize space (Halliday, Resnick, 
& Walker, 2011), (center) represent two covarying quantities (Brown et al., 2012), and (right) 

represent two decontextualized quantities (Glencoe, 2014). 

Conceptual Analysis 
In this theoretical report, we present a conceptual analysis of ways students may reason about 

graphs and coordinate systems; we intend for this conceptual analysis to inform future empirical 
research. Thompson (2008) characterized several uses of conceptual analyses; we leverage two 
of these uses, namely “describing ways of knowing that might be propitious for students’ 
mathematical learning,” and “describing ways of knowing that might be deleterious to students’ 
understanding of important ideas and in describing ways of knowing that might be problematic 
in specific situations” (p. 46). We present our first-order models (Steffe & Olive, 2010) of how 
students may reason about graphs and underlying coordinate systems. These models are based on 
research examining students’ graphing understandings (e.g., Moore & Thompson, 2015), 
research examining students’ construction and use of coordinate systems (e.g., Lee, 2017), 
principles of quantitative reasoning (Thompson, 2011), and our experiences working with 
students. We point the reader to examples from extant literature in which we infer students are 
engaging in reasoning compatible with our conceptual analysis.  

Bridging Two Theoretical Frameworks 
In this report, we examine how a distinction between two uses of coordinate systems and a 

distinction between two ways of thinking about graphs (i.e., traces within coordinate systems) 
can create four different ways students may construct or reason about graphical representations 
within coordinate systems. Below, we describe two frameworks: one for students’ 
understandings of coordinate systems and one for students’ thinking about graphs.   
Two Uses of Coordinate Systems 

Lee and Hardison (2016) found curricular materials often give students rules for “generating” 
a Cartesian plane and plotting points within it, and these materials rarely address students’ 
conceptions of coordinate systems. They (Lee, 2016; Lee & Hardison, 2016; 2017) have 
distinguished between two uses of coordinate systems in students’ thinking: spatial coordination 
and quantitative coordination.  
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Spatial coordination refers to an individual using a coordinate system to represent or 
mathematize a space or physical phenomena. This involves establishing spatial frames of 
reference (Levinson, 2003; Rock, 1992), such as a reference point or orienting vectors, to locate 
objects within the space or physical phenomena (e.g., Figure 1, left). In this case, an individual 
can produce quantities by measuring attributes of the space/situation using the established frames 
of reference and thus coordinate such measurements to locate objects in the space or situation 
(e.g., a map).  

Quantitative coordination refers to an individual coordinating sets of quantities by obtaining 
a geometrical representation of the product of measure spaces. In this case, the quantities being 
coordinated are already established and abstracted from the space/situation and superimposed 
onto some new space. This use of coordinate system, as a result of coordinating quantitative 
frames of reference (Joshua, Musgrave, Hatfield & Thompson, 2015), allows the individuals to 
coordinate quantities and construct graphs representing relationships between these quantities 
(e.g., Figure 1, middle). These graphs are not projections of physical objects or phenomena onto 
the same space containing the original objects or phenomena. 
Static and Emergent Shape Thinking 

Moore and Thompson (2015, under review) differentiated between students’ static and 
emergent shape thinking. A student’s static shape thinking entails his thinking of a displayed 
graph as a shape (i.e. graph-as-wire) that can possibly be manipulated (e.g., translated, rotated). 
In such a case, properties of the perceptual shape and the shape itself are the focus of the 
student’s thinking. For instance, a student emphasizing the properties of a shape may argue that a 
straight line moving up from left-to-right unquestionably represents a linear function with a 
positive slope even if positive x-values are represented to the left of the y-axis in the Cartesian 
coordinate system or if the line is represented in the polar coordinate system.  

Moore and Thompson also noted static shape thinking can take the form of students’ making 
iconic or thematic associations (e.g., Clement, 1989; Leinhardt et al., 1990). A student reasons 
iconically when he incorporates visual features of an event in a graph (e.g., drawing a graph 
resembling a hill because a biker is traversing a hill). A student reasons thematically when he 
incorporates aspects of a phenomena in his graph that are unnecessary from the researcher’s 
perspective (e.g., an object traveling at a varying speed necessarily implying a curved graph).  

In contrast to static shape thinking, Moore and Thompson characterized emergent thinking as 
conceiving a displayed graph simultaneously in terms of “what is made (a trace) and how it is 
made (covariation)” (2015, p. 785). Critical to such a conception is a student’s construction of a 
point on a graph as a multiplicative object; when using the term multiplicative object, Thompson 
and colleagues draw on Piaget’s notion of “and” as a multiplicative operator. Specifically, 
Thompson, Hatfield, Yoon, Joshua, and Byerley (2017) noted, “A person forms a multiplicative 
object from two quantities when she mentally unites their attributes to make a new attribute that 
is, simultaneously, one and the other” (p. 98). Hence, when reasoning emergently, a student 
understands a point as simultaneously representing two quantities and imagines a graph being 
created by the trace of the point as the quantities vary. 

A student with sophisticated emergent thinking may, at times, appear to treat a graph as a 
static shape (e.g., ‘shifting’ the graph in a direction) for various reasons whilst being able to 
unpack the static thinking in terms of the graph’s emergence. Although such ‘shifting’ activity 
could indicate static thinking, if the student is able to unpack his new graph in terms of 
representing an emergent trace constituted by the new distances, such reasoning would constitute 
emergent, rather than static, thinking in the quantitative coordinate system. 
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Static or Emergent Thinking in Spatial or Quantitative Coordinate Systems 
In combining the frameworks elaborated above, we differentiate between static and emergent 

thinking, which characterizes a student’s reasoning when producing or interpreting a graph (i.e., 
a trace within a coordinate system), and quantitative and spatial coordinate systems, which 
characterizes a student’s understanding of the coordinate system potentially containing a graph. 
We provide an example of each kind of reasoning using a billiard context at the Infinity Pool 
Hall. Additionally, we provide a description of student reasoning for each case. We reiterate 
these are first-order models of how students may reason; we point the reader to empirical 
examples where appropriate.  

Table 1: Four ways of reasoning about graphs within coordinate systems.  
  Ways of Reasoning About a Graph (Moore & Thompson, 2015) 
  Emergent Reasoning Static Reasoning 

Uses of Coordinate 
Systems 

(Lee & Hardison, 2016) 

Spatial 
Coordination 

Case A: Emergent thinking within 
a spatial coordinate system 

Case B: Static thinking within a 
spatial coordinate system 

Quantitative 
Coordination 

Case C: Emergent thinking within 
a quantitative coordinate system.  

Case D: Static thinking within a 
quantitative coordinate system 

 
Case A: Emergent thinking in a spatial coordinate system (Emergent, Spatial) 

To imagine a student reasoning emergently in a spatial coordinate system, consider a student 
seeing the red 3-ball moving from the left wall to the top middle pocket in a straight line (Figure 
2, top). If asked to describe the location of the red ball throughout its journey toward the middle 
pocket, the student may establish a spatial frame of reference consisting of a horizontal axis and 
a vertical axis through which the student can gauge the horizontal and vertical locations of the 
ball. Using this spatial frame of reference, the student can describe the ball’s movement in terms 
of varying horizontal and vertical distances within a spatial coordinate system. By conceiving of 
the ball’s location as simultaneously composed of vertical and horizontal components, the 
student conceives of the ball’s location as a multiplicative object and therefore can reason 
emergently about the ball’s path in terms of its horizontal and vertical components. Figure 2 
(bottom) depicts instances of a student’s potential emergent imagery when coordinating the 
ball’s trajectory in relation to its horizontal and vertical components.  

There are several features critical to a student reasoning emergently in a spatial coordinate 
system. First the student must conceive of an object or phenomena happening in a spatial system 
and imagine the object or phenomena as producing a trace in this space. The student then 
overlays a coordinate system onto the spatial system in order to explicitly coordinate and/or 
represent how the object or phenomena is producing the imagined trace in terms of the quantities 
represented in the coordinate system. Hence, the student must conceive of the object or 
phenomena as representable by a multiplicative object, which she can decompose as 
simultaneously representing the orienting quantities in the spatial coordinate system. The student 
can then explicitly coordinate how the orienting quantities are changing as the object moves or 
phenomena occurs to mathematize the situation. For an empirical example of a student reasoning 
emergently in a spatial coordinate system, see Lee (2016). 
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Figure 2. (top) Two instantiations of the red 3-ball traveling from the wall of the table to the 

pocket and (bottom) three instantiations of how a student may reason about the ball’s path as an 
emergent trace by coordinating its vertical and horizontal components. 

Case B: Static thinking in a spatial coordinate system (Static, Spatial) 
To imagine a student reasoning statically in a spatial coordinate system, consider the logo on 

an Infinity Pool Hall table (Figure 3, left). A student sees the logo, which he interprets as 
composed of two circles tangent at a point (i.e., shapes), and is tasked with describing the shape 
of this logo mathematically. To do this, the student defines a coordinate system by establishing a 
spatial frame of reference through which he could describe the location and shape of the logo. 
This includes choosing a reference point and defining orienting quantities. After constructing the 
spatial coordinate system, the student may mathematically describe the shapes in the logo within 
the coordinate system using known equations. For example, in Figure 3 (middle) a student 
decides to use Cartesian coordinates with the origin at the intersection of the circles, and 
describes each circle using memorized rules related to the general form of a circle, (x – h)2 + (y – 
k)2 = r2. Alternatively (Figure 3, right), a student might define a polar coordinate system as in 
Figure 3c, with the pole at the intersection of the circles and use the recalled formula r = acosθ.  

 

 
Figure 3. (left) A pool table with logo, and two possible ways to spatially orient the pool table 

and mathematize the circles in the logo in (middle) Cartesian and (right) polar coordinates. 

As exemplified in the above examples, static thinking in a spatial coordinate system entails 
(a) conceiving of a static shape or object to be located or described mathematically in a situation 
and (b) establishing a spatial frame of reference through which one can situate, coordinatize, and 
mathematize the shape. For an example of a teacher using coordinate systems in ways 
compatible with this description in their classrooms, see Disher (1995).  

In this example, we emphasize a student using memorized rules to mathematize the 
conceived shape, rather than reasoning about an emergent trace. We note that a student could 
demonstrate an understanding of analytic rules as representing an emergent trace of covarying 
quantities; in such a case, the student would not necessarily be reasoning statically when 
representing the ‘shape’ via an analytic rule if the shape’s emergence is implicit in his 
understanding.  
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Case C: Emergent thinking in a quantitative coordinate system (Emergent, Quantitative) 
To imagine a student thinking emergently in a quantitative coordinate system, consider a 

student seeing the red 3-ball’s path, now with the yellow 1-ball and blue 2-ball on the table 
(Figure 4, we positioned the balls and trajectory to mimic the cities and path of the car in 
Saldanha and Thompson’s (1998) Car Problem). The student may be asked to create a graph 
representing the red 3-ball’s distance from the yellow 1-ball and blue 2-ball as it moves to the 
pocket. After conceiving the quantities and how they vary, the student may construct a Cartesian 
coordinate system with the horizontal and vertical axes representing the red 3-ball’s distances 
from the blue 2-ball and yellow 1-ball, respectively. Having constructed a quantitative coordinate 
system, the student may construct an emergent trace within this coordinate system to represent 
the relationship between the 3-ball’s distance from the other balls (e.g., Figure 4a–d).  

We highlight several critical features in this example. First a student needs to conceive of two 
quantities covarying and intend to represent the relationship between the quantities. The student 
must then disembed (Steffe & Olive, 2010) the two quantities from the context and insert them 
onto two number lines to construct a quantitative coordinate system with the intention of 
simultaneously representing the two quantities in a product space. Each quantity would then be 
represented by one of the orienting quantities in the coordinate system (see Moore, Paoletti, and 
Musgrave (2013) for examples in Cartesian and polar coordinate systems). The student 
understands a point on the emergent trace in this quantitative coordinate system as a 
multiplicative object simultaneously representing the two quantities.  

 
Figure 4. Four instantiations of how an individual may reason about and represent the red 3-

ball’s distance from the blue 1-ball and yellow 2-ball as an emergent trace. 

Case D: Static thinking in a quantitative coordinate system (Static, Quantitative) 
We modify the same situation described in Case C to characterize how a student may reason 

statically while using a quantitative coordinate system. Recall, static thinking may entail 
graphically representing features of the situation. For instance, Figure 5 (center) shows a student 
duplicating the 3-ball’s path as a representation of the ball’s distance from the other two balls, 
and Figure 5 (right) shows a student using the balls’ and pocket’s relative locations as points on 
his graph. In both cases, we highlight that although the coordinate system is meant to represent 
(from the researcher’s perspective) the 3-ball’s distance from the 1-ball and 2-ball, the student 
may not explicitly use the coordinate system in this way. One indication that a student is 
interpreting the coordinate system quantitatively is if the student interprets her constructed graph 
by describing the 3-ball’s relative distance from the other two balls. For instance, in Figure 5 
(center), the student may describe that the 3-ball’s distance from the 1-ball increases at a constant 
rate with respect to its distance from the 2-ball (see Paoletti, 2015 for an empirical example).  

Reasoning statically in a quantitative coordinate system can be unproductive in several ways: 
(a) treating a graph in a quantitative coordinate system as a shape which can be moved around 
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the coordinate system without considering how the translation relates the underlying relationship 
between quantities, (b) engaging in an iconic translation while interpreting or creating a graph in 
a quantitative coordinate system, or (c) engaging in a thematic association while interpreting or 
creating a graph in a quantitative coordinate system. In each case, in order for the system to be a 
quantitative coordinate system from the student’s perspective, the student needs to make some 
indication that he is representing the quantities defined on the coordinate axes.  
 

 
Figure 5. Two examples of static thinking in a quantitative coordinate system. 

Concluding Remarks and Areas for Future Research 
In this report, we have presented a conceptual analysis that distinguishes meanings students 

may hold as they engage in graphing activity within coordinate systems. These distinctions can 
provide insights into some difficulties students experience as reported in extant literature. For 
instance, students representing the path of a biker (Clement, 1989) may be indicative, not of a 
misconception, but of the students leveraging a spatial coordinate system to mathematize a 
situation. In this case, and others, misconceptions identified in the literature may be partially 
explainable by students’ reasoning about coordinate systems and graphs in ways inconsistent 
with what the researcher (or teacher) intended.  

If we intend for curriculum designers, teachers, and students to maintain and convey 
particular meanings for graphs within coordinate systems, mathematics education researchers 
must be explicit about these meanings. We intend for the hypothetical models we elaborated, 
which explicitly address students’ meanings for both coordinate systems and graphs, to serve as 
a resource for future research into how students may develop understandings of spatial and 
quantitative coordinate systems, as well as graphs in these systems. Further, the similarity 
between the two uses of coordinate systems discussed here and the uses of coordinate systems 
observed by Paoletti et al. (2016) in STEM resources (e.g., Figure 1, left, middle) underscores 
the importance of students explicitly understanding and using coordinate systems for each 
purpose. Hence, there is a need to develop and test curricular materials that support students in 
explicitly understanding the differences between spatial and quantitative coordinate systems, as 
such differences are relevant for their potential future STEM studies and careers.  
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