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When people address early mathematics education, commonly they write or reference 
policies, standards, “scope and sequences” and curriculum, or documents on instructional 
strategies. These are important; however, we believe that the core consideration should be the 
nature of mathematics and the development of mathematics in children.  

An 80-year-old incident illustrates what we mean. A mother attending parents’ night asked 
Fawcett (1938), “How is Willie doing in mathematics?” Fawcett replied:  “Madam, you ask the 
wrong question.  You should ask, ‘How is mathematics doing in Willie?’” 

This is what we mean by the “nature of mathematics and the development of mathematics in 
children”: The mathematics that does well in Willie and all other children. We develop this 
position by describing learning trajectories and our theoretical framework for them, Hierarchic 
Interactionalism. 

Learning Trajectories: Construct and Theory 
Learning trajectories are a device whose purpose is to support the research-grounded 

development of a curriculum or other unit of instruction, as well as to conduct rigorous research 
in learning and teaching. The term “curriculum” stems from the Latin word for race course, 
referring to the course of experiences through which children grow. Thus, the notion of a path, or 
trajectory, has always been central to curriculum development and study. Simon stated that a 
“hypothetical learning trajectory” included “the learning goal, the learning activities, and the 
thinking and learning in which the students might engage” (Simon, 1995, p. 133). Building on 
Simon’s definition, emphasizing a cognitive science perspective and a base of empirical 
research, “we conceptualize learning trajectories as descriptions of children’s thinking and 
learning in a specific mathematical domain, and a related, conjectured route through a set of 
instructional tasks designed to engender those mental processes or actions hypothesized to move 
children through a developmental progression of levels of thinking, created with the intent of 
supporting children’s achievement of specific goals in that mathematical domain” (Clements & 
Sarama, 2004, p. 83). 

The name “learning trajectory” reflects its roots in a constructivist perspective. That is, 
although the name emphasizes learning over teaching, both these definitions clearly involve 
teaching and instructional tasks. Some appropriations of the learning trajectory construct 
emphasize only the “developmental progressions.” Although studying either psychological 
developmental progressions or instructional sequences separately can be valid research goals, 
and studies of each can and should inform mathematics education, we believe the power and 
uniqueness of the learning trajectories construct stems from the inextricable interconnection 
between these all three components, goal, developmental progression, and correlated 
instructional tasks. 

Our learning trajectories base goals on both the expertise of mathematicians and research on 
students’ thinking about and learning of mathematics (Clements, Sarama, & DiBiase, 2004; 
Fuson, 2004; National Governor’s Association Center for Best Practices & Council of Chief 
State School Officers, 2010; Sarama & Clements, 2009). This results in goals that are organized 
into the “big” or “focal” ideas of mathematics: overarching clusters and concepts and skills that 
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are mathematically central and coherent, consistent with students’ (often intuitive) thinking, and 
generative of future learning.  Our goals also include productive dispositions, including, 
curiosity, imagination, inventiveness, risk-taking, creativity, and persistence (National Research 
Council, 2001). With that in mind, we turn to the question of how children think about and learn 
mathematics. 

Research is reviewed to determine if there is a natural developmental progression (at least for 
a given age range of students in a particular culture) identified in theoretically- and empirically-
grounded models of children’s thinking, learning, and development (Carpenter & Moser, 1984; 
Griffin & Case, 1997). That is, researchers build a cognitive model of students’ learning that is 
sufficiently explicit to describe the processes involved in the construction of the mathematical 
goal across several qualitatively distinct structural levels of increasing sophistication, 
complexity, abstraction, power, and generality. 

The issue of what is meant by a natural developmental progression is sure to arise. We 
believe the research supports a synthesis of aspects of previous theoretical frameworks that we 
call Hierarchic Interactionalism (for a full explication, see Sarama & Clements, 2009). The term 
indicates the influence and interaction of global and local (domain specific) cognitive levels and 
the interactions of innate competencies, internal resources, and experience (e.g., cultural tools 
and teaching). Mathematical ideas are represented intuitively, then with language, then 
metacognitively, with the last indicating that the child possesses an understanding of the topic 
and can access and operate on those understandings. The tenets of Hierarchic Interactionalism 
therefore lay the foundation for the creation of both the developmental progression and 
instructional tasks of research-based learning trajectories.  

1. Developmental progression. Most content knowledge is acquired along developmental 
progressions of levels of thinking. These progressions play a special role in children’s 
cognition and learning because they are particularly consistent with children’s intuitive 
knowledge and patterns of thinking and learning at various levels of development,  

2. Domain specific progression. These developmental progressions often are most 
propitiously characterized within a specific mathematical domain or topic. Children's 
knowledge, that is, the objects and actions they have developed in that domain, are the 
main determinant of the thinking within each progression, although hierarchic 
interactions occur at multiple levels within and between topics, as well as with general 
cognitive processes (e.g., executive, or metacognitive processes, potentialities for general 
reasoning and learning-to-learn skills, and some other domain general developmental 
processes). See Figure 1 for an illustration. 

3. Hierarchic development. Development is less about the emergence of entirely new 
processes and products and more an interactive interplay among specific existing 
components of knowledge and processes. Also, each level builds hierarchically on the 
concepts and processes of the previous levels. The learning process is more often 
incremental and gradually integrative than intermittent and tumultuous. A critical mass of 
ideas from each level must be constructed before thinking characteristic of the subsequent 
level becomes ascendant in the child’s thinking and behavior. Successful application 
leads to the increasing use of a particular level. However, under conditions of increased 
task complexity, stress, or failure this probability level decreases and an earlier level 
serves as a fallback position. 

4. Co-mutual development of concepts and skills. Concepts constrain procedures, and 
concepts and skills develop in constant interaction. 
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5. Initial bootstraps. Children have important, but often inchoate, premathematical and 
general cognitive competencies and predispositions at birth or soon thereafter that 
support and constrain, but do not absolutely direct, subsequent development of 
mathematics knowledge. 

6. Different developmental courses. Different developmental courses are possible within 
those constraints, depending on individual, environmental, and social confluences.  

7. Progressive hierarchization. Within and across developmental progressions, children 
gradually make connections between various mathematically-relevant concepts and 
procedures, weaving ever more robust understandings that are hierarchical in that they 
employ generalizations while maintaining differentiations. 

8. Consistency of developmental progressions and instruction. Instruction based on learning 
consistent with natural developmental progressions is more effective, efficient, and 
generative for the child than learning that does not follow these paths. 

9. Learning trajectories. A particularly fruitful instructional approach is based on 
hypothetical learning trajectories. Curriculum developers design instructional tasks that 
include external objects and actions that mirror the hypothesized mathematical activity of 
children as closely as possible. These tasks are sequenced, with each corresponding to a 
level of the developmental progressions, to complete the hypothesized learning trajectory. 
Specific learning trajectories are the main bridge that connects the "grand theory" of 
hierarchic interactionalism to particular theories and educational practice. 

10. Instantiation of hypothetical learning trajectories. Hypothetical learning trajectories must 
be interpreted by teachers and are only realized through the social interaction of teachers 
and children around instructional tasks.  

For example, consider one goal regarded as important in all standards documents: young 
children should learn to be competent in whole number, including meaningful verbal and object 
counting and the application of counting to solve a variety of arithmetic problem types. The 
developmental progressions for each of these learning trajectories are sampled in the left column 
of Figure 1. The second column provides an example of children’s behavior and thinking for 
each level. The third column presents an example of an instructional task designed to catalyze 
that level of thinking. 

In summary, learning trajectories describe the goals of learning, the developmental 
progression through which children pass, and the learning activities in which students might 
engage. The source of the developmental progressions— the thinking and learning processes of 
children at various levels—are extensive research reviews and empirical work that cannot be 
presented here due to space constraints. Also beyond the scope of this chapter are the complex, 
cognitive actions-on-objects that underlie the LTs (see Sarama & Clements, 2009). Here we will 
provide one illustration of both cognitive actions-on-objects and how different trajectories grow 
not in isolation, but interactively.  

Consider learning a critical competence—counting on, used especially at the Counting 
Strategies level in Figure 1b. Children need to develop competencies from three trajectories: 
counting (Fig. 1a), subitizing (not shown, but see Clements & Sarama, 2009; Sarama & 
Clements, 2009), and the addition and subtraction trajectory (Fig. 1b) to learn to count on 
meaningfully. From the counting trajectory, they learn to count forward from any number. Then 
they learn to understand explicitly and apply the idea that each number in the counting sequence 
includes the number before, hierarchically. That is, 5 includes 4, which includes 3, and so forth. 
From the subitizing trajectory they quickly learn to recognize the number of—not just visual 
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sets, but also rhythmic patterns. From the addition and subtraction trajectory, children learn to 
interpret situations mathematically, such as interpreting a real-world problem as a “part-part-
whole” situation. They also learn to use counting to determine what is missing. The creative 
combination of these developments allows them to solve meaningfully problems such as, “You 
have three green candies and six orange candies. How many candies do you have in all?” by 
counting on. They understand that these numbers are two parts and that they need to find the 
whole. They also understand that the order of numbers does not matter in addition. They know, 
in practice, that the sum is the number that results by, starting at the first number and counting on 
a number of iterations, equal to the second number. They can use counting to solve this, starting 
by saying “siiiiix…” because they understand that word can stand for the counting acts from 1 to 
6 (because 6 includes 5…). They know how many more to count because they use the subitized 
“rhythm of three” “Du de Du” (“Doo – Day – Doo”)  “seven (du…), eight (day…), nine (du)—
nine!”  

Consider Justin, who participated in the successful scale-up of the learning-trajectories-based 
Building Blocks curriculum (Clements, Sarama, Spitler, Lange, & Wolfe, 2011). At pretest, he 
operated at the Reciter level of counting, as he verbally counted correctly but when counting toy 
bananas, broke one-to-one correspondence as he counted a space between the bananas. He did 
not solve any arithmetic problems. After 7 months moving through the learning trajectories for 
counting, subitizing, and the counting-based addition and subtraction trajectories (among others), 
Jason showed remarkable growth. He counted up to 30 randomly-arranged objects accurately 
and could verbally count up or down from any number in that range. In arithmetic, he solved a 
variety of problems. For “…you have 3 candies and I gave you 2 more; how many do you 
have?” Justin put out 3 fingers, then 2 more, and then said, “Five. I was just counting but no 
words” (i.e., he didn’t count out loud). Later, , shown 6 blocks, which were then covered with a 
cloth, and 4 secretly removed, leaving 2, he said  “Two. There were six.” “So, how many am I 
hiding?” Justin quickly counted the two and then counted, pointing to the table and said, “Four.” 
These solutions suggest he was now operating at the Counting Strategies level of arithmetic. 

a. Counting 
Developmental Progression Example Behavior Instructional Tasks 

Reciter Verbally counts with 
separate words, not necessarily 
in the correct order. 

Count for me. 
 “one, two, three, four, 

six, seven.” 

Provide repeated, frequent 
experience with the counting 
sequence in varied contexts.  

 

Corresponder Keeps one-to-
one correspondence between 
counting words and objects 
(one word for each object), at 
least for small groups of objects 
placed in a line.  

Counts: 
  ✰ ✰  ✰   ✰ 
“1,   2,   3,   4” 

But answers the 
question, “How 
many?” by re-counting 
the objects or naming 
any number word. 
 

Kitchen Counter Students click on 
objects one at a time while the 
numbers from one to ten are counted 
aloud.  
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Counter (Small Numbers) 
Accurately counts objects in a 
line to 5 and answers the “how 
many” question with the last 
number counted. 

Can you count these? 
  ✰ ✰  ✰   ✰ 
“1,   2,   3,   4… four!” 

 

How Many? Tell students you have 
placed as many cubes (3, hidden) in 
your hand as you can hold. Ask 
them to count with you to see how 
many. Take out one at a time as you 
say the number word (so, when they 
say “two” they see two). Repeat the 
last counting number, “three,” 
gesturing in a circular motion to all 
the cubes, and say “That’s how 
many there are in all.” 
 

Counter and Producer (10+) 
Counts and counts out objects 
accurately to 10, then beyond.  

Counts a scattered 
group of 19 chips, 
keeping track by 
moving each one as 
they are counted. 

 

Road Race Board game. 

Counter from N (N+1, N-1) 
Counts verbally and with 
objects from numbers other 
than 1 (but does not yet keep 
track of the number of counts).  

Asked to “count from 5 
to 8,” counts: 

“5, 6, 7, 8!” 

Determines numbers 
just after or just before 
immediately. 

 

One more!. Have the children count 
two objects. Add one and ask, “How 
many now?” Have children count on 
to answer. Add another and so on, 
until they have counted to ten. 

 

b. Arithmetic 

Developmental Progression Example Behavior Instructional Tasks 

Small Number +/- Finds sums 
for joining problems up to 3 + 2 
by counting-all with objects. 

 

Asked, “You have 2 
balls and get 1 more. 
How many in all?” 
counts out 2, then 
counts out 1 more, 
then counts all 3: “1, 
2, 3, 3!.” 

Finger Word Problems Tell children to 
solve simple addition problems with 
their fingers.  

 

Find Result +/- Finds sums by 
direct modeling, counting-all, 
with objects. 

 

Asked, “You have 2 
red balls and 3 blue 
balls. How many in 
all?” counts out 2 red, 
then counts out 3 
blue, then counts all 

Places Scenes (Addition)—Part-part-
whole, whole unknown problems. 
Children play with toy on a background 
scene and combine groups. 
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5. 

Counting Strategies +/- Finds 
sums for joining (you had 8 
apples and get 3 more…) and 
part-part-whole (6 girls and 5 
boys…) problems with finger 
patterns and/or by counting on.  

Counting-on. “How 
much is 4 and 3 
more?” 
“Fourrrrr…five, six, 
seven [uses rhythmic 
or finger pattern to 
keep track]. Seven!” 

 

How Many Now?   Have the children 
count objects as you place them in a 
box. Ask, “How many are in the box 
now?” Add one, repeating the question, 
then check the children’s responses by 
counting all the objects. Repeat, 
checking occasionally.  

 

Figure 1. Selected Levels/Descriptions from the Learning Trajectories for Counting and 
counting-based Arithmetic (these and other figures adapted from Clements & Sarama, 2014) 
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