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Flipped instruction is being implemented in an increasing number of mathematics classes but the 
research base is not yet well developed. Many studies of flipped instruction involve a small 
number of flipped classes being compared to non-flipped classes, but this methodology fails to 
account for variations in implementations. To aid in the systematic attention to variation, this 
article presents a framework for flipped mathematics instruction that identifies key features of 
the videos assigned as homework as well as features of the in-class activities. The components of 
the framework are accompanied by proposed quality indicators to further distinguish between 
flipped implementations that are structurally similar but different in enactment 
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In recent years there has been an increase in flipped instruction (Smith, 2014). Flipped 
instruction is characterized by teachers “flipping” the settings in which lecture and homework 
occur. Instead of being presented with new material in class and then completing homework 
problems outside of class, students in flipped classes watch videos or read new material outside 
of class and then complete the problem sets in class (Bergmann & Sams, 2012). Although the 
flipped instructional model has a single overarching label, there are a wide variety of learning 
opportunities it can encompass. On one hand, flipped instruction has the potential to be 
innovative with regard to differentiation (e.g., students can rewatch videos at their own pace and 
with technology-based supports) and collaboration (e.g., students can work together because of 
the increased time in class to solve problems). On the other hand, flipped instruction can be non-
innovative, such as when students watch lecture videos at home and then work individually to 
complete procedural exercises in class (de Araujo, Otten, & Birisci, 2017a). 

Because of the variation in flipped implementations, this theoretical article presents a 
research-based framework that moves beyond a general definition of flipped instruction and 
provides specific analytic tools that allow for meaningful distinctions to be drawn with respect to 
the learning opportunities afforded. In particular, the framework considers the components of 
flipped mathematics lessons and the quality indicators for each component. 

Why a Framework is Needed 
Although flipped instruction can vary in its implementation (de Araujo, Otten, & Birisci, 

2017a), much of the early literature on flipped instruction seems to presume that it is a unified 
approach that can be directly contrasted with non-flipped instruction. For example, DeSantis, 
Van Curen, and Putsch (2015) investigated flipped and non-flipped geometry instruction in two 
high school classes. They found no differences in geometry learning, although students in the 
flipped class were less satisfied with the unit than students in the non-flipped class. But the 
flipped lessons in the study involved using the same activities as in the non-flipped lesson, so the 
implicit assumption was that the act of flipping itself—not the manner of flipping—is of central 
importance. Moreover, DeSantis and colleagues did not provide substantial detail about the non-
flipped instruction, so with regard to the finding of no difference, the basis of comparison is 
under-specified. A similar example is Clark (2015), who compared his flipped Algebra 1 classes’ 
year-end student outcomes with non-flipped Algebra 1 classes taught by others in the same 
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school. Clark found, like DeSantis and colleagues (2015), no difference between flipped and 
non-flipped learning measures. Unlike DeSantis et al., however, Clark’s students expressed a 
preference for flipped instruction because of the range of teaching practices it allowed. Again, 
because of the simplistic and small-scale comparison, the underlying assumption in Clark’s study 
is that it is meaningful to compare flipped instruction with non-flipped instruction of the same 
content, without substantial regard for the variations that are possible within each category. 

The fact that these studies found no difference with regard to content learning, and 
contradictory results with regard to student attitudes about flipped instruction, is unsurprising. 
Such results are to be expected if it is true that, as we argue, flipped mathematics instruction can 
vary widely along important dimensions of instruction, just as non-flipped instruction also varies. 
Nevertheless, these studies provide a positive first step with regard to empirically documenting 
the phenomena of flipped instruction in mathematics by showing that, in certain situations, 
flipping alone does not seem to influence student learning. Yet there are substantial limitations to 
the accumulated knowledge that can be generated from these studies because there is not yet a 
structural framework for identifying and interpreting the various features of flipped instruction in 
the cited studies. With such a framework in hand, patterns could be discerned across grade levels 
and even across articles that include empirical descriptions of flipped instruction without 
comparisons to non-flipped instruction (e.g., Talbert, 2014; Zack et al., 2015). 

It should be noted that other frameworks for flipped instruction exist, but they serve different 
functions than ours. For example, Chen and colleagues (2014) introduced the FLIPPED model 
(Flexible environments, Learner-centered approach, Intentional content, Professional educators, 
Progressive networking, Engaging and effective learning experiences, Diversified and seamless 
learning platforms) but theirs is a prescriptive model meant to guide the design and 
implementation of a flipped course. It is not designed to capture the variability across preexisting 
flipped courses. Furthermore, it is not specific to mathematics instruction and it functions at the 
course level whereas our framework is applied at the lesson level. DeLozier and Rhodes (2017) 
provided a more descriptive framework, parsing the out-of-class lectures from the in-class 
activities and specifying different types of the latter (quizzes, pair-and-share activities, student 
presentations). In our work, however, we have seen that not all flipped instructors use strictly 
lecture videos (de Araujo, Otten, & Birisci, 2017b), and DeLozier and Rhodes do not account for 
the quality of the enacted in-class activities, nor is their work specific to mathematics. Yet we do 
incorporate their top-level distinction between out-of-class and in-class lesson phases. 

To assess the quality of the flipped lessons in a mathematics-specific manner, we draw on 
existing instruments for lesson observations but make some key modifications. Observation 
protocols such as the M-SCAN (Walkowiak et al., 2014) and IQA (Boston & Wolff, 2006) 
presume a certain form of instruction, with cognitively demanding tasks and student discussions, 
and thus may not be widely applicable to all forms of mathematics instruction. Moreover, these 
instruments combine various sub-scores into an overall score for the quality of the lesson, even 
though there is scholarly disagreement about the ideal nature of some of the sub-scores. In other 
words, although some aspects are universally regarded as indicators of quality instruction (e.g., 
coherent development of ideas, effective use of multiple representations), other aspects are not 
universally accepted (e.g., the value of shared mathematical authority, student discussions) 
(Munter, Stein, & Smith, 2015). Thus, in order to capture the full range of flipped instruction 
variability in an even-handed way, it would be wise to separate the universally-accepted 
indicators of quality from those that simply mark different instructional paradigms. We represent 
this separation in the in-class component of our framework. 
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A Framework for Flipped Mathematics Instruction 
Adapting the overall structure of the Mathematical Task Framework (Stein, Grover, & 

Henningsen, 1996), our framework (Figure 1) includes the assignment given to students to be 
completed outside of class (left) and the activity that takes place in class (center), which 
collectively produce various student outcomes (right). We distinguish between different types of 
videos (lecture and set-up) and between different interaction formats in class (whole-class and 
non-whole-class). These distinctions are rooted in our perspective on students’ mathematical 
learning as a sociocultural process through which students are coming to participate actively in a 
mathematical community (Vygotsky, 1980). This process is an integration of social and 
individual dimensions and, mathematically, it involves becoming an active participant both in 
individual meaning-making through thinking or writing, for example, as well as collaborative 
meaning-making through listening to or interacting with the teacher and peers, for example. In 
other words, we view the learning of mathematics as not simply the development of an ability to 
solve certain kinds of problems but the development of the ability to participate in various forms 
of mathematical discourse and activity, and our framework distinguishes between some of these 
forms at a structural level. We also attend to the nature of discourse (Staples & Colonis, 2007) 
and the cognitive demand of tasks (Stein, Grover, & Henningsen, 1996) because these relate to 
the kinds of activities students have opportunities to participate in. 

This framework is based on pilot analyses of flipped classes at several different academic 
levels and consultation with experts in specific domains (e.g., video design, classroom discourse, 
mathematical tasks). Due to space limitations, details on the development process are not shared. 
 

 
Figure 1. A framework for flipped mathematics instruction 
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At-Home Components 
Looking more closely at the at-home components, the framework identifies video or 

multimedia homework in which students are assigned multimedia content to watch, read, or 
listen to. Although this type of homework is the definitive category for flipped lessons, teachers 
implementing flipped instruction are not bound to it exclusively. Teachers may, on occasion, also 
assign problems or exercises to be completed outside of class, in which case the framework 
could be used to show that both or either type of homework was assigned. Also, it is possible that 
a particular lesson has no homework assigned. Non-flipped lessons, by definition, will have only 
problems/exercises homework or no homework. 

Videos or multimedia. Although we often use the term ‘video’ because flipped mathematics 
homework commonly takes this form, we acknowledge that some teachers might use written 
text, podcasts, animations, or multimedia resources such as iBooks. For video homework, the 
framework distinguishes between lecture videos, which present expository information or 
worked examples, and set-up or motivation videos, which establish a context or pose a problem 
that will be addressed in class. Within these two types, the framework then specifies normative 
quality criteria. By normative quality, we mean that instruction satisfying the criteria is 
hypothesized to be more predictive of positive student outcomes than instruction that does not 
satisfy the criteria, which could be empirically tested in future studies.  

The normative quality criteria for lecture videos address three aspects: instructional quality, 
multimedia design, and interactivity. Instructional quality captures the clarity and flow of the 
ideas as well as features specific to mathematics, such as mathematical justifications, multiple 
mathematical representations, the absence of unmitigated errors, and connections to 
mathematical content that the students may have already learned or will learn in the future. Most 
of these particular aspects can be operationalized by drawing on existing instruments in the 
mathematics education literature. In particular, the clarity of the lecture foci relates to research on 
explicit lesson objectives (Wiggins & McTighe, 2005), and the coherent flow of ideas relates to 
all of the video content being connected to that foci. We can also attend to whether there is an 
intellectual or “real-world” motivation for the foci. With regard to mathematics-specific features, 
we draw on the Studying Teacher Expertise and Assignment in Mathematics (STEAM) project 
(Tarr et al., 2016), which provides a lesson observation coding scheme for mathematical 
justifications, the meaningful development of mathematical ideas, and the integration of multiple 
representations. In addition to these aspects from STEAM, we also include a dimension from the 
mathematical quality of instruction (MQI) instrument (Learning Mathematics for Teaching 
Project, 2011), namely, the absence of unmitigated mathematical errors. Finally, we attend to 
whether the video’s particular mathematical foci is explicitly connected to the mathematical 
ideas of prior or subsequent lessons. 

These features of instructional quality not only apply to the videos but are also used to 
characterize whole-class discourse in the in-class portion of lessons (see below). Aspects that are 
specific to videos, however, are multimedia design and interactivity. For multimedia design 
quality, we drew on Clark and Mayer’s (2007) six principles of digital material design. The 
multimedia principle states that graphics (not words alone) help students learn the information in 
question. The modality principle states that the graphics should be described or explained with 
spoken words rather than on-screen text. The contiguity principle states that, if some brief on-
screen text is used, it should be placed spatially near the relevant graphics. The redundancy 
principle states that the on-screen text should be minimal and should not be a full transcription of 
the audio narration. The coherence principle states that irrelevant graphics and audio should be 
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excluded. Finally, the personalization principle states that audio narration should be in a 
conversational style and it is preferable for the speaker to be visible. 

Interactivity captures the extent to which students are expected to be more than passive 
viewers of the video. Interactivity can be achieved in a variety of ways. For example, Webel, 
Sheffel, and Conner (2018) studied a teacher whose videos for flipped instruction contained 
embedded questions that provided the teacher with formative assessment data she could use to 
inform in-class activities. These embedded questions within the video are one possible form of 
interactivity. Other forms include requiring students to post a comment or submit a reflection 
after watching the video or incorporating a virtual manipulative (Moyer-Packenham & 
Westenskow, 2013) that the students can interact with as part of the homework. 

The aspects described above apply to a lecture video, which is the most common type of 
video in flipped lessons (de Araujo, Otten, & Birisci, 2017b). Our framework, however, also 
includes set-up or motivation videos. Because of a lack of prior research on set-up videos, we 
drew on practical resources for setting up mathematical work such as the three-act tasks 
promoted by Meyer (2011) often involving what we call a set-up video that presents a situation 
and leads to a mathematical question. Our framework distinguishes between different ways in 
which the set-up videos connect to the mathematical goals of the remainder of the lesson. 
Specifically, we distinguish between three possibilities: an explicit connection to the 
mathematical goal of the in-class activity that follows (i.e., it is clear from watching the video 
what the specific mathematical question or problem is, even though its solution is not 
explicated); an implicit connection (i.e., it presents a context that allows for mathematical 
explorations but it is not clear which mathematical question or problem is intended to be pursued 
until it is specified later); or no discernible connection (i.e., it has a contextual connection or 
some other association with the in-class activity but does not contain the mathematical ideas of 
the lesson). We do not presume a priori that one of these is more beneficial than the others, but 
that could be determined empirically through applications of the framework. 

Problems/exercises. If students are assigned a problem set to complete outside of class, then 
the framework attends to the cognitive demand (Stein, Grover, & Henningsen, 1996) of those 
problems. After coding each item for cognitive demand, the assignment overall can be 
characterized as low (nearly all items at a low level), moderate (predominantly low but a 
substantial minority of items at a high level), or high (a majority of the items at a high level). 
Note that if problems are begun in class and students are then expected to complete any 
unfinished problems at home, this would fall under the in-class component of group or 
independent work rather than strictly homework. 

Moving on, the arrow between the at-home section of the framework and the in-class section 
represents the fact that what occurs outside of class potentially influences what occurs in class. 
For example, if students do not watch the video, the lesson will likely play out differently in 
class than if they had watched the video attentively. Note that, although videos are typically 
assigned to be watched prior to the in-class portion of the lesson, some flipped lessons may use a 
video as a way to summarize ideas after the in-class activity. Thus the arrow is not necessarily 
chronological and the left-to-right order visible in Figure 1 is not absolute. 
In-Class Components 

Moving to the in-class components, the framework first distinguishes between the interaction 
format the teacher employs—a whole-class format in which the entire class is expected to be 
attending to the public discourse whether that be the teacher addressing the entire class or 
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students sharing out or asking questions, and a non-whole-class format which includes the 
expectation that students work together in groups or independently. 

Whole-class format. As noted above, this framework differs from others because we 
separate instructional quality indicators from markers of a particular pedagogical model. For 
instructional quality we use the same aspects defined above (focus, flow, motivation, 
mathematical justifications, mathematical development of ideas, multiple mathematical 
representations, absence of unmitigated mathematical errors, and connections to other 
mathematical topics) plus an engagement (i.e., on-task) measure to gain a normative sense of the 
lesson flow and development of mathematical ideas. Additionally, the framework distinguishes 
between several descriptive aspects of the lesson. These aspects relate to the interactivity of the 
whole-class segments of the lesson. With regard to mathematical authority, we distinguish 
between teacher/textbook authority and shared/community authority. We also note the extent to 
which students are publicly involved in the whole-class discourse, and if they are, we attend to 
whether the nature of discourse was sharing or collaborative (Staples & Colonis, 2007). Finally, 
considering flipped lessons in particular, we note whether the videos are referenced or 
incorporated into the discourse (e.g., by reviewing the key ideas from the video homework). 

Group or independent work. With regard to group or independent work, the framework 
includes engagement (i.e., on-task behavior), peer talk (i.e., the extent to which students verbally 
interact with one another), and the use of video/multimedia from the lesson homework. For 
example, while solving a problem in class, do students use their phones or tablets to view videos 
and rewatch explanations of worked examples? We also use the well-known construct of 
cognitive demand (Stein, Grover, & Henningsen, 1996) to characterize the written tasks students 
work on during group or independent work. Because flipped instruction can provide more in-
class time for problem solving, it is plausible that teachers may feel more freedom to enact 
cognitively demanding tasks in their flipped lessons. 
Student Outcomes 

The framework does not predetermine the student outcomes of interest because those will 
largely depend upon the specific context in which the framework is employed, especially with 
regard to specific mathematical content. However, the framework does acknowledge that several 
different student outcomes may be of interest in studies of flipped instruction. In addition to 
measures of students’ mathematical knowledge, one may also be interested in their skills with 
various mathematical practices and their attitudes or affective dispositions toward mathematics. 
Furthermore, researchers may wish to use multiple measures of a single outcome to increase the 
robustness of findings. In any event, the specification of these outcomes is somewhat 
independent of the enactment of lessons through the at-home and in-class phases of the lesson. 

Discussion 
In presenting this framework, we hope to provide a structure that can support the 

accumulation of empirical findings related to flipped instruction, inform the design of future 
studies, and facilitate connections between research and practice. This framework is needed 
because empirical research on the effectiveness of flipped instruction must move beyond simple 
flipped/non-flipped comparisons (e.g., Clark, 2015; DeSantis et al., 2015) toward an 
investigation of the specific features of flipped instruction and the complex interactions of those 
features as they relate to student outcomes. 

Although the framework is built around structural components of flipped lessons, it also goes 
further by focusing attention on the quality with which certain structural activities occur. In 
particular, the framework includes quality criteria for lecture videos, set-up videos, whole-class 
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discourse, and it incorporates the levels of cognitive demand (Stein, Grover, & Henningsen, 
1996) for the independent or group tasks. This attention to quality will not only allow researchers 
to distinguish between different structural implementations of flipped instruction (e.g., those who 
use lecture videos and independent work versus those who use set-up videos and whole-class 
discussions) but also between different qualities of implementation within the same structure 
(e.g., productive whole-class discussions versus unproductive ones). To be clear, we do not mean 
to imply that the quality criteria specified in this article are the only sets of criteria that could be 
used, nor do we necessarily think they are ideal. Rather, we have proposed some characteristics 
that, according to our theoretical perspective, are worth considering, but those with different 
perspectives would likely identify different characteristics, and ultimately we hope that future 
research can empirically test the benefits of various implementations of flipped instruction. 

With regard to empirical studies, the framework can be valuable in formulating testable 
hypotheses. For example, one can consider whether video features are more predictive of student 
learning than in-class features. (We hypothesize that the reverse is true.) Additionally, the 
framework can be used to aggregate across lessons rather than remain at the scope of an 
individual lesson. Future research could include multiple observations of a flipped class over 
time and compile the proportional allotments and the quality indicators for the components of 
flipped instruction. For instance, a teacher may 80% of the time assign lecture videos that satisfy 
only some of the quality criteria and may assign the other 20% of the time set-up videos that 
explicitly connect to the lesson’s learning goals, and 50% of the in-class time may be spent 
solving high cognitive demand tasks in groups while the other 50% of the time is spent having 
high quality whole-class discussions. In this way, multiple class aggregations could be formed 
(for flipped and non-flipped classes) and then analyzed with respect to student outcome 
measures. Such work has potential to contribute to our theoretical understanding of mathematics 
instruction and to inform the efforts of practitioners who are implementing flipped instruction. 

Conclusion 
Many of the expositional and anecdotal works related to flipped instruction are written in 

ways that suggest flipped instruction is a unified teaching model. Even the few empirical studies 
that exist involved research designs that presume flipped instruction is a singular approach that 
can be meaningfully compared to non-flipped instruction. We have instead found that wide 
variation exists in flipped implementation (de Araujo, Otten, & Birisci, 2017b; Otten, Zhao, de 
Araujo, & Sherman, in press). Although it is possible that flipped instruction frees up class time 
for rich whole-class discussions and the enactment of cognitively demanding tasks, we know that 
there are secondary mathematics teachers using flipped instruction in ways that differ little from 
conventional non-flipped instruction aside from the change in instructional environment. As a 
field we do not yet know the prevalence of either of these implementations nor do we have 
compelling empirical evidence of the implications that either has for student learning. It is our 
hope that this framework will guide feature endeavors to gather this evidence. 
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