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Abstract 

 A pretest-training-posttest design assessed whether training to improve spatial skills also 

improved mathematics performance in elementary-aged children.  First grade students (mean age 

= 7 years, n = 134) and sixth grade students (mean age = 12 years, n = 124) completed training in 

1 of 2 spatial skills—spatial visualization or form perception/VSWM—or in a nonspatial control 

condition that featured language arts training.  Spatial training led to better overall mathematics 

performance in both grades, and the gains were significantly greater than for language arts 

training.  The same effects were found regardless of spatial training type, or the type of 

mathematics tested. 
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 Adults who perform better on spatial tasks also perform better on tests of mathematics 

(see Mix & Cheng, 2012, for a review).  There is reason to believe this relation is built on shared 

processing between the two domains.  Recent factor analyses have demonstrated that spatial skill 

and mathematics are separate but highly correlated domains during the elementary years, even 

when general cognitive ability and executive function are included (Hawes, Moss, Caswell, Seo, 

& Ansari, 2019; Mix et al., 2016, 2017).  Similarly, longitudinal studies have shown that spatial 

ability at one age is a significant predictor of mathematics achievement at another (Lauer & 

Lourenco, 2016; Verdine et al., 2014; Wolfgang, Stannard & Jones, 2001, 2003).  Further 

evidence comes from studies showing that similar neural circuits are activated when people 

process spatial and numerical information (Hubbard, Piazza, Pinel, & Dehaene, 2005; Walsh, 

2003), and that performance in mathematics suffers if visuospatial processing is disrupted (e.g., 

Dehaene, Bossini, & Giraux, 1993; McKenzie, Bull & Gray, 2003).  The nature of the shared 

processing driving these effects remains unknown, but some theorists have suggested the two 

domains are related because mathematics, along with other complex concepts, is mentally 

represented in a spatial format (Barsalou, 2008; Lakoff & Núñez, 2000; Lohman, 1996). 

 If the processes involved in spatial and mathematical thought are overlapping, it is 

reasonable to predict that training in one domain would lead to improvement in the other, as 

many have suggested (Lubinski, 2010; Levine, Foley, Lourenco, Ehrlich & Ratliff, 2016; 

Newcombe, 2010, 2013; Uttal et al., 2013; Verdine, Irwin, Golinkoff, & Hirsh-Pasek, 2014).  

Very few studies have evaluated this possibility, and so far, the results have been mixed.  On one 

hand, several studies have shown positive effects of spatial training on numeracy and 

mathematics performance in both early (Cheng & Mix, 2014; Hawes, Moss, Caswell, Naqvi & 
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Mackinnon, 2017) and later elementary aged students (Lowrie, Logan & Ramful, 2017).  In these 

studies, training has focused primarily on mental rotation and spatial visualization, with the 

amount of training varying from one 40-min session (Cheng & Mix, 2014) to several hours 

spread over 32 weeks (Hawes et al., 2017).  Other studies, while not directly related to 

mathematics outcomes, have shown similar improvement among undergraduates taking science 

and engineering coursework following spatial visualization training (Miller & Halpern, 2013; 

Sorby, 2009; Sorby, Casey, Veurink & Dulaney, 2013).  Yet others have reported positive effects 

on mathematics scores in children following mixed training that included, but was not limited to, 

spatial skills such as mental rotation (Nelwan & Kroesbergen, 2016).  Taken together, these 

studies indicate a potential benefit to mathematical performance from spatial training.  On the 

other hand, some attempts to improve mathematics performance with spatial training have failed 

(Cornu, Schiltz, Pazouki & Martin, 2017; Hawes, Moss, Caswell, & Poliszczuk, 2015; Rodan, 

Gimeno, Elosua, Montoro, & Contreras, 2019; Xu & LeFevre, 2016).  In these studies, 

improvement in spatial skill was achieved, but there was not transfer to numeracy or 

mathematics.  Thus, it remains an open question whether, and under what conditions, spatial 

training improves mathematics performance.  The main aim of the present study is to address this 

crucial question. 

 Related to this, aim it is not clear why the existing studies have obtained discrepant 

findings.  One possible explanation could be that processing differences in the mathematics 

content at different ages render spatial training more or less effective.  We know that two of the 

studies for which spatial training effects were not found (Cornu et al., 2017; Xu & LeFevre, 

2016) focused on younger children than had been tested in studies showing positive training 

effects (i.e., 3- to 5-year-olds vs. 7-to-12-year-olds).  However, Hawes et al. (2015) tested 6- to 
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8-year-olds and similarly failed to show transfer to mathematics, so age differences may not fully 

explain these discrepancies.  That said, this pattern is also consistent with a developmental trend 

in which spatial training is least effective among preschool children, has mixed effects in the 

early elementary grades, and is more reliably effective in late elementary grades.  Because none 

of the existing studies have provided a direct comparison between children at various age points, 

it is difficult to draw firm conclusions.  The present study addresses that gap by comparing 

children’s responses to the same spatial training types in two age groups (first and sixth grade). 

 Secondary to the aim of determining whether spatial training improves performance in 

mathematics, was the aim of expanding the range of spatial skills and mathematics outcomes 

included so as to test specific predictions based on the particular ways in which spatial thought 

might be recruited to support mathematical performance.  Although the existing studies differed 

in some ways, they shared several commonalities that limit the range of possible interpretations.  

For example, all of the existing studies provided training on spatial visualization and 

transformation (and not other spatial skills), yet some but not all studies demonstrated significant 

transfer to mathematics.  One interpretation of this pattern may be that spatial visualization is the 

most potent possible spatial training, but even it does not yield consistent improvement in 

mathematics.  Alternatively, this pattern may indicate that spatial visualization is not the most 

potent spatial training, and that training other spatial skills that are also highly related to 

mathematics performance, such as visual spatial working memory (e.g., Geary, Hoard, Byrd-

Craven, Nugent & Numtee, 2007), may yield even stronger and more consistent training effects.  

Similarly, the existing studies have all used arithmetic, numeracy, or both as their mathematics 

outcomes.  It is possible that certain mathematics outcomes are more sensitive to spatial training 

than those that have been used in existing studies, and these might yield stronger or more 
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consistent training effects as well.  For example, tasks that involve construction of a mental 

model (e.g., interpreting and solving word problems), or those that require attention to spatial 

relations in written symbols (e.g., reading algebraic equations) may be more sensitive to 

differences in spatial skill than tasks that require computation, particularly if this computation is 

based on rote procedures.  An advance of the present study is that we systematically varied both 

spatial training type and mathematics outcomes to provide direct comparisons with the goal of 

obtaining a more comprehensive and nuanced account of possible spatial training effects. 

The Factor Structure of Spatial Skill and Mathematics 

 The design of the present study was guided by recent findings related to the factor 

structure of spatial skill and mathematics (Mix et al., 2016, 2017).  This research indicated that 

space and mathematics form distinct, unidimensional, but highly correlated factors.  Based on 

this finding, one might expect that training in any spatial skill at any developmental stage should 

lead to improvement on any mathematics outcome.  However, the training studies attempted so 

far suggest that this straightforward hypothesis is not the whole story.  The pattern of positive 

effects under some conditions and a lack of transfer in others show there is no guarantee that 

improvement in spatial skill will transfer to mathematics, and further suggest that the underlying 

mechanism by which the two domains are related in development may vary, with different 

relations between these domains at different developmental time points. 

 Consistent with this notion, Mix et al. found that within the two factor structure, certain 

subskills showed stronger cross-domain relations than others.  In particular, these studies showed 

an age-related difference in the specific spatial tasks that explain the most variance in 

mathematics scores.  In multiple regressions carried out at each grade level, in which the 

individual spatial tasks were regressed against the mathematics factor, Mix et al. (2016) found 
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that mental rotation and block design accounted for more variance in mathematics than any other 

spatial task in kindergarten.  However, in sixth grade, the most predictive spatial tasks were 

visual-spatial working memory (VSWM) and figure copying (as measured by the Test of Visual-

Motor Integration, or VMI).  These age-related patterns were also reflected in the cross-domain 

loadings of spatial skills onto the mathematics factor in an exploratory factor analysis.  That is, 

mental rotation and block design significantly loaded onto both the spatial and mathematics 

factors in kindergarten, whereas VSWM and VMI significantly loaded onto both the spatial and 

mathematics factors in sixth grade.  Interestingly, all of these tasks were significant predictors of 

mathematics in third grade, and at lower and roughly equal levels, suggesting that third grade is a 

developmental transition period with multiple weak relations among spatial and mathematical 

skills instead of one dominant pattern. 

 Although these patterns emerged from cross-sectional evidence, they suggest an age-

related shift wherein younger students’ mathematical thinking relies more heavily on spatial 

visualization than that of older students, perhaps because so much of the mathematics young 

children must learn requires them to interpret new symbols and think about the transformation 

that these symbols require.  For example, learning the meanings of single-digit numbers likely 

involves mappings from written or spoken numerals to groups of objects or positions on a 

number line.  Spatial visualization may be particularly important at a time when children are 

actively involved in building representations of set sizes that correspond to various numerical 

symbols – that is, at a time when they are learning to understand and internalize mappings 

between number symbols and their meanings (i.e., symbol grounding) and when they are 

learning to interpret and solve calculations and word problems by constructing mental models of 

these problems. 
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 In contrast, sixth grade students have likely moved beyond the grounding required to 

interpret basic mathematics symbols.  Yet, spatial skill may still impact mathematics 

performance insomuch as it supports the ability to decode subtle differences in symbolic marks 

and spacing (i.e., symbol decoding).  For example, when children are solving algebraic 

equations, they must attend to parentheses, the positions of exponents, and so forth.  Indeed, 

much of the mathematics encountered in middle school requires complex symbol decoding as 

well as notationally complex multistep problem-solving, and this difference in mathematics 

demands might explain why there were stronger relations of VMI and VSWM to mathematics at 

this age. Note that although there are various ways to measure VSWM, our previous work 

probed memory for object locations on a grid, a skill that could be plausibly linked to tracking 

symbolic marks in complex algorithms, such as long division or algebra. 

 If these specific predictions hold true, then we should observe different training effects at 

different ages.  For example, children in the early grades may be more responsive to training that 

targets spatial visualization, whereas older children may be more responsive to training that 

targets form perception or visual-spatial working memory (VSWM).  These effects may be 

particularly evident on mathematics outcome measures that are sensitive to these respective 

spatial skills.  That is, younger children trained on spatial visualization might demonstrate 

particularly strong effects on symbol grounding tasks such as calculation, place value, and 

simple word problems.  However, older children are more likely to show a significant response 

to form perception/VSWM training compared to younger children because of their level of 

mathematical proficiency and the task demands of mathematics at that grade level.  These 

responses to form perception/VSWM training may be more evident on symbol decoding tasks 

that likely require interpreting the spatial positions of mathematics symbols and place-keeping. 
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The Present Study 

 The present study used a pretest-training-posttest design to test the predictions outlined 

above.  First and foremost, our aim was to test whether spatial training improves mathematics 

performance at these grade levels, and elucidate why previous studies have reported discrepant 

results.  As a secondary aim, our design leverages recent insights into the factor structure of 

spatial skill and mathematics to expand the range of spatial skills and mathematics outcomes to 

test more specific predictions based on the particular ways in which spatial thought might be 

recruited to support mathematical performance.  This is the first study to examine and compare 

these potential differences both within and across age groups. 

 We provided two kinds of spatial training (i.e., spatial visualization or form 

perception/VSWM) to children in two age groups (i.e., first and sixth grade), and assessed all 

children on a range of mathematics outcomes that tap into our hypothesized relations.  We 

included tasks that likely require symbol grounding as well as those that likely require careful 

symbol decoding and place-keeping.  At each grade level, we also included a control group, that 

engaged in language arts activities instead of spatial training, and completed all the same pre- 

and posttests as the training groups in order to assess whether either or both training conditions 

led to more mathematics learning over time than business-as-usual mathematics instruction. 

Method 

Participants 

 A total of 258 first and sixth grade children participated.  An a priori power analysis 

indicated that a sample size of 222 (i.e., 111 children per grade) would be sufficient to detect a 

medium effect (𝜂"= .14, as Cheng & Mix, 2014 found) between conditions at the .90 level (Faul, 

Erdfelder, Buchner & Lang, 2009).  First and sixth grade students were targeted as these age 
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groups represented the two ends of the developmental trends reported by Mix et al. (2016).  

Note, however, that whereas Mix et al. had studied kindergarten students, we recruited first grade 

students because this allowed us to test a wider range of mathematics skills. 

 University-approved consent forms were distributed to 1,465 families whose children 

attended school in five different school districts in Michigan and Illinois.  Schools were situated 

in both rural (n = 5) and urban (n = 3) areas.  The median household income for these 

communities was $41,283 and the racial/ethnic distribution was 61.2% White, 23.7% Black, 

12.5% Hispanic or Latino.  Parents signed and returned 321 consent forms.  Out of the 321 

children who consented, 44 children were pretested but did not complete the training sessions 

due to excessive student absences or scheduling problems with the school or summer camp (1st, 

n = 14; 6th, n = 30).  An additional 19 sixth grade students were excluded and replaced when it 

was discovered that an incorrect form of the posttest had been administered.  The final sample of 

258 children included 134 children in first grade (49 boys and 85 girls, mean age = 7.07, SD = 

.59) and 124 children in sixth grade (61 boys and 63 girls, mean age = 12.02, SD = .52).  Note 

that only children in the final sample were included in any of the analyses.  Of these, 59% of the 

families reported their incomes and ethnicities on an optional questionnaire attached to the 

consent form (n = 151, 1st, n = 70; 6th, n = 81).  For this subsample, the median household 

income was between $50,000 and $74,999, and the racial/ethnic distribution was 92% White, 7% 

Hispanic, 5% mixed, and less than 1% Black.  The socioeconomic distribution of the remaining 

41% is unknown. 

 Children in each grade were randomly assigned to one of three conditions: (1) Spatial 

visualization training (first grade: n = 47 (19 boys and 28 girls), mean age = 7.11, SD =.63; sixth 

grade: n = 41 (19 boys and 22 girls), mean age = 11.95, SD = .49); (2) Form perception/VSWM 
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training (first grade: n = 44 (16 boys and 28 girls), mean age = 7.04, SD = .60; sixth grade: n = 

41 (21 boys and 20 girls), mean age = 12.09, SD = .51); and (3) Language arts control (first 

grade: n = 43 (14 boys and 29 girls), mean age = 7.04, SD = .54; sixth grade: n = 42 (21 boys and 

21 girls), mean age = 12.03, SD = .51). 

Procedure 

 Children were pretested using seven assessments that measured spatial and mathematics 

skills (see below for details).  Testing took place in two to four 30-min sessions distributed over 

the course of one week.  The number of test sessions depended upon the response pace and 

attention span of individual children.  As noted below, five tests were administered in small 

groups (n = 3-6 for first grade students and n = 6-9 for sixth grade students) and two were 

administered individually. The test order was blocked and counterbalanced by individual versus 

group administration using a Latin square design.  Furthermore, the order of the tests within each 

block varied randomly between pretest and posttest sessions. 

Following the pretest sessions, children completed six 30-min training sessions spread 

over a period of 3 to 4 weeks.  The pre- and posttests were administered within 2 days of the start 

and ending of the training sessions, respectively; however, tests were not administered on the 

same day as a training session.  To ensure that all children received the same total duration of 

training, both the number and length of the training sessions were fixed. If children reached 

ceiling on accuracy before the six sessions were finished, they were encouraged to improve their 

speed on each task.  The training tasks were designed to be equivalent in terms of amount of 

experimenter instruction.  Unless children reached ceiling, there was not a reaction time (RT) 

requirement for either training and because the trainings were strictly spatial, they did not 

overlap with the mathematics outcomes. The training tasks and some of the assessments were 
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presented using Keynote interactive slide presentations on iPads.  The LED-backlit glossy 

widescreen iPads (version 2, 1GHz dual-core Apple A5 processor) had a diagonal screen size of 

9.7-inches.  The Multi-Touch display with IPS technology had a 1024-by-768-pixel resolution at 

132 pixels per inch.  For some training tasks (see below), feedback was also given using 3-

dimensional objects. 

Spatial visualization training.  Training consisted of three task types: (a) Thurstone's 

(1974) part-whole object completion task, (b) mental rotation, and (c) tangram puzzles.  The 

three tasks were interleaved within training sessions using a randomized block presentation.  

Each training task was introduced with a practice item, followed by four training trials that were 

ordered from easiest to hardest based on the results of previous work where possible (e.g., Mix et 

al., 2016).  The same training trial types were repeated at each of the six sessions, but the specific 

objects varied.   

For each trial of Thurstone's part-whole object completion task (Thurstone, 1974), a 

square appeared on the left side of the screen with a portion missing.  Four choice shapes 

appeared on the right side of the screen.  One choice was a shape that could be rotated to 

complete the square and three choices were distractors that could not be rotated to fit the empty 

space.  Children indicated their choices by pointing.  If children chose the correct shape, then a 

smiley face appeared on the screen with the words, “That's correct.  Let's check our answers.”  If 

children were incorrect, they were told, “That's incorrect.  Let's check our answers.”  To check 

their answers, children were given cardstock cutouts of the shapes from the training trial that 

could be rotated and moved into position like puzzle pieces.  Children were instructed to first 

check the shape they chose, and then check each of the others to determine whether or not it 

could complete the stimulus square.  The trials presented to first grade students followed 
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Thurstone's original procedure, in which the choice shapes were rotated clockwise 90 degrees 

relative to the stimulus space.  To increase the difficulty of the task for sixth grade students, the 

choice shapes were rotated 45 degrees instead, and half of them were rotated counterclockwise 

relative to the target. 

For mental rotation training trials, two variations of Vandenberg and Kuse's (1978) 

mental rotation task were used.  In the first-grade version (Novack, Brooks, Kennedy, Levine, & 

Goldin-Meadow, 2013), small groups of children were shown four figures and asked to indicate 

which two were the same as the target.  The two matching items could be rotated in the picture 

plane to overlap the target, whereas the two foils could not because they were mirror images of 

the target.  The figures were either letters, letter-like shapes, or animals.  At each session, the 

task was demonstrated with four practice items presented on an iPad screen.  For these practice 

trials, children were shown animations with the correct answers rotating to match the target.  On 

the training trials, children first responded by pointing to the two figures they thought were 

matching.  Then they were instructed to check the accuracy of their responses by rotating into 

position paper circles that had the choice figures printed on them.  The experimenter scaffolded 

point-by-point comparisons between the target and the choice stimuli.  In the sixth-grade version 

(Neuberger, Jansen, Heil, & Quaiser-Pohl, 2011), children were shown perspective line drawings 

of three-dimensional block constructions, two of which could be rotated in the picture plane to 

match the target, based on the Shepherd-Metzler three-dimensional cube task.   At the first 

session, the task was explained and there was a demonstration item for which children saw a 

perspective drawing of a three-dimensional block construction rotated into position to match the 

two correct choices.  During the training trials, children first indicated which two choice stimuli 
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matched the target.  Then they were instructed to check the accuracy of their responses using 

three-dimensional cube models of the stimuli. 

For the tangram puzzles, children were asked to cover a two-dimensional figure using 

seven geometric tiles that differed in size and shape, including two small triangles, one medium 

triangle, two large triangles, one square, and one parallelogram.  Training sessions began with a 

practice trial for which the shapes of the individual tangram pieces in the solution were outlined 

in black within the larger stimulus figure.  Children then completed four training trials (i.e., find 

two solutions for each of two stimulus figures) on which outlines of pieces were not provided.  

Children were given two minutes to cover each stimulus figure.  If a child had not succeeded in 

finding a solution after two minutes, the experimenter provided assistance.  Following joint 

completion of the trial, the experimenter removed the pieces covering the figure and instructed 

children to reproduce the same configuration independently.  First grade students responded to 

three stimulus figures and generated two solutions for each.  Sixth grade students also generated 

two solutions for two of the stimulus figures, but to make the task more challenging, we asked 

them to provide a third solution for the third stimulus shape. 

Form perception/VSWM training.  Training consisted of three task types: (a) VSWM 

(adapted from Kaufman & Kaufman, 1983); (b) Corsi Block Tapping Test (adapted from Corsi, 

1972), and (c) figure copying.  The three training tasks were presented in a randomized blocked 

order across sessions.  Within each training task, there were four trials presented in increasing 

order of difficulty. 

VSWM training trials were adapted from Kaufman and Kaufman (1983). On each trial, 

children were shown a 14 cm X 21.5 cm grid that was divided into squares (e.g., 3 X 3, 4 X 3, 

etc.), with drawings of objects displayed at random positions within the grid, but no lines 
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indicating the divisions.  On each trial, the stimulus display was left in full view for five seconds 

and then it was removed, at which time children indicated where the drawings had appeared by 

marking an "X" in the previously filled positions on a blank grid of the same size and shape.  The 

grids for the response items were marked with lines.  Stimulus displays were presented on an 

iPad and children made their responses in individual, paper test booklets.  An experimenter 

showed children the correct locations on the iPad screen following each response and then made 

point-by-point comparisons to the children’s responses.  Item difficulty was manipulated by 

adding more divisions to the grid (up to 5 X 5) and by adding objects (up to nine).  First grade 

students completed eight trials (four trials presented on 3 X 3 grids and four trials presented on a 

4 X 3 grid), and sixth grade students completed 12 trials (four of each presented on a 4 X 3 grid, 

a 4 X 4 grid, and a 5 X 5 grid respectively).  

For the Corsi Block Tapping Test, children were shown a sequence of blocks lighting up, 

and were asked to write numerals inside printed squares in a paper response booklet that 

represented the blocks, so as to reflect the correct sequence in which the blocks had lit up.  The 

displays consisted of nine disconnected blocks presented on an iPad screen.  The blocks lit up 

individually for one second each in a randomized order.  For each trial, the number of blocks 

lighting up increased by one until the end, with nine blocks lighting up.  Children were shown 

the correct locations on the iPad screen following each response, and the experimenter guided 

them to compare, block by block, the correct sequence on the screen to the written responses. 

The figure copying task was adapted from the Test of Visual Motor Integration (VMI; 

Beery & Beery, 2010).  On each trial, children saw a line drawing and their task was to copy the 

form in a box directly below the stimulus.  In first grade, at each training session, there were 

three trials and in sixth grade, there were nine trials.  We included more trials in the pool for 



16 

sixth grade students because they tended to respond more quickly than first graders.  However, 

the total number of sessions and the number of minutes per session were the same for both age 

groups.  After completing each drawing, children were shown examples of “good” and “not-so-

good” drawings of the form.  Children were asked to look closely and identify differences 

between the examples.  The experimenter scaffolded a comparison between the stimulus figure 

and the child’s drawing, and children were given instructions to help them make corrections.  

Figures were presented in a blocked random order at each training session.  A particular set of 

figures was not presented more than two times in this rotation.  If children drew a particular 

figure perfectly on the first trial, they were encouraged to reduce their response time on the 

second presentation.  First grade students found the two-dimensional figures challenging so they 

did not advance to three-dimensional figures; however, sixth grade students completed training 

trials with both two- and three-dimensional figures. 

Language activities control.  Children in the control group completed three nonspatial 

tasks in a randomized, blocked order across sessions.  The tasks included (a) crossword puzzles; 

(b) rhyming words; and (c) word search puzzles.  All training tasks were presented on iPads 

using age-appropriate apps, so the particular stimuli differed between first and sixth grade, but 

the training tasks did not.  As for the spatial training conditions, children were given feedback on 

the correctness of their responses and assistance generating correct responses for cases when 

their responses were incorrect. The duration of each session was equated to those in the spatial 

training conditions (i.e., six 30-min sessions). 

Measures 

Assessments included one nontrained spatial test (WISC-IV Block Design) and six 

mathematics tests (notational spacing, place value, word problems, calculation, missing 
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terms/algebra problems, and number line estimation).  The procedures for administering each 

measure are described below.  Reliabilities for standardized tests are reported from the published 

test manuals, except for cases in which we created alternate forms (see below).  In those cases, 

and for experimenter generated tests, reliabilities were estimated using Cronbach's alpha 

calculated from the pretest data.  Posttests were administered within one week of the final 

training session.  To reduce test-retest effects, children completed one of two test forms for each 

mathematics test.  These forms included essentially the same items but with the specific numeric 

values changed (e.g., three-digit addition without carrying in both versions, but using different 

specific quantities in each).  Note that retesting effects have been shown to occur in standardized 

assessments for children for a variety of test-retest intervals (Canivez & Watkins, 1998, 1999; 

Hausknecht, Halpert, Di Paolo, & Gerrard, 2007; Ryan, Glass, & Bartels, 2010; Tuma & 

Applebaum, 1980).  More specifically, significant test-retest gains in spatial tasks have been 

noted (Uttal et al., 2013) and may be due to decreases in response times (Salthouse & Tucker-

Drob, 2008); however statistically significant differences on spatial tasks on the WISC-IV such 

as Block Design, are not consistently evident (Canivez & Watkins, 1998, 1999). Hence, we did 

not use different forms of this test as pre- and posttest. 

Block design (WISC-IV) (Wechsler et al., 2004).  On each trial, children were shown a 

printed figure comprised of white and red sections, and then produced a matching figure using 

small cubes with red and white sides.  The test was individually administered following the 

instructions in the WISC-IV manual.  Items ranged in difficulty and children completed different 

numbers of items depending on their basal and ceiling performance. The reliability coefficient 

reported in the WISC-IV manual for the Block Design subtest is between .83 and .87 depending 

on age group.   
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Place value.  Place value concepts were assessed in first grade students using a set of 20 

items that required them to compare, order, and interpret multidigit numerals (e.g., “Which 

number has an 8 in the ones place?”), as well as match multidigit numerals to their expanded 

notation equivalents (342 = 300 + 40 + 2).  Reliability on this experimenter-constructed measure 

was α =.85 for first graders.  Sixth grade students completed the Rational Numbers subtest from 

the Comprehensive Mathematics Abilities Test (CMAT; Hresko, Schlieve, Herron, Swain, & 

Sherbenou, 2003).  We considered this subtest a reasonable measure of place value 

understanding because more than half of the items focus on students’ understanding of multidigit 

whole numbers and decimal place value. The CMAT is standardized for the age range 7 to 19 

years of age and was administered to children in small groups.  Children were asked to compare, 

order, and interpret written numbers, but these included a mixture of multidigit numerals, 

fractions, and decimals. The reliability calculated from our pretest data was α =.86. 

 Word problems.  First grade students completed 12 word problems from the TEMA-3 

(Ginsburg & Baroody, 2003) (α =.86).  The test was administered in small groups (n = 3-6).  

Each problem was read aloud to ensure that reading ability did not influence problem solving 

scores.  Sixth grade students completed the Problem Solving subtest from the CMAT (α =.73 

calculated from our pretest data). 

Number line estimation (Booth & Siegler, 2006; Siegler & Opfer, 2003).  Children 

were given paper booklets with number lines printed on each page.  The number lines were 

marked with a numeral at each end (e.g., 0 and 100).  Children were shown a written numeral on 

an iPad screen and asked to mark where it would go on the number line. The particular numbers 

at the number line endpoints, and the range of stimulus values in between, varied by age group.  

Specifically, first grade students placed the numerals 4, 17, 29, 33, 48, 57, 72 and 96 on a 0-to-
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100 number line, and 3, 103, 158, 240, 297, 346, 391 and 907 on a 0-to-1000 number line.  Test-

retest reliabilities for these two tasks, based on correlations of the pretest and posttest scores for 

the control group, were r = .65 and r = .66, respectively.  Sixth grade students placed 1/19, 1/7, 

1/4, 3/8, 4/9, 1/2, 2/3, 7/9, 5/6, and 12/13 on a 0-1 number line (α = .70).  Sixth grade students 

also completed a 0-to-100,000 number line task but we did not include their results due to ceiling 

effects (i.e., 93% of children performed with almost perfect linearity).  Note that our analyses 

used the linearity of children’s responses rather than absolute distance to the target for several 

reasons.  Linearity captures internally consistent placements that may be otherwise incorrect (i.e., 

sets or responses that were linear relative to each other even if they were not correctly positioned 

on the number line relative to its endpoints), and thus may be more sensitive to ordering than 

absolute error.  In past research, linearity was correlated with mathematics achievement 

outcomes, whereas error rates were not (Booth & Siegler, 2006).  Finally, although the same 

developmental patterns have been observed for the two measures, absolute error rates have been 

affected by changes in overall accuracy (e.g., reducing overestimates across all items) rather than 

changes in linearity alone, and therefore absolute error rates may be less meaningful than 

linearity (Opfer & Siegler, 2007) . 

 Calculation.  Children in each grade completed a group-administered test with age-

appropriate multistep arithmetic problems (first grade: α= .83; sixth grade: α= .83).  The 12 first 

grade items included two- to four-digit whole number addition and subtraction problems.  The 24 

sixth grade items included two- to five-digit problems, some with decimals, and sampled from all 

four operations (addition, subtraction, multiplication, and division). 

 Missing term problems/algebra.  In missing term problems, children find the solution to 

a calculation problem where the solution is provided but one of the addends or subtrahends is 
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missing (e.g., __ + 8 = 14).  Previous research found that mental rotation training was effective at 

raising children’s scores on such problems (Cheng & Mix, 2014).  Only first grade students 

completed missing term problems because they are not challenging for most sixth-grade students 

(n = 14 items, α = .90).  Instead, sixth grade students completed the Algebra subtest from the 

CMAT.  Although more sophisticated than missing term problems, algebra items involving 

solving for unknowns could be considered related to the missing terms problems.  The reliability 

reported in the CMAT manual is α =.90. 

Notational spacing.  First grade items were comprised of the vertical arithmetic 

calculation problems included on the Test of Early Mathematics Ability-Third Edition (TEMA-3, 

Ginsburg & Baroody, 2003).  The 12 problems were presented one at a time on iPad screens. The 

spacing of the numbers was manipulated so as to vary their vertical alignment (see Appendix A 

in the online supplemental materials).  Children were asked on each trial whether the problems 

were written correctly.  Sixth grade items were algebra problems adapted from the stimuli used 

by Landy and Goldstone (2010).  Children solved 25 horizontal multiplication and order of 

operation problems (e.g., 3 + 4 x 2), in which the spacing of symbols in the equations was 

manipulated to be consistent or inconsistent with the order of operations.  In both grades, 

problems were presented individually on iPad screens using Keystone interactive software.  

Problems were presented in one of four random orders that varied across children, and order was 

counterbalanced from pre- to posttest.  Across the four test forms, the specific numbers in the 

problems also were manipulated so that the problem structures remained parallel across forms, 

but not the specific computations themselves. Although the first and sixth grade measures 

focused on different mathematics, with different implications of shifts in spatial position, the 

commonality was that both assessed students’ understanding of the spatial position of symbols 
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using content that were age-appropriate. The reliabilities for these measures were α = .57 and .71 

for first and sixth grades, respectively. 

Results 

 Children’s scores on each of the various outcome measures were converted into 

percentages and analyzed using one of several composite scores.  One composite captured 

children’s overall performance and was an average of the percent correct on all six mathematics 

measures.  A second composite score included only tasks we hypothesized to have a strong 

symbol grounding component (i.e., place value, word problems, and number line estimation) and 

a third composite score included only tasks we hypothesized to have a strong form perception or 

symbol decoding component (i.e., missing terms/algebra, notational spacing, and multistep 

calculation). 

 For each mathematics outcome, we evaluated changes in children’s performance from 

pre- to posttest using one-tailed t tests, as well as comparing differences in performance across 

training conditions using analyses of covariance (ANCOVA).  We used one-tailed t tests because 

we predicted that training would improve, and not worsen performance on any of the 

mathematics outcomes.  We used ANCOVAs because these analyses incorporate a control for 

pretest differences while permitting comparisons in outcomes across training groups.  In this 

way, we adjusted for any baseline differences among students.  One concern with submitting 

children’s scores to the same omnibus analysis might be that the measures for first and sixth 

grade, though conceptually equivalent, were not exactly the same and thus, should not be 

combined into a single analysis.  However, we obtained the same basic patterns of results 

whether we used a grade-specific ANCOVAs, so for ease of presentation, we report the results of 

the omnibus ANCOVAs here. 
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Manipulation Check 

 To determine whether the spatial training we provided led to a general improvement in 

spatial skill, we carried out an ANCOVA with grade (1st vs. 6th) and condition (spatial training 

vs. control) to analyze children’s posttest performance on the Block Design subtest of the WISC-

IV while controlling for pretest performance. There was a small effect of condition such that 

spatial training led to greater improvement in Block Design scores than language arts exercises 

in the control group, F(1, 253) = 5.239, p = .023, h2p= .020. Although there were no interactions 

involving grade, pairwise comparisons between children’s pre- and posttest scores revealed an 

important difference across grades.  Among first grade students, there was significant 

improvement in Block Design for both spatial training groups (Spatial Visualization: t(43) = 

3.24, p = 0.001, d = .49; Form Perception: t(43) = 4.84, p < 0.001, d = .73) as well as the control 

group, t(42) = 2.73, p = 0.005, d = .42.  This improvement in the control group may reflect the 

test-retest improvement that has been reported in previous research using timed spatial tasks 

(Salthouse & Tucker-Drob, 2008), and tempers our interpretation of the first-grade training 

effects.  In sixth grade, only children in the two spatial training conditions improved on the 

WISC-IV Block Design test from pre- to posttest (Spatial Visualization: t2(40) = 2.88, p = 0.003, 

d = .45; Form Perception/VSWM: t(40) = 3.28, p = 0.002, d = .52; Control: t(41) = .260 , p = 

.40, d = .04).  Thus, the effects of spatial training on children’s WISC-IV Block Design scores in 

sixth grade were clearcut. 

Performance on a broad mathematics composite measure 

 The main question addressed in this study was whether we would obtain significant 

spatial training effects on mathematics performance given the mixed results reported in the 

extant literature.  To evaluate this question, we first carried out an ANCOVA using children’s 
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mathematics posttest scores as the dependent variable, their mathematics pretest scores as a 

covariate, and grade and condition (spatial training vs. control) as the between subjects variables.  

Because we were interested in testing the broad effects of spatial training on mathematics, we 

combined the data for children in the two spatial training conditions and compared their 

performance to that of the control group.  We also used composite mathematics scores that 

combined performance on all six mathematics subtests.  Note that because grade was included as 

a between subjects factor, we used z-scores to equate children’s scores across the two grades.  

Recall that our measures differed in specific mathematics content across the grades. 

Children’s mean pre- and posttest performance is presented in Figures 1a and 1b.  The 

results of the ANCOVA revealed a medium effect of condition, F (2, 250) = 7.80, p < .001, h2
p  

= .059 due to superior performance in the two spatial training conditions versus controls (Spatial 

Visualization vs. Controls, p = .000; Form Perception vs. Controls, p = .028) and not because of 

differences between the two spatial training conditions (p = .093). The interaction between grade 

and condition was not significant (p = .864; h2
p  = .001), indicating the same pattern of greater 

improvement following spatial training for both first and sixth grade.  Consistent with this result, 

pre- to posttest comparisons showed that children in the spatial training conditions improved 

significantly in both grades (See Table 1). Even though first graders in the control condition also 

improved, their improvement was less than that of the spatial training groups, F (1, 131) = 4.77, 

p = .03, h2
p  = .035 and could have been due to learning over time and/or test-retest effects.  

These important findings add to the literature by demonstrating a direct, and causal effect of 

spatial training on mathematics performance.  For performance on the individual mathematics 

measures as a function of training condition (see Appendix B in the online supplemental 

materials). 
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INSERT TABLE 1 ABOUT HERE 

INSERT FIGURES 1a, 1b ABOUT HERE 

 

Performance on specific mathematics outcomes: Symbol grounding versus symbol 

decoding composites 

A secondary question was whether specific types of spatial training lead to significant 

improvement on specific mathematics measures.  We hypothesized that spatial visualization 

training would improve performance on mathematics tasks that require symbol grounding (i.e., 

interpreting the meaning of symbols), and form perception/VSWM training would improve 

performance on mathematics tasks that require symbol decoding (i.e., discriminating among 

symbols using spatial cues or tracking steps in written problem solving).  To test whether this 

was the case, we first analyzed children’s posttest symbol decoding and symbol grounding scores 

using a multivariate analysis of covariance (MANCOVA) with grade (1st vs. 6th) and condition 

(spatial visualization training, form perception training, and language arts control) as between 

subjects factors, and children’s pretest scores as covariates.  As before, we used z-scores to 

equate children’s scores across the two grades because the specific mathematics content included 

in our measures differed across the grades. 

After determining that children’s symbol decoding scores differed significantly from their 

symbol grounding scores (Wilks’ Lambda = .431, (F(8, 504) = 33.01, p = .000), we used 

Helmert contrasts to probe for significant differences based on condition.  For mathematics tasks 

that tapped symbol decoding, there were significant differences favoring the spatial training 

groups in comparison to the control group, F(1, 253) = 12.68, p = .000 but performance did not 
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differ between the two spatial training groups, F(1, 253) = .01, p = .93. For mathematics tasks 

that tapped symbol grounding, none of the contrasts were significant.  Furthermore, contrary to 

our age-related predictions, none of the interactions involving grade reached significance. 

We next compared children’s pre- and posttest performance on the two composite 

mathematics scores (symbol grounding and symbol decoding) for each of the three conditions 

within each grade (see Tables 2 and 3).  As shown in the tables, children in both grades improved 

significantly on both the symbol grounding and symbol decoding composite mathematics 

measures, given either spatial visualization or form perception training.  This pattern suggests a 

broad response to training that is not limited to practice on one particular spatial skill or another.  

Note that result is reminiscent of the factor structure revealed in previous research (e.g., Mix et 

al., 2016) in that the spatial measures and mathematics measures formed separate but high 

correlated unitary factors onto which all the measures within each domain loaded significantly. 

 
INSERT TABLE 2A ABOUT HERE 

 
INSERT TABLE 2B ABOUT HERE 

 
 

Discussion 

 This study tested whether spatial training leads to improvement on a range of 

mathematics outcomes in first and sixth grade students.  Two types of spatial training were 

provided in a between-subjects pretest-training-posttest design.  The data were analyzed in terms 

of overall improvement, and using specific probes linked to age, training type, and mathematics 

outcome. Our main finding was that spatial training led to significant improvement in 

mathematics outcomes in both age groups.  This was evident when the two spatial training 

conditions and the mathematics measures were collapsed in a general analysis, and also when 
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improvement from pre- to posttest on more specific mathematics composite measures was 

considered.  Thus, the present study provides reason to conclude that spatial training improves 

mathematics performance among elementary students. 

 Furthermore, this improvement was not restricted to one age group.  The same basic 

pattern was obtained at both first and sixth grade.  This finding is of interest because the pattern 

of successful and unsuccessful transfer to mathematics in previous studies hinted that spatial 

training may be less effective at younger ages.  However, using similar training procedures in 

first grade and sixth grade, we found similar effects on mathematics performance at both grade 

levels.  That said, it should be noted that the children in some of the previous studies were two or 

three years younger (i.e., preschool age) than those in our younger age group (i.e., first grade), so 

it remains possible that spatial training is not effective at very young ages. 

 We found no support for the unique predictions for symbol grounding versus symbol 

decoding. Children showed significant improvement on both types of mathematics outcomes 

with both types of spatial training.  Thus, the overall picture seems to be one in which spatial 

skills may be interchangeable when it comes to their effects on mathematics, and likewise, 

mathematics skills, at least those tested, are not differentially sensitive to spatial training.  This 

pattern makes sense given previous research demonstrating unitary factor structures for each 

domain that are highly correlated (Mix et al., 2016), and casts doubt on the idea that the 

previously reported crossloadings reflect meaningful differences. 

That said, cognitive training can have subtle and complex effects (Potzko, 2017), not all 

of which might have been detected in the present design.  For example, our sample sizes 

provided adequate power to detect medium effects, but if the effects involving outcome measures 

were specific to subgroups of children or particular outcome measures, larger samples may be 
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needed to detect them.  Furthermore, the stability of spatial training effects is difficult to assess 

given the extant evidence, including the present study.  On one hand, the effects may be short-

term and operate akin to priming or coaching effects, presenting themselves only during or 

shortly after training.  On the other hand, they may be long term, leading to durable and perhaps 

increasing effects on mathematics as children are better prepared to incorporate new mathematics 

content using their improved spatial skills.  Longitudinal research examining the time course of 

spatial training effects, and whether it sets children up for better learning of novel content,  is 

needed to determine which is the case. 

Finally, one might question whether the effects we obtained are specific to spatial and 

mathematics skill, rather than being attributable to an improvement in general cognitive ability.  

In previous work examining the relation of spatial skill to mathematics, general cognitive ability 

was controlled and the relation still held (Mix et al., 2016), suggesting that effects involving 

spatial skill and mathematics are not at the level of general ability.  However, we did not include 

a measure of general cognitive ability in the present study, so we cannot completely rule out the 

possibility that our spatial training led to broad improvement in processes such as working 

memory or attention that led, in turn, to improvements on both our spatial and mathematics 

outcome measures. 

A remaining question is why children in the present study benefitted from spatial training 

when other closely related studies have failed to obtain such effects (Cornu, et al., 2017; Hawes, 

et al., 2015; Xu & LeFevre, 2016).  Recall that in these studies, improvement in spatial skill was 

achieved, but there was not transfer to numeracy or mathematics.  As we noted previously, two 

of these studies focused on prekindergarten and kindergarten children (Cornu et al., 2017; Xu & 

LeFevre, 2016) whereas the youngest participants in the present study were in first grade.  One 
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might conjecture that differences in the mathematics content for these age groups, or differences 

in children’s cognitive abilities at these ages might explain why spatial training was not effective 

in preschool and kindergarten.  However, Hawes et al. (2015) tested 6- to 8-year-olds and also 

failed to show transfer to mathematics, so age differences cannot fully explain existing 

discrepancies. 

 An alternative explanation for the discrepant effects of spatial visualization training may 

be the amount and type of feedback we provided to children during the training trials compared 

to the studies that found null results of training on mathematics outcomes.  When children were 

incorrect on the spatial visualization training tasks, we offered them physical models of the 

stimuli to rotate in and out of position and thereby check the accuracy of their responses.  From 

an embodied cognition perspective (e.g., Barsalou, 2008; Lakoff & Núñez, 2000), this object- 

and movement-based feedback may have been crucial for fostering the development of strong 

mental rotation and spatial visualization abilities.  Consistent with this, a mental transformation 

training study with 6-year-olds showed that having them gesture the movement of relevant 

pieces improved their mental transformation skills whereas watching the experimenter gesture 

the movement of the pieces did not (Goldin-Meadow et al., 2012).  Further, training that 

involved having 5- to 6-year-old children move pieces or gesture the movement of pieces both 

improved their mental transformation skill (Levine, Goldin-Meadow, Carlson, & Hemani-Lopez, 

2018).  In contrast to the embodied training we provided, the training provided by Hawes et al. 

was presented on iPads as two-dimensional matching games.  It appears that all feedback was 

embedded in a set of automated computer games, and was limited to only whether the answer 

was right or wrong.  Although such training was sufficient to raise children’s mental rotation 

scores, it might not have been extensive or detailed enough to show transfer to mathematics 
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performance. Consistent with this possibility, a recent study found that 5-year-olds’ mental 

rotation ability benefited more from training that involved gesturing the rotation than from 

training that involved rotating an image on a touchscreen (Wakefield et al., 2019). 

 In summary, the present results provide evidence that spatial training can have positive 

effects on mathematics outcomes in elementary aged students.  Relations hypothesized at the 

intersection of training type, age, and mathematics outcomes were not supported.  Thus, the 

overall picture seems to be that spatial training in general seems to support mathematical 

performance in general, as one might expect based on the correlated unitary factors for spatial 

and mathematical performance revealed in previous research (Mix et al., 2016). 

The finding of spontaneous transfer from spatial skill to mathematics is exciting but is likely 

the tip of the iceberg in terms of how spatial training might be leveraged.  Activating one’s 

spatial skills prior to performing a mathematics task or improving spatial processing to some 

threshold may be helpful or even necessary for strong performance in mathematics, but it may 

not be sufficient on its own for all children, and it may not go far enough to achieve the full 

potential of spatial training.  Children may not spontaneously recruit spatial processing into 

mathematics problem solving, even when they have sufficient levels of spatial skill.  It is also 

unlikely they receive direct instruction in ways that invite them to recruit spatial processing.  As 

suggested by Casey and Fell (2018), future research should examine not only the immediate 

effects that follow improvement of spatial skill, but also whether helping children purposely 

recruit spatial reasoning into specific mathematics tasks leads to even greater mathematics 

learning benefits.  
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Table 1 
First grade and sixth grade performance on a broad mathematics composite measure by training 
condition  
 

 First grade Sixth grade 
 Pretest Posttest ηp2 Pretest Posttest ηp2 

SPATIAL 
TRAINING 

.39 .45 * 

.035 

.50 .54 * 

.056 
(.16) (.18) (.12) (.11) 

CONTROL  
.42 .44 * .50 .51 

(.11) (.13) (.10) (.10) 

 

NOTE: For each Pretest and Posttest cell, we report the mean and standard deviation.  
Significant gains from pre- to posttest are indicated with an asterisk (one tailed, p < .05). Effect 
sizes, ηp2, of the ANCOVAs comparing the spatial training and control groups within each grade 
are reported. 
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Table 2a 
Children’s symbol grounding composite scores by training condition and grade. 
 

 First grade Sixth grade 
 Pretest Posttest ηp2 Pretest Posttest ηp2 

SPATIAL 
VISUALIZATION 

.46 .54 * 

.02 

.67 .72 * 

.03 

(.18) (.21) (.16) (.15) 

FORM 
PERCEPTION 

.40 .46 * .65 .69 * 

(.21) (.22) (.18) (.15) 

CONTROL  
.46 .51 * .68 .70 

(.14) (.16) (.15) (.13) 

 
Table 2b 
Children’s symbol decoding composite scores by training condition and grade.  
 

 First grade Sixth grade 
 Pretest Posttest ηp2 Pretest Posttest ηp2 

SPATIAL 
VISUALIZATION 

.34 .41 * 

.04 

.33 .36 * 

.04 

(.15) (.20) (.10) (.08) 

FORM 
PERCEPTION 

.33 .37 * .35 .37 * 

(.16) (.16) (.10) (.11) 

CONTROL  
.35 .35 .32 .32 

(.12) (.13) (.08) (.09) 

 
NOTE: For each Pretest and Posttest cell, we report the mean and standard deviation.  
Significant gains from pre- to posttest are indicated with an asterisk (one tailed, p < .05). 
Effect sizes, ηp2, of the ANCOVAs comparing the spatial training and control groups 
within each grade are reported. 
______________________________________________________________________________ 
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Figure 1A: Average composite mathematics pre- and posttest performance in 1st grade. 

 
Figure 1B: Average composite mathematics pre- and posttest performance in 6th grade. 
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Figure 1. Mean percent correct on mathematics composite at pretest and posttest in first grade 
(A) and sixth grade (B) for children in the control and spatial training groups. Significant gains 
from pre- to posttest are indicated with an asterisk (one-tailed) p < .05. Error bars represent 
standard errors. See the online article for the color version of this figure. 

 


