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Using memorized rules and algorithms without coherence and understanding is a perennial 
problem for teachers and students especially in the teaching and learning of fraction operations. 
I present data in which prospective middle school teachers explain a commonly used rule for 
fraction division—keep-change-flip. I argue that using both strip diagrams and a single, 
quantitative definition for multiplication support prospective teachers when explaining why the 
rule works. The results of the study provide impetus for both mathematics teachers and 
mathematics teacher educators to teach with coherence across multiple mathematical topics.  
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Curricular documents have highlighted the crucial role for representations in the learning and 
teaching of mathematics (National Council of Teachers of Mathematics [NCTM], 2000) and the 
development of well-prepared beginning teachers (Association of Mathematics Teacher 
Educators, 2017). Although there are many representations used in mathematics education, I 
focus on representations as models of problem situations, specifically strip diagrams. The 
importance of using representations in educational contexts is not new (Ball, Thames, & Phelps, 
2008; NCTM, 2000), and researchers’ work on teachers’ use of representations has helped to 
identify related issues. First, teachers’ conceptions of representations and their role in problem 
solving are relegated to the periphery of mathematical activity—representations are not “real” 
mathematics (Stylianou, 2010). Teachers prefer to prioritize abstract, procedural rules over 
productive representations (Eisenhart et al., 1993). Second, teachers’ content knowledge 
constrains their pedagogical purposes for using representations (Izsák, Tillema, & Tunç-Pekkan, 
2008), and teachers’ mathematical knowledge has been shown to be primarily procedural 
without a strong grasp of the mathematical underpinnings (Mewborn, 2003). Prospective middle 
school teachers, in particular, frequently use the keep-change-flip procedure (KCF; i.e., !
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) to explain fraction division but have difficulty explaining why the procedure works (Li & 

Kulm, 2008). This procedural knowledge of mathematics could explain the reluctance of 
teachers to use representations when teaching (see Eisenhart et al., 1993). One viable avenue is 
to provide teachers with opportunities to learn with representations which influences both 
teachers’ knowledge and use of representations (Jacobson & Izsák, 2015). In this report, I 
present such an opportunity. I examine how prospective middle school teachers use strip 
diagrams to solve fraction division problems in a content course and how leveraging the diagram 
supports productive explanations for the keep-change-flip procedure.  

 Theoretical Framework  
Definition of Representations 

Researchers who have studied representation use in class (e.g., Izsák, 2003; Saxe, 2012) have 
generally agreed to distinguish what is being represented and what is “doing” the representing 
(cf. von Glasersfeld, 1987). In this study, I refer to representations as observable geometric 
inscriptions that can be referred or pointed to as the object of discussion (Goldin, 2002). It is this 
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indexical and communicative nature of representations allowing students to explain their 
thinking and for others to engage in another’s way of reasoning. When students create a display 
to represent their thinking, they also have a communicative aspect. In other words, they tailor 
their display with an audience in mind (Saxe, 2012) and thus students select salient features to 
highlight and point when creating and talking about representations. Additionally, I frame 
representations as culturally and historically rooted. A representation’s cultural and historical 
meaning grow out of how communities have interacted with an inscription over time (Blumer, 
1986). For example, a class can ascribe the meaning to the inscription “=” as “execute the 
arithmetic to the left” if they are continually asked to solve result-unknown problems over time.  

Strip diagrams. The Common Core authors recommended strip diagrams when reasoning 
about ratios and rates in 6th grade (National Governors Association Center for Best Practices & 
Council of Chief State School Officers, 2010). A strip diagram is usually drawn as a rectangle 
that can be partitioned into different sized parts where each part may refer to a quantity. 
Although researchers have identified the strip diagram as a feature of mathematics instruction in 
high performing countries such as Japan and Singapore, research on strip diagrams themselves is 
sparse especially in the United States (Murata, 2008; Ng & Lee, 2009). 
Form-Function Relationships 

Saxe’s account (2012) of cultural forms and functions accounts for how historically-rooted 
artifacts change over historical time. Forms are socially-rooted systems of artifacts perceivable 
by members of the community such as the base-27 system of the Oksapmin peoples (Saxe, 2012) 
or a number line in a math class (Saxe, de Kirby, Le, Sitabkhan, & Kang, 2015). Functions are 
how the forms are used to achieve goals. To characterize cultural forms and their functions, the 
researcher must investigate the creation of a “common ground” or a taken-as-shared ways of 
talking and doing (Saxe et al., 2015). Saxe and colleagues identified three strands describing how 
individuals contribute to common ground. In this repor, I account for two of these strands: 

1. Microgenesis. This process shows how individuals contribute to a common ground, often 
using a form in public, by describing how forms serve certain functions. For example, if a 
student wants to show how 3/2 is equivalent to 6/4, a student may create a strip diagram 
partitioned into three parts and partition each part into two in order to show six sub-
partitions using a different color to show the relationship between the two partitions. The 
student is contributing to common ground by producing a particular form (strips with 
partitioned partitions) to describe fraction equivalency. 

2. Ontogenesis.  This process shows the continuity and discontinuity of forms to serve new 
functions. In some instances, if a new function is necessitated, some previously used 
forms may be employed (continuity) or new forms (discontinuity) may emerge to serve 
the new function and accomplish the goal.  

Data and Analysis 
Context of the Study 

I analyzed four days of instruction from the second course of a sequence of two mathematics 
content courses for prospective middle school teachers (PSMTs) enrolled in a teacher education 
program. The same teacher taught both courses. The program was geared towards certification to 
teach mathematics in Grades 4–8. The objective of the course was to strengthen the students’ 
mathematical understanding of middle school topics such as base-10, fractions, and ratios. The 
13 PSMTs enrolled in the course were predominantly white women. Two class norms were 
developed in class by the time of the classes selected for analysis. First, students were expected 
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to use a multiplicand-multiplier definition for multiplication, notated by equation N · M = P 
(Beckmann & Izsák, 2015). In this equation, N denotes the number of base units in one group 
(the multiplicand), M denotes the number of groups (the multiplier), and P denotes the total 
number of units in M groups. With this definition, the order of the factors matters e.g., 12 boxes 
with six donuts in each box (12 · 6) is different from six boxes with 12 donuts in each box (6 · 
12) even if they are numerically the same number of donuts in total. The class was also expected 
to use the Common Core definition of fraction (National Governors Association Center for Best 
Practices & Council of Chief State School Officers, 2010) where the fraction a/b referred to the 
quantity formed by a parts of size 1/b. Lastly, students were expected to explain their thinking 
with drawings rather than memorized algorithms or symbol manipulation. Specifically, students 
were expected to use strip diagrams and double number lines.  

The teacher usually began class by orienting the PSMTs to the mathematical topic of the day. 
She gave the class a problem to solve and the PSMTs worked at their table with two to five other 
PSMTs. As they worked, the teacher walked around class, supporting or pressing the PSMTs. 
The teacher would redirect the PSMT if they breached any of the two sociomathematical norms. 
PSMTs were given the option of using iPads. After a period of time, PSMTs presented the 
strategies in whole-class discussion. To present their strategies, they could recreate their 
strategies on the mounted whiteboards or project their iPad screen on one of four mounted 
screens. Some students used the iPad’s camera to project written work. The whole-class 
discussion focused on students’ strategies and connections between different strategies. 
Data Collection and Analytical Techniques 

The main data corpus for this study was video and audio-recorded lessons from class. One 
stationary camera was set at the back of the class and captured the whole class within one frame. 
The other camera was also stationary during whole-class discussion but followed the teacher 
during small group discussions. Two microphones mounted on the ceiling captured audio during 
whole-class discussion while four flat microphones captured audio at each table. In post-
production, all video and audio data were condensed into a single file. The two videos were 
synchronized and combined into a single frame. The file contained all the audio feeds such that I 
could select any audio and listen to one audio source.  

The primary analytical techniques were modified from Saxe et al., 2015 and focused on 
identifying forms and functions of the representations to characterize the microgenetic process. 
To identify forms, I located PSMTs’ inscriptions in the classroom data. I relied on both 
discursive and gestural indicators. As the PSMTs talked about their drawings, I noted when they 
physically gestured to an inscription or used pointing language such as “This is…” or “I drew…” 
Two grain sizes for forms emerged from this analysis. A micro form was a single geometric 
inscription as fine as a line or rectangle and a coarse form was a group of microforms used to 
address a larger goal such as an entire strip diagram with its annotations to solve a multiplication 
problem. To identify a function, I found pointing language referring to what a particular form 
represents e.g., “This is a cup” and annotations on the drawings. To address the ontogenetic 
strand, I searched for moments between problems wherein forms changed. I identified the 
difference between the question or problem that was asked before and after the change.  

Results 
Over the course of the lessons, the PSMTs used strip diagrams to explain their thinking. The 

coarse form changed when the problem type changed. In Table 1, I summarize and illustrate the 
coarse and micro forms used. As the lessons progressed, the function of a partition of a strip 
changed to accommodate multiple functions which allowed students to explain KCF.  
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Table 1: Coarse Forms and Functions of the Micro Forms 

 
Note: M, N, and P refer to quantities in the multiplication definition in Beckmann & Izsák (2015) 
 
Measurement Division Forms 

The first two lessons centered on solving measurement or how-many-groups division. The 
two coarse forms resembled the definition of a fraction where each strip stood for one of a base 
unit e.g., one cup and the partitions referred to a unit fraction of the base unit e.g., 1/n of a cup. 
The PSMTs indicated one of a group by highlighting a set number of parts (such as the different 
colors in Figure 1a). Using the set number of parts, they counted how many groups were in the 
total amount of base units. The second form resembles the first coarse form; however, the 
function of a partition changed to holding two referents, the base unit and the group. 

 
Figure 1. (a) Sophie’s Diagram for 3 ÷ 3/4 = ? (b) Jack’s Diagram for 1 ½ ÷ 1/3 = ? 

In the first lesson, students created a word problem for the measurement division problem 3 ÷ 
3/4 = ?. They solved the problem using strip diagrams and in some cases double number lines. 
All the strip diagrams produced resembled Sophie’s diagram in Figure 1a. Sophie created the 
word problem “You have three cups of flour. Each batch requires three-fourths cup of flour. 
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How many batches can you make?” During whole-class discussion, she explained, “I first drew 
three full cups each of those is a cup.” Based on the annotations at the bottom of her strip and her 
equation, Sophie created a whole strip as a cup. Because the class was annotating equations with 
one definition of multiplication and Sophie’s placement of cups as the multiplicand in her 
equation, I inferred she assigned cups as her base unit. She explained, “each of those is made of 
four parts, each of size one-fourth of a cup and then I colored three of them which is three 
fourths of a cup each makes a batch” thus a set of three partitions was one group or batch in her 
context. In the next lesson, PSMTs were also asked to create a measurement division problem for 
1½ ÷ 1/3 = ? and solve the problem. Jack wrote the problem “You have 1½ liters of apple juice. 
You want to pour this apple juice into glasses, which can hold 1/3 liters each. How many glasses 
can you fill with your apple juice?” Similar to Sophie’s strategy, he created a whole strip 
indicating one cup of apple juice or one of a base unit. He shaded one and a half strip indicating 
the total amount he needed to count (see yellow partitions in Figure 1b). During whole-class 
discussion, Jack explained he anticipated the size of the partitions he wanted “[because] halves 
and thirds don’t mix perfectly…so I needed to put them in same sizes so the easiest one was 
sixths ‘coz that’s our common denominator–least common denominators.” Thus, he chose 
partitions that were 1/6 of the strip. He counted sets of two partitions showing one of a group or 
2/6 of a liter. Finally, he commented on the left-over partition and described it simultaneously as 
one sixth of a liter and half of a glass. This signaled describing a partition with respect to both 
the group and base unit as a new function for a partition. The ontogenesis of this new function 
for the partition could perhaps be explained by the number choice of the problem in the first 
problem where the total number of partitions is divisible by the numerator of the divisor. 
Partitive Division Form 

The next two lessons centered on solving partitive or how-many-in-1-group division 
problems. The PSMTs initially worked on partitive division problems where the dividend was a 
whole number and the divisor was a fraction between zero and one. One coarse form emerged 
from solving these problems. They created whole strips referring to one of a group e.g., one 
serving and the partitions were a unit fraction of the group. They also referred to the partition as 
some amount of base units. Describing the partition with respect to both groups and base units is 
perhaps a function rooted in the function emerging towards the end of the measurement division 
lessons. Finally, students also distinguished some partitions. Jack called these partitions that 
“aren’t really there” as “phantom” partitions. The phantom partitions were drawn to complete 
one of a group because the sizes of the group that given in the problems were less than one. 

   
Figure 2. (a) Elizabeth’s Diagram for 120 ÷ 2/3 = ? (b) Catherine’s Diagram for 6 ÷ 3/4 = ? 

First, the class worked on the problem “2/3 of a serving of noodles contains 120 mg of 
sodium. How much sodium is in one bowl of noodles?” Afterwards, they worked on the problem 
“Running at a steady pace, Anna ran 6 miles in 3/4 of an hour. At that pace, how far will Anna 
run in one hour?” Elizabeth and Catherine’s strip diagrams in Figure 2 are both exemplars of the 
coarse form PSMTs used when solving partitive division problems. In both diagrams, each 
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whole strip denoted one of a group and assigned a subset of the partitions in a strip to denote the 
total amount of base units in M groups. In Elizabeth’s first strip diagram, the set of blue 
partitions referred to 120mg of sodium and 2/3 serving. Catherine similarly drew her second strip 
with the total amount of miles in 3/4 hours. They then considered just one of these partitions and 
described the partition in both the quantity of the group and base unit similar to Jack’s partition 
in the measurement division lesson. Elizabeth and Catherine also assigned equal amounts of the 
base unit in each partition. For Elizabeth, she annotated this in the middle of her drawing (Figure 
2a) by labelling one of her partitions as both one-third of a serving and 60mg of sodium. 
Catherine showed this function for a partition in her third strip (Figure 2b) where she annotated 
one of her partitions as one-fourth of an hour and two miles. They both iterated this partition to 
complete the whole strip and counted the amount of base units in the whole strip. Although the 
functions for the whole strip and the partition shifted i.e., measurement division problems 
showed one of a base unit while partitive division problems showed one of a group, the function 
of the partition as both an amount of a group and base unit was present in both problem types.  
Explaining Keep-Change-Flip 

 
Figure 3: Elizabeth’s Strip Diagram for 1/3 ÷ 2/5 = 1/3 · 5/2 

PSMTs explained KCF with strip diagrams and the definition of multiplication when 
explaining partitive division problems when prompted by the instructor. The instructor asked the 
PSMTs to find ways to explain 1/3 ÷ 2/5 = 1/3 · 5/2. The PSMTs leveraged the function of a 
partition to describe both the base unit and the group. To explain the rule, PSMTs used a third 
function for a partition—describing the partition with respect to the size of the group of the total 
amount of base units. Consider Elizabeth’s explanation for 1/3 ÷ 2/5 = 1/3 · 5/2. 

Elizabeth drew the strip diagram in Figure 3 to show her thinking for 1/3 ÷ 2/5 = ? and 
explained her thinking in whole-class discussion. She created a partitive division word problem 
“A third of a pound of chicken is enough for 2/5 of a bowl of chicken soup. How many pounds 
of chicken is in 1 whole bowl of chicken soup?” Elizabeth’s drew a strip diagram with the coarse 
partitive division form. First, she drew the strip on the left functioning as one of a group or one 
bowl of soup. She partitioned the strip into five parts and annotated her parts as 1/5 of the bowl 
and “colored in two of the fifths and called that 1/3 of a pound.” The set of partitions referred to 
the size of the group, i.e., 2/5 of the bowl, but also the corresponding quantity in base units i.e., 
1/3 pound of chicken. Using the function of the partition, she described one partition in two 
ways, as 1/5 of the bowl and 1/6 of a pound as seen in the middle of Figure 3. She iterated this 
part to build the whole bowl of soup and kept track of both quantities simultaneously to get 5/6 
pounds of chicken in the whole bowl similar to the previous partitive division coarse forms.  

To explain the equivalence 1/3 ÷ 2/5 = 1/3 · 5/2, Elizabeth described the situation 
considering two groups—the original group of one bowl and a new group of 2/5 of a bowl. 
Considering this new group, she explained the partition is also one-half of two-fifths of the bowl. 
This activity indicated a new function for a partition in addition to denoting a unit fractional 
amount of a group and base unit. She used the partition as a unit fractional amount of the size of 
the group of the total amount of base units in addition to one-fifth of the bowl and one-sixth of 
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the pound. In other words, one partition refers to 1/6 pound of chicken, 1/5 of the bowl, and one-
half of two-fifths of a bowl. She counted the five partitions in the whole strip and used the new 
function to get one bowl as five halves of two-fifths of the bowl.  

Using the new group, Elizabeth created the expression 1/3 · 5/2 following the definition of 
multiplication used in class. In the annotation, she explained there is one third pound of chicken 
in one of the new group, two-fifths bowl (amount in one group, N) and there are five-halves of 
the new group in the whole bowl of soup (number of groups, M). In summary, Elizabeth’s group 
changed from one bowl to two-fifths of a bowl when asked to explain KCF. Because of her new 
group, she added a new function to one partition. By using the class definition of multiplication, 
she annotated her thinking when she considered the new group to obtain the expression 1/3 · 5/2. 

Two reasons could explain the ontogenesis of the new function when solving partitive 
division problems. First, the instructor’s prompt of asking students to explain how to see 1/3 · 
5/2 in their drawing seemed to initiate the creation of the function. If the PSMTs were to simply 
solve the partitive division problem, the third function for the partition may not have emerged. 
Second, the nature of partitive division problems may afford a flexible choice of groups. 
Elizabeth retained 1/3 in base units and flexibly chose her group as either the whole group or 2/5 
of her group. In the problem Jack was solving, 1 1/2 and 1/3 both referred to base units and could 
potentially restrict a group to solely 1/3 of a base unit.  

Discussion and Conclusion 
The results of this study provide a characterization of how functions of inscriptions evolve 

over time. In this case, an evolving function for a partition in a strip allowed students to explain 
KCF. PSMTs’ explanations of the algorithm were rooted in two practices—using strip diagrams 
and a definition of multiplication. Strip diagrams were not templates with predetermined rules 
and meanings. In fact, most of the forms were rooted in the activity of the class and previous 
uses of the strip diagram. Initially, PSMTs used the strip diagram to solve measurement division 
problems. By changing the number choices within the problem, a new function of the partition of 
a strip diagram emerged which proved to be useful in subsequent solutions. The strip diagrams 
remained relatively similar when solving partitive division problems. When prompted to explain 
KCF, the students used the partition in a new way not previously used in solving problems.  

The results I report here provide future steps for both researchers and teachers. When 
analyzing inscriptions, researchers must attend and be explicit about the grain size of the 
inscription. By capturing two grain sizes, I was able to determine new uses for smaller 
inscriptions embedded in larger ones. Additionally, an analysis of inscription use in classrooms 
provides researchers with continuities and discontinuities between points in time in order to 
characterize teaching opportunities for new forms and functions to emerge. For teachers and 
teacher educators working with strip diagrams, activities wherein opportunities are provided to 
assign new functions to diagrams and its elements can equip students with ways of reasoning to 
be used in future tasks. Additionally, this report provides a case for using representations and 
how keeping coherent activity across multiple lessons provides students and prospective teachers 
with a powerful opportunity to learn mathematics.  
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