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Diagrams are powerful opportunities for grappling with and learning abstract relationships, for example learning 

the relations between elements in an ecosystem rather than simply memorizing the objects within the system. 

Further, what is crucial from any diagrammatic learning opportunity is the ability to use this relational 

knowledge in a new context or with new materials, beyond simply understanding the initial presentation. This is 

cognitively effortful, however, and individual differences in how reasoners benefit from such relational learning 

opportunities are not well understood. We describe a computational simulation that examines how cognitive 

control of attention enables relational learning from visual stimuli such as diagrams. Specifically, we propose 

that cognitive control is critical for both abstracting relational representations from that visual stimuli, and to the 

ability to use these representations in subsequent problem solving.  

 This study draws on extant behavioral longitudinal data from children who viewed and solved 

geometric analogy problems repeatedly over six months [1].  As shown in Figure 1, each set of stimuli were 

geometric diagrams that contained a key set of relationships.  The study measured children's ability to notice and 

draw analogical inferences based on the key relationships within these representations, which is a key to 

successful diagrammatic reasoning. Problems used common relations such as above/below (see Figure 1).  The 

complexity of the problems were varied by changing the number of relations needed to characterize the A:B 

transition. During testing, children were presented with A:B :: C:D problems in which they had to draw the D 

term to make a valid analogy.   Importantly, children's performance could be categorized into three distinct 

learning trajectories: analogical reasoners throughout, non-analogical reasoners throughout, and transitional - 

those who start non-analogical and grew to be analogical.  

 
Developments in children's analogical reasoning are traditionally attributed either to increased working 

memory resources due to maturation [2,3] or accretion of a knowledge base relevant to the particular task [4].   

Figure 1. Analogy problems varying in complexity based on those in Hosenfeld et al., (1997)[1]. 

 



Both principles have some empirical support, so in order to develop a comprehensive framework for how both 

knowledge accretion and individual differences in cognitive skills could affect learning from diagrams, we test a 

theory for their integration using computational simulations in a symbolic connectionist model of analogical 

thinking, DORA/LISA (Discovery Of Relations by Analogy)[5].  Specifically, we use a version of the model, 

DORA, which can build representations from relational inputs to simulate children’s ability to better recognize 

spatial relations over repeated training on the analogical diagrams.  Then we use LISA to simulate children’s 

reasoning based on these spatial relations.  Importantly, we manipulate working memory in both models (via 

changes in lateral inhibition) to simulate individual differences across groups of children.  

Varying the base level of lateral inhibition in DORA affected the ability to learn relational representations, 

which, in conjunction with lateral inhibition levels used in LISA during reasoning, simulated accuracy rates and 

error types seen in the three different learning trajectories. These simulations suggest prior knowledge and 

cognitive control may not only impact reasoning ability, but may also shape the ability to benefit from relational 

learning opportunities.  

1. Model Description 

LISA [6]is a symbolic-connectionist model of analogy and relational reasoning. DORA [5] is a model, based on 

LISA, that learns structured (i.e., symbolic) representations of properties and relations from unstructured inputs. 

That is, DORA provides an account of how the structured relational representations LISA uses in the service of 

relational reasoning can be learned from examples.  

DORA accounts for over 20 phenomena from the literature on children’s and adults’ relation learning and 

relational reasoning including the discovery of relational representations that support analogical thinking (i.e., 

learning structured representations from unstructured examples), the relational shift, children and adult’s 

learning of dimensions and relational representations, the role of comparison and progressive alignment in 

relation learning, and the shape bias observed in early childhood categorization [5,7].  In addition, since DORA 

is based on the LISA architecture, as DORA learns adult-like representations of relations and properties, DORA 

can also simulate the 30+ phenomena phenomenon accounted for by LISA.  

 

2. Simulations  

We hypothesized that differences between the three groups of children from Hosenfeld and colleagues’ (1997) 

[1] experiment were at least partially a product of differences in working memory.  We simulated these 

differences in LISA/DORA by varying levels of lateral inhibition. In LISA, inhibition is critical to the selection 

of information for processing in working memory. Specifically, inhibition determines LISA’s intrinsically 

limited working-memory capacity[6], controls its ability to select items for placement into working memory and 

also regulates its ability to control the spreading of activation in the recipient. We have previously used this 

approach to simulate patterns of analogy performance in a variety of populations with lesser working memory 

functions including older adults [8] and also patients with damage to prefrontal cortex [9] as well as young 

children [10]. 



  
We defined three groups for the purposes of the simulation: (1) non-analogical, (2) transitional, and (3) 

analogical.  We ran 100 simulations for each group.  During each simulation we chose an inhibition level from a 

normal distribution with a mean of .4 for the non-analogical group, .6 for the transitional group, and .8 for the 

analogical group (each distribution had a SD = .2).  For each simulation we ran 800 learning trials and checked 

the quality of the representations DORA had learned during the last 100 trials after each 100 trials.  Quality was 

calculated as the mean of connection weights to relevant features (i.e., those defining a specific transformation or 

role of a transformation) divided by the mean of all other connection weights + 1. A higher quality denoted 

stronger connections to the semantics defining a specific transformation relative to all other connections (i.e., a 

more pristine representation of the transformation).  

As can be observed in Figure 2, the patterns of change observed in DORA/LISA’s performance on the testing 

trials closely followed those of the children in Hosenfeld and colleagues (1997) [1].  Just like the non-analogical 

children, LISA/DORA with a low inhibition level performed poorly throughout.  Like the transitional children, 

LISA/DORA with a medium inhibition level started slow but improved slowly.  Like the analogical children, 

LISA/DORA with a high inhibition level performed well virtually from the start and maintained this throughout. 

Though we cannot present these data for space reasons, it is also important to note that LISA made the same 

types of errors, in similar proportions, as children made in the empirical study. For instance, DORA, just like 

children, tended to make errors by inferring a D tern solution with the correct transformations applied to the 

wrong objects, or simply copying all or part of the B term. 

 

3. Summary 

In summary, this simulation suggests that when children learn from diagrams, their learning will vary based on 

individual differences in their level of internal inhibitory control over the noise abstracted from diagrams as 

inputs.  Their cognitive control differences would impact how likely the reasoners were to notice and reason 

about the relationships visible in the diagrams over time, versus simply attending to the surface appearance 

markers of the diagrams.   
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Figure 2. Results from Hosenfeld et al., (1997b) and LISA simulations.  Simulation results were the 
result of training in DORA followed by reasoning in LISA. Groups were created solely by changing 
DORA/LISA’s working-memory capacity (i.e., adjusting lateral inhibition). 
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