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Perseverance, or initiating and sustaining productive struggle in the face of obstacles, promotes 
making sense of mathematics. Yet, engaging in struggle can be grueling and is avoided for some 
students. I investigate the effect of scaffolding mathematics tasks on student perseverance. The 
results show how prompting secondary students to conceptualize a mathematical situation prior 
to problem-solving can encourage re-initiating and re-sustaining mathematically productive 
effort upon reaching an impasse. For learning mathematics with understanding, these findings 
suggest specific methods by which student perseverance in problem-solving can be supported. 
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Perseverance, or initiating and sustaining in-the-moment productive struggle in the face of 
one or more mathematical obstacles, setbacks, or discouragements, is a productive process by 
which understandings are developed. The idea of withstanding uncertainty and persevering past 
obstacles has long been recognized as a key process by which meanings can be formed (Dewey, 
1910; Polya, 1971). These ideas have been echoed for learning mathematics because students 
develop their understandings through productive struggle, or as they grapple with mathematical 
ideas that are within reach, but not yet well formed (Hiebert & Grouws, 2007). Additionally, 
reconciling moments of impasse, or times of significant uncertainty or discouragement, is critical 
for mathematics learning; the processes of struggle to approach, reach, and make continued 
progress despite a perceived impasse puts forth cognitive demands upon the learner that are 
conducive for development of conceptual ideas (VenLehn et al., 2003). As such, encouraging 
student perseverance has been made explicit as a mathematical and pedagogical demand for 
reform to help improve teaching and learning in mathematics education (NCTM, 2014).  

Supporting Student Perseverance with Mathematics Tasks 
Despite widespread educational support around the notion of struggling with challenging 

mathematics, both students and teachers can be reluctant to engage in and offer opportunities for 
perseverance (DiNapoli & Marzocchi, 2017). Consequently, several recent research efforts have 
sought to make explicit classroom practices that support or constrain student perseverance with 
challenging mathematics. Kapur (2009) found that providing consistent opportunities for 
students to persevere with unfamiliar mathematical tasks encouraged more variability in 
problem-solving strategies and greater learning gains, compared to providing consistent 
opportunities to engage with more procedural mathematics. All students, however, were unlikely 
to make additional attempts at solving a problem after reaching an impasse – an area of concern. 
Bass and Ball (2015) explored the nature of perseverance by implementing classroom tasks with 
familiar entry points yet a complex structure (i.e., low-floor/high-ceiling tasks). The researchers 
observed children leveraging these opportunities to persevere in their efforts despite challenge 
and seemingly make mathematical progress. The authors urge for future research to document 
the student perspective around such perseverance and if it was indeed productive. Warshauer’s 
(2014) exploration of productive struggle found that teachers used probing questions and 
encouragement as effective methods to nurture perseverance at times of immense student 
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struggle, but had great difficultly providing consistent support for all classroom students for 
logistical reasons. Noteworthy outcomes of these studies are ideas for how perseverance can be 
operationalized, and suggestions for future research to carefully study perseverance from the 
student point of view to better understand how it can be supported.  

Additionally, in a recent journal series on nurturing perseverant problem solvers, several 
teaching practices were identified and described as advantageous. These included encouraging 
independent student thinking by restricting teacher reassurance feedback during problem-solving 
(Bieda & Huhn, 2017), scaffolding students’ experiences with tasks through assessing questions, 
advancing questions, and judicious telling (Freeburn & Arbaugh, 2017), and scaffolding student 
engagement with mathematics through establishing a culture of guiding, exploratory self-
questioning (Kress, 2017). These studies offer insight into effective teacher moves for supporting 
student perseverance with mathematical tasks, but also call attention to logistical concerns about 
teachers providing targeted support for each and every student (Warshauer, 2014).  

One method to bypass these logistical concerns is to embed similar scaffold supports into the 
mathematical tasks themselves to better insure each student has an opportunity to engage with 
them. Anghileri (2006) explains different levels of scaffolds that can be applied to tasks to help 
students problem-solve. Most relevant to supporting student perseverance are embedded 
conceptual thinking scaffolds, which provide opportunities for students to conceptualize the 
situation by making connections from their prior mathematical knowledge to the task at hand and 
mapping out their own strategies for problem-solving. Such conceptualization scaffolds provide 
a structure for thinking and acting that can organize a problem-solving plan coming entirely from 
a student’s own ideas. Moreover, these scaffolds align with Polya’s (1971) stages of problem-
solving through which learners approach a task. While stages 3 and 4 help describe the actions of 
perseverance, it is stages 1 and 2 that can theoretically support those actions by encouraging 
students to conceptualize the mathematical situation at hand (see Figure 1).  
 

 
Figure 1. Scaffolding Perseverance in Problem-Solving 

There is ample work that shows how conceptualization scaffolds encourage initial 
engagement with challenging mathematical tasks: when students have opportunities to make 
connections to what they already know and record all of their ideas and plans prior to the actual 
execution of problem-solving strategies, they are better suited to initiate and sustain their 
engagement with the task (e.g., Hmelo-Silver & Barrows, 2006). However, it is less clear how 
conceptualization scaffolds affect student perseverance upon reaching a perceived impasse – a 
moment that could be leveraged for key conceptual learning gains (VenLehn et al., 2003). If 
scaffolds are to support student perseverance during problem-solving, they must not only support 
initiating and sustaining productive struggle at the outset, but also support re-initiating and re-
sustaining productive struggle after a student encounters a significant setback and is uncertain 
about how to continue. Therefore, via the student point of view, this study addressed how 
initially engaging with conceptualization scaffolds embedded at the start of low-floor/high-
ceiling mathematics tasks supported perseverance, especially after a perceived impasse. 
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Methods 
The participants for this study were 10 ninth-grade students from one suburban-area high 

school algebra class in a Mid-Atlantic state. These participants were purposely chosen to have 
demonstrated, via pretest, the prerequisite knowledge necessary to initially engage with each 
mathematical task included in the study.  

To collect data, each participant was observed engaging with five mathematical tasks, one 
per week. These tasks were rated as analogous, expert-level tasks by the Mathematics 
Assessment Project (MAP) because of their low-floor/high-ceiling structure, two objectives, and 
required generalization a mathematical situation. I also solicited independent mathematics 
education experts to rate the difficulty of these tasks; no differences were reported. Additionally, 
each participant was given an opportunity to reflect on task difficulty after their participation and 
reported no differences. Three tasks were randomly chosen to be scaffolded, and two tasks were 
randomly chosen to be non-scaffolded. The conceptualization scaffold embedded into the 
scaffolded tasks was “Before you start, what mathematical ideas or steps do you think might be 
important for solving this problem? Write down your ideas in detail.” Each participant worked 
on these set of five tasks in a random order. For context and to help follow the results in this 
paper, Cross Totals (a scaffolded task) asked students to generalize rules about how to arrange 
the integers 1-9 in a symmetric cross such that equal horizontal and vertical sums would be 
possible or not possible. Triangular Frameworks (a non-scaffolded task) asked students to 
generalize rules about how to build different triangles using the triangle inequality theorem if the 
longest side was even or odd in length. 

This study prioritized the student point of view of their perseverance, so I incorporated many 
opportunities for participants to make explicit their in-the-moment perspectives during problem-
solving. For each task and participant, I conducted think-aloud interviews while they worked on 
a task and video-reflection interviews immediately after they finished working. Additionally, 
once a participant had engaged with all five tasks (and thus all five think-aloud interviews and 
video-reflection interviews), I conducted an exit interview to give each participant an 
opportunity to comment on their overall experience working on the five tasks. In all, I conducted 
11 interviews with each participant, or 110 interviews in total for this study. 

To analyze the data, I developed the Three-Phase Perseverance Framework (3PP) (see Table 
1) that I used to operationalize the construct in this context. It was designed to reflect 
perspectives of concept, problem-solving actions, self-regulation, and making and recognizing 
mathematical progress. The 3PP considered first if the task at hand warranted perseverance for a 
participant (the Entrance Phase), considered next the ways in which a participant initiated and 
sustained productive struggle (the Initial Attempt Phase), and considered last the ways in which a 
participants re-initiated and re-sustained productive struggle, if they reached an impasse as a 
result of their initial attempt (the Additional Attempt Phase). A participant was determined to 
have reached a perceived impasse if they affirmed they were substantially stuck and unsure how 
to continue (VenLehn et al., 2003). Mathematical productivity was determined based on the 
extent to which the participant perceived themselves as better understanding the mathematical 
situation as a result of their efforts. To substantially capture the student point of view during 
engagement with tasks, coding decisions – or whether or not certain engagement constituted 
evidence of perseverance – depended on student cues from all interviews.  

Table 1: Three-Phase Perseverance Framework (3PP) 
Entrance Phase 

Clarity Objectives were understood 
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Initial Obstacle Solution pathway not immediately apparent 
Initial Attempt Phase 

Initial Effort Engaged with task 
Sustained Effort Used problem-solving heuristics to explore task 

Outcome of Effort Made mathematical progress 
Additional Attempt Phase (after perceived impasse) 

Initial Effort Engaged with task 
Sustained Effort Used problem-solving heuristics to explore task 

Outcome of Effort Made mathematical progress 
 

I used a point-based analysis with the 3PP to help inform deeper investigation of the ways in 
which participants persevered on scaffolded and non-scaffolded tasks. Each participants’ 
experiences with each task were analyzed using the framework, and each component in the 
Initial Attempt and Additional Attempt Phases were coded as 1 or 0, as affirming evidence or 
otherwise, respectively. Coding decisions were based off of interview quotes. For instance, 
participants earned a 1 for an Outcome of Effort component only if they affirmed perceiving 
mathematical progress; such decisions were not based on my own perceptions. Since each task 
had two objectives and six components per objective, there were 12 framework components to 
consider, per participant, per task. Thus, 3PP scores ranged from 12 to 0, depicting optimal to 
minimal demonstrated perseverance in this context, respectively. Participants did not need to 
completely solve the task to earn a 12, they just had to exhibit perseverance in all 3PP 
components. Once 3PP scores were determined for all participants’ experiences with all tasks, I 
conducted matched-paired t-tests to compare means of 3PP scores between work on scaffolded 
and non-scaffolded tasks. I also inductively coded interviews to uncover from the participant 
perspective why they persevered differently on scaffolded tasks compared to on non-scaffolded 
tasks. For trustworthiness, I enlisted help from two independent coders to analyze participant 
perseverance and their reasons for doing so. Our inter-rater reliability was 93%. 

Results 
Participants demonstrated higher quality perseverance when working on scaffolded tasks 

compared to on non-scaffolded tasks, in general, as evidenced by significantly greater mean total 
perseverance scores (MS = 8.73, SDS = 2.07, MNS = 6.00, SDNS = 2.60; t(9) = 6.816, p < .001) 
(see Table 2), as well as by participant reports. Differences in participants’ perseverance in the 
Additional Attempt Phase of the 3PP drove this general finding. Participants demonstrated 
higher quality perseverance after encountering a perceived impasse while working on scaffolded 
tasks compared to on non-scaffolded tasks. This was evident by significantly greater mean 
Additional Attempt Phase perseverance scores (MS = 3.67, SDS = 2.50, MNS = 1.60, SDNS = 2.58; 
t(9) = 4.083, p = .003) (see Table 2), as well as by participant reports. All participants affirmed in 
the Entrance Phase that they understood the objectives, but did not know how to solve each task. 
Also, all participants reported a perceived impasse as a result of their engagement with each task. 

Table 2: Three-Phase Perseverance Scores 
Total Perseverance Scores (Maximum of 12 Points) 

Task Type Mean n 
Scaffold 8.73 30 (3 tasks per 10 participants) 

Non-Scaffold 6.00 20 (2 tasks per 10 participants) 
Difference 2.73*** (p < 0.001) 
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Additional Attempt Perseverance Scores (Maximum of 6 Points) 
Task Type Mean n 
Scaffold 3.67 30 (3 tasks per 10 participants) 

Non-Scaffold 1.60 20 (2 tasks per 10 participants) 
Difference 2.07** (p < 0.01) 

 
The most prevalent difference between participants’ perseverance on scaffolded and non-

scaffolded tasks was whether and how they re-initiated and re-sustained a productive additional 
attempt at solving the problem. This means that while working on scaffolded tasks, participants 
often continued to productively struggle toward a solution after reaching a perceived impasse. 
This was not often the case after reaching an impasse while working on non-scaffolded tasks. 
When considering the specific Additional Attempt Phase components of re-initiating, re-
sustaining, and outcome of effort, participants working on scaffolded tasks demonstrated more 
aspects of perseverance compared to their work on non-scaffolded tasks (see Table 3).  

Table 3: Perseverance Frequencies in Additional Attempt Phase 
Component On Scaffolded Tasks On Non-Scaffolded Tasks 

Re-Initiated Effort 80% (24 out of 30) 35% (7 out of 20) 
Re-Sustained Effort 70% (21 out of 30) 35% (7 out of 20) 

Productive Outcome of Effort 57% (17 out of 30) 20% (4 out of 20) 
 

While talking about their engagement with the five problem-solving tasks in the study, all 
participants reported a general positive effect of their preliminary conceptualizing work 
prompted by the scaffolds on their mathematical engagement. Related, none of the participants 
engaged in any noticeable preliminary conceptualizing work on tasks that did not prompt it (i.e., 
the non-scaffolded tasks). Most of the participants explicitly mentioned in their interviews that 
the reason they did not engage in such preliminary work on non-scaffolded tasks was because the 
task did not specifically ask them to do so, even though they recognized such work was helpful 
to them. Several more specific themes emerged from the analysis of all interviews that helped 
explain why participants found it easier to persevere on scaffolded tasks compared to on non-
scaffolded tasks, especially after reaching an impasse (e.g., the scaffolds helped participants re-
visit a different idea, re-conceptualize the situation after a mistake, stay organized, and establish 
momentum to stay interested and engaged). 

Illustrative Case: James’s Experiences with a Scaffolded and Non-Scaffolded Task 
To illustrate how perseverance was better supported in scaffolded tasks compared to non-

scaffolded tasks, especially by helping participants make a quality additional attempt, consider 
participant James’s experiences with the Cross Totals task and Triangular Frameworks task. For 
James, Cross Totals was his fourth overall task and his third and final scaffolded task. Triangular 
Frameworks was his fifth and final task, the second of two non-scaffolded tasks. James passed 
through the 3PP Entrance Phase on both tasks by affirming he understood the objectives, but that 
had “no idea what to do.” James earned 3PP scores of 6 in his Initial and Additional Attempt 
Phases, resulting in a maximum overall score of 12 for his work on Cross Totals. On Triangular 
Frameworks, James earned 3PP scores of 6 and 0 in his Initial and Additional Attempt Phases, 
respectively, resulting in an overall score of 6, with the most notable difference being no 
additional attempt at solving after reaching an impasse on Triangular Frameworks.  

On Cross Totals, James began his work with the scaffold prompt, brainstorming about the 
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mathematics present, including ideas about the parameters of possible and impossible cross totals 
and that the middle number would be included in both horizontal and vertical sums. After 
recording his conceptualization ideas, James started his initial attempt at solving the problem 
stating he would try to “find some possible ones first, and those might connect to impossible 
ones.” He initiated and sustained his effort by guessing and checking different arrangements of 
integers along two lines representative of the lines of the cross, with one integer in the middle of 
both lines, and finding their sums. James noticed he was not having success with his plan, and 
affirmed he was at an impasse when he said “I’m stuck. This is harder than I thought.” During 
his video-reflection, James revealed “I felt stressful here because I never learned this and there 
was not any way I would know how to do it. I definitely panicked.” He did, however, believe he 
made some mathematical progress toward both objectives by figuring out “that you couldn’t just 
throw numbers in [the cross], you had to think about big numbers and small numbers.” 

After James revealed he was at an impasse during his think-aloud, he paused and admitted “I 
don’t know what to do now.” Frustrated, he started looking around at his papers in front of him 
and eventually pointed to his list of mathematical ideas under the scaffold prompt and said, 
“Well I haven’t used [the middle number] yet really. Something might be special about the 
middle number.” During his video-reflection, he explained his point of view during these 
moments, “I had kind of forgotten that I wrote all this stuff down. So I saw again that middle 
number idea. It was kind of like my life-preserver…it kept me from giving up.”  

When James revisited his original conceptualization of this problem, prompted by the 
embedded scaffold, he was propelled forward into making an additional attempt at solving. He 
thought-aloud about his plan to re-initiate his effort by studying the middle number in possible 
and impossible cross totals. He began re-sustaining his effort by changing his point of view, a 
different problem-solving heuristic, and examined the given example. He noticed that “this one 
has 9 in the middle to get a 27, they are balancing the big and small numbers... something about 
the evens and odds.” James wrote down his observations around the provided example and went 
on to explore his own examples (see Figure 2) and solve the problem by concluding and 
defending that “all solutions are odd, like the middle can’t be even to do a cross total.”  
 

 
Figure 2. James’s Work in Additional Attempt Phase on Cross Totals 

On Triangular Frameworks, a non-scaffolded task, James did not record his initial 
conceptualization of the mathematics in the task. He started his initial attempt toward both 
objectives by saying “I’ll try to find some other evens and odds that work out.” He initiated and 
sustained his effort by guessing and checking different triangles, the same initial heuristic he 
used in Cross Totals the week before. James examined the given example of six frameworks 
made with a longest side of 7m, and made mathematical progress when he built four frameworks 
with a longest side of 6m, writing “6-5-4, 6-5-3, 6-5-2, 6-4-3” on his paper. James concluded, “It 
looks like it’s one less for odd or two less for even, so the rules might be that.” Before James 
wrote his rules, he said, “Wait, let me look at something.” Clearly troubled, James went on to 
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write “5-4-3” and “5-4-2” on his paper. Then, seemingly ignoring what he had just done, he 
wrote his rules about the situation (rules that were incorrect), that if the longest side, c, is odd he 
can make c-1 frameworks, and if c is even he can make c-2 frameworks. Finally, he said “I’m 
done” and stopped working without making an additional attempt. 

While reviewing the video of the aforementioned moments during his first attempt at solving 
Triangular Frameworks, James admitted that he was, in fact, at an impasse during the latter 
stages of his first attempt. He said, “I was looking at if 5 was the longest side and my rule didn’t 
work! There should have been four of them but there were only two, 5-4-3 and 5-4-2…so I 
panicked and pretended like it worked.” When asked why he pretended, he said, “I panicked 
when it didn’t work. I didn’t even know where to start to fix it. So I really wanted to stop.” 
James’ experiences with Cross Totals and Triangular Frameworks are illustrative of the ways in 
which participants persevered while working on scaffolded tasks compared to on non-scaffolded 
tasks. Similarly to his engagement on Cross Totals, James leveraged his initial conceptualization 
work while working on the two other scaffolded tasks to help make a quality additional attempt 
at solving despite encountering frustrating impasses. On the other hand, similar to his work on 
Triangular Frameworks, James did not make an additional attempt at solving the other non-
scaffolded task; he cited overwhelming stress and feeling disorganized after encountering a 
setback as the primary reason he did not persevere. During his exit interview, James shared his 
perspective on how initially attending to conceptualizing the mathematical situation had a 
positive effect on his engagement for all scaffolded tasks: 

You have to have a plan of what you can try to do…Like the ones that made me write down 
what I thought first. That was really good. I used that a lot because sometimes you forget 
where you’re going in a problem, it’s like chaos – like on [Triangular Frameworks]. But on 
other ones, like [Cross Totals] I got stuck but had a way out of it. It seems easier with that 
because you don’t have to think of a way out when you’re mad or stuck or something.  
For James, and for almost all participants in this study, responding first to the 

conceptualization scaffold served as a “life-preserver” of sorts later, when participants were 
“panicked” and most tempted to give up. In these moments, the conceptual thinking recorded 
after engaging with the scaffold prompt acted as an organizational toolbox from which to draw a 
fresh mathematical idea, or a new connection between ideas, to use to help re-engage with the 
task upon impasse and to continue to productively struggle to make sense of the mathematical 
situation. Participants were persevering in problem-solving cyclically, with each additional 
attempt as a new opportunity to productively struggle supported by their own conceptual ideas 
(see Figure 3). Without recording their conceptual thinking on non-scaffolded tasks, participants 
felt lost and frustrated after a setback and often gave up without making an additional attempt at 
solving. 

 
Figure 3. Rethinking Scaffolding Perseverance in Problem-Solving 

Discussion and Conclusion 
Prior research on supporting student perseverance with mathematical tasks was limited to a 
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focus on the low-floor/high-ceiling structure of the task itself (e.g., Bass & Ball, 2015), teacher 
moves that nurtured independent student thinking (e.g., Freeburn & Arbaugh, 2017), and using 
conceptualization scaffolds to encourage initial engagement (e.g., Hmelo-Silver & Barrows, 
2006), but did not examine in detail the student perspective around moments when perseverance 
is necessary, especially upon perceived moments of impasse. Addressing classroom logistical 
concerns by embedding scaffolds directly into low-floor/high-ceiling tasks (Anghileri, 2006), 
this study extends past research by investigating from the student point of view how 
conceptualization scaffolds help students persevere re-initiate and re-sustain productive struggle 
after reaching an impasse. In sum, the results showed positive effects of prompting students to 
record their initial conceptualization of a mathematical situation prior to problem-solving, as 
evidenced by more and higher-quality perseverance on scaffolded tasks compared to on non-
scaffolded tasks. Arguably the most notable effect occurred when students reached an impasse 
while problem-solving, because often they were able to leverage their initial conceptualization to 
overcome that obstacle and continue to make progress. This implies such scaffolding can help 
students persevere past impasses and continue to make progress, if provided the opportunity to 
explore mathematics as a discipline of activity (Schoenfeld & Sloane, 2016). Further, greater 
efforts are needed to establish attending to conceptual thinking as a normative and welcomed 
school practice during all problem-solving, not just when prompted (Warshauer, 2014).  

Future work should seek to further validate the impact of conceptualization scaffolds on 
student perseverance after impasse. Especially important is collecting evidence to refute the 
alternative explanation that differences in task difficultly could explain these data reported here. 
Although I made several efforts to ensure each task was similarly difficult (vetted by MAP, 
analyzed by experts, rated by participants), a follow-up study could randomize the assignment of 
scaffolds to tasks for each participant to better control for this potential bias.  
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