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METHODOLOGICAL STUDIES

Using Data from Randomized Trials to Assess the Likely
Generalizability of Educational Treatment-Effect Estimates
from Regression Discontinuity Designs

Howard Blooma, Andrew Bella, and Kayla Reimana

ABSTRACT
This article assesses the likely generalizability of educational treat-
ment-effect estimates from regression discontinuity designs (RDDs)
when treatment assignment is based on academic pretest scores.
Our assessment uses data on outcome and pretest measures from
six educational experiments, ranging from preschool through high
school, to estimate RDD generalization bias. We then compare those
estimates (reported as standardized effect sizes) with the What
Works Clearinghouse (WWC) standard for acceptable bias size
(� 0.05rÞ for two target populations, one spanning a half–standard
deviation pretest-score range and another spanning a full–standard
deviation pretest-score range. Our results meet this standard for all
18 study/outcome/pretest scenarios examined given the narrower
target population, and for 15 scenarios given the broader target
population. Fortunately, two of the three exceptions represent pro-
nounced “ceiling effects” that can be identified empirically, making it
possible to avoid unwarranted RDD generalizations, and the third
exception is very close to the WWC standard.

KEYWORDS
regression discontinuity
generalizability
validation test

Introduction

In recent years, the regression discontinuity design (RDD) has gained widespread recog-
nition as a quasi-experimental method that can produce internally valid estimates of
causal effects of a treatment, a program or an intervention—hereafter referred to as
treatment effects. Consequently, RDDs have been used to estimate causal effects in a
variety of fields (Lee & Lemieux, 2010 provide a list of more than 75 RDD studies of
education, labor markets, political economy, health care, and criminal justice). Research
on the statistical properties of RDDs has theoretically justified and empirically verified
their considerable potential for internal validity (Chaplin et al., 2018; Hahn, Todd, &
Van Der Klaauw, 2001; Imbens & Lemieux, 2008; Lee, 2008; Lee & Lemieux, 2010).

Although various, sometimes complex, estimation strategies have been used to imple-
ment RDDs (see Lee & Lemieux, 2010 for a review), the logic of RDD treatment-effect
identification is straightforward and intuitively appealing. First, an RDD applies to
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situations in which subjects are assigned to a treatment based on whether their value for
a numeric rating exceeds (or falls below) a specified threshold or “cut-point.” This
assignment method can produce an abrupt shift or discontinuity at the cut-point in the
probability of assignment to treatment, which in turn can produce a corresponding dis-
continuity in mean outcomes. Under a set of assumptions which are often plausible, the
discontinuity in the mean outcome at the RDD cut-point equals the local mean causal
effect of treatment assignment.

The assumptions needed to establish internal validity for this identification strategy
are: (1) independence between determination of the RDD cut-point and determination
of subjects’ ratings, (2) local continuity of the functional relationships between mean
outcomes and ratings on both sides of the RDD cut-point, and (3) local discontinuity in
the probability of treatment assignment at the cut-point (Hahn et al., 2001).
Furthermore, random measurement error (noise) in observed ratings can make an RDD
the approximate statistical equivalent of a local randomized controlled trial (RCT) at the
RDD cut-point (Lee & Lemieux, 2010). Hence, there are good reasons to expect a well-
implemented RDD to have strong internal validity.

While it is true that without further assumptions, RDD estimates of treatment effects
are identifiable only at the RDD cut-point,1 this does not necessarily mean that such
estimates only apply to a narrow, homogeneous, and potentially nonrelevant subpopula-
tion. For this limitation to hold with force, treatment effects must vary widely across
the target population of interest for an RDD study and they must co-vary strongly with
observed ratings. If treatment effects do not vary widely or if they do not co-vary
strongly with observed ratings, the conditional distribution of individual treatment
effects at an RDD cut-point can be similar to the unconditional distribution of individ-
ual treatment effects across the range of ratings for the target population. Unfortunately,
little is known about the extent to which treatment effects vary across individuals and
even less is known about predictors of this variation.2 Consequently, there is little exist-
ing guidance for deciding when and how far to generalize RDD findings.

To help inform such judgements, this article explores how treatment effects for partici-
pants in six major educational interventions, which run the developmental gamut from
preschool to high school, co-vary with participants’ academic pretest score (a measure
that is often a basis for treatment assignment in education). In what follows, we: (1)
reflect on the factors that could challenge the generalizability of RDD findings, (2) review
recent approaches for assessing or enhancing this generalizability, (3) describe our empir-
ical approach for exploring this generalizability, (4) present key findings produced by this
approach, and (5) consider the implications, strengths, and limitations of those findings.

The RDD Generalizability Challenge

Variation in treatment effects is a growing area of research, and recent work has focused
on how to measure this variation—across subgroups defined by individual background

1Some early RDD analyses (see Cook & Campbell, 1979 for a discussion) used what are now considered to be strong
assumptions about the functional form of the relationship between mean outcomes and ratings to generalize
treatment-effect estimates beyond an RDD cut-point.
2For example, Tipton, Yeager, Iachan, and Schneider (2019) note the frequent inability to replicate experimentally
estimated treatment-effect differences for demographic subgroups.

2 H. BLOOM ET AL.



characteristics (Bloom & Michalopoulos, 2011; Rothwell, 2005), across research studies
using methods of meta-analysis (Cooper & Hedges, 1994), and across research sites
using multilevel models (Bloom et al., 2017; Weiss et al., 2017). This work illustrates
that studying variation in treatment effects is challenging. For example, to accurately
estimate variation in treatment effects across sites requires a substantial number of sites
with large samples (Bloom & Spybrook, 2017). Furthermore, it is even more difficult to
study variation in treatment effects across individuals because without strong assump-
tions it is not possible to identify individual-level treatment effects (Bloom et al., 2017;
Raudenbush & Bloom, 2015). Consequently, although there is now some information
about how much treatment effects vary across sites (Weiss et al., 2017) there is little
information about this variation across individuals.

However, when assessing the generalizability of RDD findings, one does not need to
consider all variation in treatment effects that might exist. It is only necessary to con-
sider treatment-effect variation that co-varies with the RDD rating. Specifically, the con-
cern for generalizing RDD findings is that mean treatment effects might differ
substantially across rating values. However, this concern is only justified if the mix of
subjects differs substantially across rating values in terms of factors that predict treat-
ment effects. Figure 1 illustrates the relationships that must exist for this to be the case.

Note first the relationship between observed and true values of an RDD rating (R and
R�; respectively). A subject’s true rating is the actual value of his ability, merit, disadvan-
tage, need, or whatever characteristic is the basis for treatment assignment.3 However,
this true rating is typically unobservable and can only be approximated by an observed
rating, which contains random measurement error or noise. There are many sources of
such noise. For example, ratings based on test scores contain noise from inadvertent
mistakes, memory lapses, and ambiguous question-wording; and ratings based on class-
room observations or grader assessments contain noise due to variation in observer or
grader judgment. Furthermore, the attitudes, behavior, or performance of subjects on a
measure can be affected by random events in their lives such as illness, job loss, or
stressful changes in personal circumstances. Even ratings that reflect seemingly perfectly

True Ra�ng (R*)Observed Ra�ng (R) Treatment Effect (τ)
r b

Defini�ons:
r indicates the reliability of the observed ra�ng. This is the propor�on of total varia�on in a measure that reflects true 
varia�on in whatever is being measured systema�cally.
b represents the rate at which the condi�onal mean treatment effect, τ(R*), changes per unit change in the true ra�ng, 
R*.  
rb is defined as the strength of the linear rela�onship between observed ra�ng (R) and treatment effect (τ). This is the 
coefficient of a bivariate linear regression of τ on R.

Figure 1. The relationship between treatment effects and RDD ratings.

3By true rating we mean whatever an RDD rating measures systematically, regardless of what it is intended to measure.
Hence, we focus on the reliability of an RDD rating, not its validity.
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knowable facts, like students’ birthdays, can contain random measurement error due to
coding mistakes.

As noted above, noise in an RDD rating improves the degree to which an RDD can
approximate a local RCT at the RDD cut-point, which enhances the internal validity of
RDD findings.4 This reflects the fact that, for subjects with the same true rating value, it
is a matter of chance whether their observed rating falls above or below the RDD cut-
point. Less widely known, but perhaps equally important, is Lee and Lemieux’s (2010)
insight that noise in an observed rating is critical for the external validity or generaliz-
ability of RDD findings. As they explain, random error in observed ratings produces
heterogeneity of subjects’ true rating for each observed value of the rating, including its
cut-point value. For example, because of noise, students with varying true past achieve-
ment levels (and true treatment effects) might, by chance, receive the same score on a
pretest (rating) that assigns them to mandatory summer school if they fail the test.
Other things being equal then, increased noise in a measure implies greater heterogen-
eity of the cut-point subpopulation, which in turn implies greater generalizability of
RDD findings. In the extreme, if observed ratings consist solely of noise, their values are
random numbers and individuals assigned to treatment based on those numbers are
assigned randomly, as in an RCT (Bloom, 2012; Lee & Lemieux, 2010).

However, noise in observed ratings—the focus of Lee and Lemieux’s insight—is only
one of two factors that can influence the generalizability of RDD findings. As Figure 1
illustrates, the relationship between observed ratings and treatment effects is the product
of two intervening statistical relationships, or “links in a predictive chain,” each of
which can weaken the overall relationship between mean treatment effects and observed
ratings and thereby improve RDD generalizability. We refer to this relationship as a pre-
dictive chain, with nondirectional lines, instead of a causal chain, with directional
arrows, because it is not necessary to identify causality for the present discussion of pre-
dictive relationships.

The first link in the predictive chain is between observed and true ratings (R and R�Þ:
It is convenient to summarize the strength of this link as the reliability (q) of the
observed rating, where reliability (e.g., Brennan, 2001; Nunnally, 1967) is the proportion
of total variation in a measure that reflects true variation in whatever is being measured
systematically. This parameter can range from a value of one if there is no noise in the
observed rating and all variation in it represents true variation, to a value of zero if
there is no information in the observed rating and all variation in it represents noise.

The second link in the predictive chain represented by Figure 1 is the relationship
between true ratings and treatment effects (R� and s; respectively). It is convenient to
represent the strength of this link as the slope of a linear regression of s (the dependent
variable) on R� (the predictor). This slope represents the rate at which the conditional
mean treatment effect, sðR�Þ; changes per unit change in the true rating, R�: As
described later, we also consider a quadratic relationship between intervention effects
and pretest scores.

In education and human development, RDD ratings are often measures of past out-
comes, which are used to assess the need for or ability to benefit from a specific

4This approximation improves as the interval around the RDD cut-point decreases.
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intervention. However, there is little consistent evidence about how or how well the
constructs which underlie these measures predict treatment effects. For example, Cunha
and Heckman (2007) hypothesize that “skills beget skills,” which implies that students’
ability to experience positive effects from a developmental initiative increases with the
strength of the backgrounds they bring to it. In contrast, other researchers (e.g., Ramey
& Ramey, 1998) hypothesize a “compensatory” pattern of impacts for initiatives that
focus on countering educational disadvantages. In addition, for binary outcomes like
achieving proficiency on a mandatory test, there has been extensive debate
about “bubble kids” who are close to being able to surmount a required threshold and
thus might benefit most from assistance (Booher-Jennings, 2005). One could also
imagine an analogous “sweet spot” theory for continuous outcomes, in which the stu-
dents who benefit most from an intervention have strong enough educational back-
grounds to participate effectively but sufficient room for improvement to exhibit
demonstrable gains. However, because it has been difficult to replicate treatment-effect
differences among subgroups of individuals (e.g., Tipton et al., 2019), it is unclear how
or how strongly educational treatment effects co-vary with students’ background
characteristics.

Together, the relationship between observed and true ratings (R and R�) and the rela-
tionship between true ratings and treatment effects (R� and s) determine the strength of
the relationship between observed ratings and treatment effects (R and sÞ: The strength
of this relationship (qbÞ5 is the rate at which the conditional mean treatment effect
changes per unit change in the observed rating. Thus, weakness in either of the inter-
vening links (q or b) weakens the overall relational chain. Furthermore, weaknesses in
these links are compounding and thus accumulate rapidly, which can increase RDD
generalizability.

One further issue to consider when exploring the generalizability of an RDD treat-
ment-effect estimate is the appropriate target population for that estimate. For example,
most interventions are designed to address a specific problem. Hence, they are often
intended for a subpopulation that is especially at risk of having the problem or is cur-
rently experiencing it. In these cases, the ability of an RDD to generalize findings to
that subpopulation is more relevant for policy and practice than is its ability to general-
ize to a more general population. Consider, for example, the Double-Dose Algebra ini-
tiative in Chicago (Nomi & Raudenbush, 2016) to which high school students with
math test scores below a specified level were assigned. For interventions like this, it is
most relevant to generalize evaluation findings to a subpopulation of struggling students,
which should be taken into account when assessing the practical generalizability of
RDD findings.

Recent Approaches to RDD Generalizability

Three recent articles have made important advances in the assessment and enhancement
of RDD generalizability: Wing and Cook (2013), Angrist and Rokkanen (2015), and

5This result reflects the well-known phenomenon of attenuation bias or errors-in-variables bias in an estimated
regression coefficient due to random error in the independent variable for that coefficient (e.g., Angrist & Pischke, 2015,
pp. 240–241; Wooldridge, 2009, p. 320).
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Dong and Lewbel (2015).6 Wing and Cook (2013) propose an approach which uses
information on an outcome that is measured before and after treatment assignment by
the same instrument and on the same scale (a generic pretest and post-test) to estimate
treatment effects at and beyond an RDD cut-point. Their approach applies when pre-
tests and post-tests measure the same thing the same way (Medicaid expenditures from
administrative records before and after treatment assignment in their empirical example)
and the RDD rating measures something different (sample members’ age at treatment
assignment in their example).

Intuitively, the logic of the Wing and Cook (2013) approach is as follows. First, for
RDD comparison group members, they compare the statistical relationship between pre-
tests and ratings with that between post-tests and ratings and model the difference, pref-
erably with a simple intercept shift. Second, for RDD treatment group members, they
use the estimated model from step 1 to impute counterfactual untreated post-test values
from observed pretest values. Third, they estimate the treatment effect for RDD treat-
ment group members as the difference between their actual post-test values and their
imputed counterfactual post-test values. The key assumptions of this approach are that:
(1) it is possible to model the difference between the pretest/rating relationship and the
post-test/rating relationship for comparison group members within a specified distance
from the RDD cut-point and (2) this modeled difference also holds for treatment group
members within that specified distance from the cut-point.

The authors test their approach by constructing the equivalent of conventional RDD
samples and pretest-enhanced RDD samples using experimental data from the Cash and
Counseling Demonstration Experiment for Medicaid recipients (Brown & Dale, 2007).
They construct a given RDD from the experimental data by: (1) choosing an illustrative
cut-point for the emulated RDD rating (sample members’ age at experimental treatment
assignment), (2) defining RDD comparison group members as experimental control
group members whose age at treatment assignment was below this cutoff, and (3) defin-
ing RDD treatment group members as experimental treatment group members whose
age at treatment assignment was at or above the cut-point. This was done for three age
cutoffs separately for each of the three states in the study they used.

Then, for each of these nine analysis samples, the authors use an intercept shift to
model the difference between the pretest/rating relationship and the post-test/rating
relationship. By comparing treatment-effect estimates and their standard errors for the
two types of RDDs with their experimental counterparts, the authors found that the pre-
test-enhanced RDD outperformed the conventional RDD in terms of bias and precision
and produced results that were broadly comparable to their experimental benchmarks—
both at and beyond the emulated treatment-assignment threshold.

Angrist and Rokkanen (2015) propose a method for estimating mean treatment
effects away from an RDD cut-point. Their approach builds on the fundamental fact

6Chaplin et al. (2018) examine the internal validity of RDD treatment-effect estimates in practice through a meta-
analysis of 15 within-study comparisons of RDD findings to their RCT counterparts. In doing so, the authors estimate
the mean and variation of RDD bias across studies. They use the mean RDD bias as a summary measure of the internal
validity of the method for the range of situations examined. They use variation in assessed RDD bias as a measure of
the external validity of the estimated mean bias for assessing the likely internal validity of a specific RDD. Their focus
on the external validity of a bias assessment of the RDD method differs from the present focus on the likely
generalizability of RDD treatment-effect estimates.

6 H. BLOOM ET AL.



that the only possible source of selection bias in treatment-assignment for a properly
implemented RDD is the relationship between sample members’ ratings and their poten-
tial outcome values. Thus, if one can eliminate this relationship by controlling for sam-
ple members’ background characteristics that predict ratings and potential outcome
values, one can produce conditionally ignorable treatment assignment. This in turn
makes it possible to use conventional regression or propensity-score methods to esti-
mate mean treatment effects for any rating value or range of rating values.

As Angrist and Rokkanen (2015) demonstrate, it is possible to test this conditional
ignorability assumption (CIA) empirically by regressing (separately for treatment group
members and comparison group members) the outcome measure of interest on the
RDD rating plus a set of covariates. If the estimated regression coefficient for the rating
is small and not statistically significant, this suggests that residual values of the rating
(controlling for the covariates) are uncorrelated with residual values of potential out-
comes (controlling for the covariates), which implies that treatment assignment is condi-
tionally ignorable. If this is the case—and if for any given set of covariate values, there
are sample members assigned to treatment and others assigned to comparison status—
then straightforward nonexperimental estimators can be used to estimate mean treat-
ment effects.7

Angrist and Rokkanen (2015) used their approach to estimate effects of assignment
to two of Boston’s elite exam schools on students’ tenth-grade state test scores in math
and English language arts (ELA). They did so for students who applied to enter the
schools in seventh grade and for students who applied to enter the schools in ninth
grade. Covariates used to approximate conditional ignorability were pretest scores plus
standard demographic, social, and economic indicators.8 Because pretest scores for sev-
enth-grade applicants were more limited than those for ninth-grade applicants, and thus
empirical results for conditional ignorability were more encouraging for tenth-grade
applicants, the authors only report impact findings for ninth-grade applicants. These
results suggest that mean treatment effects away from the RDD cut-point were similar
to those at the cut-point for both schools studied.

Dong and Lewbel (2015) propose a method for using standard RDD methods to esti-
mate the rate at which the mean treatment effect at an RDD cut-point changes per unit
change in the RDD rating. The authors call this parameter a treatment effect derivative
(TED) and use it to address two evaluation questions: (1) how well do RDD treatment-
effect estimates generalize to subjects with ratings near the RDD cut-point? and (2) how
would marginally changing the treatment assignment threshold change the mean treat-
ment effect at the threshold?

For functional relationships between mean outcomes and ratings that are both continu-
ous and continuously differentiable immediately below and above an RDD cut-point,
Dong and Lewbel (2015) prove that a TED equals the difference between the first deriva-
tives of those relationships at the cut-point.9 The authors then illustrate how to estimate a

7The authors also note that a second empirical test of the validity of such nonexperimental estimators can be
constructed by comparing a properly weighted nonexperimental estimate of the mean treatment effect at the RDD cut-
point with its RDD counterpart. This weighting must match the distribution of covariate values at the RDD cut-point.
8These covariates were not part of the rating variable used to assign students to the elite exam schools.
9The authors demonstrate for continuous and continuously differentiable outcome/rating functions immediately below
and above an RDD cut-point, with a mean outcome under the treated condition of E(Y1), a mean outcome under the
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TED for a local-linear RDD regression with separate intercepts and slopes below and
above the RDD cut-point and use this result to address their first research question.10

Dong and Lewbel (2015) extend this finding to situations with “local policy invari-
ance” (where an intervention, its selection process, and its environment do not change
in response to a marginal change in the treatment-assignment threshold) and demon-
strate that in such cases, TED equals the rate of change in the mean treatment effect at
the treatment-assignment threshold for an incremental change in that threshold. The
authors call this parameter a marginal threshold treatment effect or MTTE and use it to
address their second research question.

To illustrate their approach, Dong and Lewbel (2015) reanalyze RDD data from
Goodman (2008) on the effect of Massachusetts’ Adams Scholarship offers on student
enrollment in a Massachusetts state college, which is tuition free for scholarship win-
ners. Adams Scholarships are offered to high school graduates who exceed a specified
threshold on the Massachusetts Comprehensive Assessment System (MCAS). The esti-
mated treatment effect derivative for Adams Scholarships indicates that their effect on
student enrollment drops precipitously for MCAS scores above the treatment assign-
ment threshold (perhaps, as suggested by the authors, because students with these
higher scores have more college options). In addition, the authors provide a plausible
argument that Adams Scholarships are policy invariant, and thus TED equals MTTE for
them. This implies that marginally raising the treatment assignment threshold would
reduce the scholarship effect and marginally lowering the threshold would increase the
scholarship effect, which illustrates the policy relevance of such findings.

The Present Approach

Unlike the preceding approaches which use RDD data to explore the actual generaliz-
ability of treatment-effect estimates produced from that data, we use RCT data to
explore the likely generalizability of RDDs in a specific field: education research. Our
approach is premised on the fact that ratings for many education RDDs are based in
whole or in part on an academic pretest, like the math test scores used to assign stu-
dents to Double-Dose Algebra in Chicago. Hence, the issue of RDD generalizability in
educational research often translates into the question: How and how strongly do treat-
ment effects co-vary with students’ pretest scores? To address this question, our empirical
strategy uses existing data from six educational RCTs.

Data

The six RCTs that we used were chosen from the 16 RCTs used by Weiss et al. (2017)
to quantify cross-site impact variation for education and human development

untreated condition of EðY0Þ; an observed rating of R; and a mean treatment effect of s (all at the RDD cut-point)
that ds

dR ¼ dEðY1Þ
dR � dEðY0Þ

dR :
10Consider the following local linear regression for a given bandwidth around an RDD cut-point with a uniform kernel.
Yi ¼ aþ bRi þ cTi þ dTiRi þ ei where: Ri is the rating for subject i, Ti equals one if subject i was assigned to
treatment and zero otherwise, and ei is a random error that is distributed independently and identically across subjects
with a mean of zero. In this case ds

dR ¼ dEðY1Þ
dR � dEðY0Þ

dR ¼ bþ dð Þ � b ¼ d:

8 H. BLOOM ET AL.



interventions. We selected these RCTs because we had worked with their data previ-
ously. They have at least one academic outcome and pretest; they have a large sample;
they have acceptable attrition; and they have excellent treatment/control group pre-
test balance.11

The Appendix at the end of this article presents a synopsis of each RCT and Table 1
summarizes their key features. Note first that the interventions studied span a develop-
mental range from preschool through high school. Preschool is represented by the
national Head Start Impact Study (HSIS), which was conducted in a national sample
of over 300 Head Start centers. Elementary school is represented by the After-School
Math (ASM) demonstration and the After-School Reading (ASR) demonstration, which
were each conducted in 25 after-school programs from across the United States. Last,
high school is represented by the Enhanced Reading Opportunities (ERO) demonstra-
tion for struggling ninth graders in 34 U.S. public high schools, the Early College High
Schools (ECHS) study conducted in 19 North Carolina public high schools, and the
Small Schools of Choice (SSC) study conducted in 85 New York City public
high schools.

Table 1. Study/outcome/pretest scenarios.

Study & outcome Pretest
Sample
size

Full sample
impact estimate

p value for
impact estimate

Head Start Impact Study
Receptive vocab. score (z) Letter/word score (z) 3,530 0.161��� 0.000
Letter/word score (z) Letter/word score (z) 3,540 0.218��� 0.000
Oral comp. score (z) Letter/word score (z) 3,480 0.017 0.489

After School Math
Math score (z) Math score (z) 1,970 0.075�� 0.005

After School Reading
Reading score (z) Reading score (z) 1,890 �0.013 0.578

Enhanced Reading Opportunities
% of required courses passed Comp. score (z) 5,230 0.581� 0.015
Reading vocab. score (z) Comp. score (z) 4,580 0.022 0.238
Reading comp. score (z) Comp. score (z) 4,580 0.067��� 0.000

Early College High Schools
9th grade on track (%) Math score (z) 3,390 6.300��� 0.000
9th grade on track (%) Reading score (z) 3,710 6.470��� 0.000
Graduated (%) Math score (z) 2,540 4.654�� 0.001
Graduated (%) Reading score (z) 2,720 4.031�� 0.004

Small Schools of Choice
9th grade credits accumulated (#) Math score (z) 15,280 0.780��� 0.000
9th grade credits accumulated (#) Reading score (z) 14,730 0.776��� 0.000
9th grade on track (%) Math score (z) 15,870 8.248��� 0.000
9th grade on track (%) Reading score (z) 15,290 8.423��� 0.000
Graduated (%) Math score (z) 12,950 4.979��� 0.000
Graduated (%) Reading score (z) 12,460 5.198��� 0.000

Source: Findings in this table are based on our computations using data from the studies represented. The full-sample
mean treatment effect for each study/outcome/pretest scenario was estimated using Equation 1 from the present article
with data for the scenario’s parametric analysis sample.
Note. A two-tailed test was used to assess the statistical significance of each full-sample treatment-effect estimate with
significance levels indicated by p values and by ���� 0.001, ��� 0.01 and �� 0.05.

11Online Appendix A presents supplementary tables for the present article, and Online Appendix B describes how we
constructed our analysis samples and presents a detailed examination of sample attrition and treatment/control group
pretest balance. Those results demonstrate that attrition rates for all studies are within or near the What Works
Clearinghouse standard for “low attrition” (U.S. Department of Education, Institute of Education Sciences, 2017) and that
treatment/control group pretest balance is excellent for all studies.
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We selected outcome measures and pretests for each study in advance of its analysis.
For outcome measures, we focused on standard academic indicators. When choosing
among alternative outcome measures for a study, we tried to pick a limited number
that: (1) were as comparable as possible across studies, (2) reflected a mix of mean treat-
ment effects, (3) had acceptable attrition rates, and (4) for test scores, could be standar-
dized as a broad-based z score reflecting the mean and standard deviation of scores for
a meaningful population, like the nation (for HSIS, ASR, ASM, and ERO) a state (for
ECHS), or a large urban school district (for SSCs).12

For pretest measures, we also chose academic test scores that could be standardized
as broad-based z scores. Such z scores made it possible to compare the range of prior
educational achievement for our analysis samples to that for meaningful populations. To
limit the number of findings and their potential for multiple testing problems, we chose
one pretest per study for all but ECHS and SSC. Because those two studies have data
for two similar pretests, we used both pretests for a limited test of the sensitivity of our
findings to the pretest used. For other studies with multiple pretests, we chose one pre-
test based on its attrition rate and our judgement about its likely ability to predict stu-
dent outcomes and thus potentially predict treatment effects.

In terms of sample size, two of our studies (ASM and ASR) have analysis samples
with roughly 2,000 students, three studies (HSIS, ERO and ECHS) have analysis samples
with roughly 2,500–4,500 students, and one study (SSC) has an analysis sample with
about 15,000 students for ninth-grade outcomes and 13,000 students for high school
graduation rates.

Last, in terms of overall mean treatment effects, the studies and outcomes we chose
reflect a mix of negligible effects (HSIS for one outcome, ASR for one outcome, and
ERO for two outcomes), modest positive effects (ASM for one outcome and ERO for
one outcome) and moderate to large positive effects (HSIS for two outcomes, ECHS for
two outcomes, and SSCs for three outcomes).

Estimation

For each study/outcome/pretest scenario, we used two complementary approaches to
explore the relationship between academic pretest scores and the effect of random
assignment to an educational intervention on an educational outcome: non-parametric
estimation and parametric estimation.

Our non-parametric approach stratifies sample members for a given scenario into three
and five rank-ordered, equal-sized “bins” based on their pretest scores and then compares
estimates of the mean treatment effect across bins. From sample data for each bin, we esti-
mate its mean treatment effect as the coefficient, p; in the following regression model:

Yi ¼
X

j

ajBLOCKji þ pTi þ cPi þ
X

k

dkXki þ ei (1)

12All test-score outcomes except the PPVT test of receptive vocabulary for the Head Start Impact Study could be
standardized as a broad-based z score.
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where

Yi ¼ the outcome for sample member i,
BLOCKji ¼ one if sample member i was from random-assignment block j and zero
otherwise,13

Ti ¼ one if sample member i was randomized to treatment and zero otherwise,
Pi ¼ the pretest score for sample member i,
Xki ¼ the value of covariate k for sample member i,
ei ¼ an error term that varies independently and identically across sample members within
experimental groups with a mean of zero and a variance that can differ for treatment and
control-group members.

We then compared these estimates across bins and assessed the statistical signifi-
cance of their variation based on the Hotelling T2 statistic (Hotelling, 1951), hereafter
referred to as Hotelling tests.

Although non-parametric estimation can provide important insights into how and
how strongly treatment effects co-vary with pretest scores, it cannot by itself provide a
useful summary of this relationship, which is essential for quantifying the likely general-
izability of RDD treatment-effect estimates. Hence, for this purpose, our primary
approach was parametric estimation of the following linear regression model for each
scenario:

Yi ¼
X

j

ajBLOCKji þ b1Ti þ b2TiPi þ cPi þ
X

k

dkXki þ ei (2)

where all variables are as defined as they were for Equation 1. This model specifies the
following relationship between conditional mean treatment effects sðPÞ and pretest
scores (P):

s Pð Þ ¼ b1 þ b2P (3)

Of primary interest is the slope, b2; of Equation 3, which represents the average rate at
which mean treatment-effects change per unit change in pretest scores across the range of
pretest scores for a given scenario. Hence, it indicates the overall direction and strength of
covariation between treatment effects and pretest scores. In addition, as described later, b2
provides input to our predictions of RDD generalization bias.

As a secondary parametric approach for exploring the relationship between treatment
effects and pretest scores, we estimated the following quadratic regression model:

Yi ¼
X

j

ajBLOCKji þ b01Ti þ b02TiPi þ b03TiP
2
i þ cPi þ wP2

i þ
X

k

dkXki þ ei (4)

where all variables are defined as they were for Equations 1 and 2. This model specifies
the following relationship between conditional mean treatment effects and pretests
scores:

s Pð Þ ¼ b01 þ b02P þ b03P
2: (5)

13Randomized treatment assignment was blocked by a combination of site, student grade, and/or student cohort for
the studies in our analysis.

USING DATA FROM RANDOMIZED TRIALS 11



Findings

The present section first describes our findings from each study to identify scenarios
that do and do not exhibit treatment-effect/pretest-score covariation. For scenarios that
do not exhibit such covariation, we argue that had a pretest-based RDD been used to
estimate mean treatment effects, its results would have generalized well across the range
of pretest scores examined and thus to relevant populations for the interventions being
tested. For scenarios that exhibit covariation, we quantify the likely RDD generalization
bias that it implies. As will be seen, our empirical findings reveal little evidence of sub-
stantial RDD generalization bias.

Individual Study Findings

Table 2 reports key linear and non-parametric findings for each study/outcome/pretest
scenario we examined. The first column of findings in the table reports estimates of b2
from Equation 2. The next column reports the statistical significance level (p value) for
each estimate of b2: The last two columns report p values for Hotelling tests of the stat-
istical significance of observed variation in mean treatment effects across three bins and
across five bins.

Now consider the findings, beginning with those for our youngest sample members,
three- and four-year-olds in the national Head Start Impact Study. Results for this group
focus on three outcomes. For two of those outcomes, letter-word identification and oral
comprehension, we find no evidence of treatment-effect/pretest-score covariation. Their
estimates of b2 (a 0.017 and a –0.008 standard deviation change in the mean treatment
effect per standard deviation increase in pretest scores, respectively) are quite small.
Furthermore, Hotelling tests for these outcomes do not indicate statistically significant
variation in mean treatment effects across three or five bins.

However, there is some evidence that Head Start assignment effects on receptive
vocabulary co-vary with pretest scores. Specifically, the estimate of b2 for this outcome
implies a 0.059 standard deviation decline in mean treatment effects per standard devi-
ation increase in pretest scores, and this estimate is statistically significant. That result is
consistent with findings from the original Head Start Impact Study (Puma et al., 2010),
which found compensatory program effects on receptive vocabulary, and subsequent
research by Bloom and Weiland (2015), who argue that this phenomenon represents
compensation for limited prior exposure to English because it only occurs for children
from non-English speaking families. However, our Hotelling test results do not indicate
statistically significant variation in treatment effects across three bins or across five bins.

Now consider the two after-school demonstration programs which served second-
through fifth-graders at program centers from across the United States (25 centers per
study). Findings in Table 2 provide no evidence of treatment-effect/pretest-score covari-
ation for After-School Math. Its estimated value for b2 is quite small (0.007). Also,
Hotelling tests do not indicate statistically significant variation in mean treatment effects
across three or five bins.

Findings for After-School Reading are mixed. Its estimated value of b2 implies that
mean treatment effects decline by 0.063 standard deviation per standard deviation
increase in pretest scores, although this estimate is not quite statistically significant. On

12 H. BLOOM ET AL.



the other hand, estimated mean treatment effects for each of five bins in Table 3 and
each of three bins in Online Appendix Table A.1 do not exhibit a systematic pattern of
variation across bins, and their Hotelling Test results do not indicate statistically signifi-
cant treatment-effect variation.14

The next findings in Table 2 are for three outcomes of the Enhanced Reading
Opportunity demonstration for ninth graders in 34 U.S. public high schools. Findings
for two of these outcomes—reading comprehension scores and the percentage of
required courses passed—do not indicate covariation between treatment effects and pre-
test scores.

However, reading-vocabulary scores exhibit some evidence that treatment effects co-
vary with pretest scores. First, the estimated value of b2 for this outcome implies a
0.120 standard deviation increase in mean treatment effects per standard deviation
increase in pretest scores and is statistically significant. Second, Hotelling tests indicate
statistically significant variation in mean treatment effects across three bins, although
not across five bins. Third, findings in Online Appendix Table A.1 indicate that the

Table 2. Summary of findings.

Linear Coefficient
Hotelling test p value

Study & outcome Pretest Coefficient p value 3 Bins 5 Bins

Head Start Impact Study
Receptive vocab. score (z) Letter/word score (z) −0.059* 0.013 0.379 0.513
Letter/word score (z) Letter/word score (z) 0.017 0.603 0.576 0.975
Oral comp. score (z) Letter/word score (z) −0.008 0.752 0.615 0.696

After School Math
Math score (z) Math score (z) 0.007 0.844 0.564 0.324

After School Reading
Reading score (z) Reading score (z) −0.063 0.060 0.130 0.656

Enhanced Reading Opportunities
% of required courses passed Comp. score (z) −0.738 0.253 0.116 0.196
Reading vocab. score (z) Comp. score (z) 0.120* 0.017 0.017* 0.092
Reading comp. score (z) Comp. score (z) 0.023 0.641 0.941 0.870

Early College High Schools
9th grade on track (%) Math score (z) −5.509*** 0.000 0.000*** 0.000***
9th grade on track (%) Reading score (z) −4.176*** 0.000 0.000*** 0.000***
Graduated (%) Math score (z) −0.967 0.547 0.779 0.788
Graduated (%) Reading score (z) 1.386 0.385 0.542 0.563

Small Schools of Choice
9th grade credits accumulated (#) Math score (z) −0.104 0.270 0.354 0.292
9th grade credits accumulated (#) Reading score (z) −0.020 0.825 0.247 0.453
9th grade on track (%) Math score (z) 0.899 0.420 0.617 0.999
9th grade on track (%) Reading score (z) 0.125 0.907 0.299 0.453
Graduated (%) Math score (z) −0.103 0.930 0.226 0.306
Graduated (%) Reading score (z) −0.067 0.953 0.399 0.207

Source: The linear coefficient for each study/outcome/pretest scenario was estimated from data for each scenario’s para-
metric analysis sample using Equation 2.
Note. A two-tailed test was used to assess the statistical significance of each estimated linear coefficient and a Hotelling
test was used to test the statistical significance of differences across bins in their estimated mean treatment effects.
Significance levels are indicated by p values and by ***≤ 0.001, **≤ 0.01, and *≤ 0.05.

14Online Appendix Tables A.2 and A.3 report standard errors for our estimates of mean treatment effects for each of
the three and five bins for each scenario.
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mean treatment effect for bin three is appreciably larger than that for bin one or bin
two in the three-bin findings.

Now, consider findings for the last two studies—Early College High Schools in North
Carolina and Small Schools of Choice in New York City. Recall that these findings were
replicated for two pretests to assess their sensitivity to the pretest used. Table 2 indicates
that our findings are consistent across the two pretests for all outcomes for both studies.

However, results for the two Early College High School outcomes represent a stark con-
trast. On the one hand, Tables 2 and 3 provide no evidence of covariation between treat-
ment effects on graduation rates and pretest scores. On the other hand, they provide
strong evidence of strong covariation between treatment effects on ninth-grade on-track
rates and pretest scores. For example, their estimates of b2 indicate a 5.509 and 4.176 per-
centage-point decrease in the ECHS effect on ninth-grade on-track rates per standard
deviation increase in math pretest scores and reading pretest scores, respectively, and
these estimates are statistically significant. In addition, Hotelling tests indicate highly stat-
istically significant treatment-effect variation across three and five bins. Furthermore,
there are steep and consistent decreases in the magnitudes of estimated mean treatment
effects across these bins (Table 3 and Online Appendix Table A.1, respectively).

To help understand this striking covariation, we examined the control-group pattern
of counterfactual on-track rates for five and three bins (see Online Appendix Tables A.5

Table 3. Non-parametric findings for five bins.

Study & outcome Pretest

Mean treatment-effect estimate
Hotelling
p valueBin 1 Bin 2 Bin 3 Bin 4 Bin 5

Head Start Impact Study
Receptive vocab. score (z) Letter/word score (z) 0.21��� 0.12� 0.20�� 0.09 0.11 0.513
Letter/word score (z) Letter/word score (z) 0.24�� 0.23�� 0.21� 0.27�� 0.19� 0.975
Oral comp. score (z) Letter/word score (z) 0.00 0.03 0.01 �0.10 0.02 0.696

After School Math
Math score (z) Math score (z) 0.06 �0.03 0.14� 0.03 0.13� 0.324

After School Reading
Reading score (z) Reading score (z) 0.04 �0.03 0.03 �0.07 �0.03 0.656

Enhanced Reading Opportunities
% of required courses passed Comp. score (z) 1.12 1.31� �0.24 0.06 0.95 0.196
Reading vocab. score (z) Comp. score (z) 0.03 �0.07 0.00 0.08� 0.07 0.092
Reading comp. score (z) Comp. score (z) 0.07 0.07 0.04 0.11�� 0.06 0.870

Early College High Schools
9th grade on track (%) Math score (z) 16.15��� 11.08��� 3.44� 2.65� 0.50 0���
9th grade on track (%) Reading score (z) 14.70��� 8.06��� 5.62��� 3.21� 1.48 0���
Graduated (%) Math score (z) 7.40 5.48 3.50 2.24 7.09� 0.788
Graduated (%) Reading score (z) �0.82 7.35 2.27 5.36 4.19 0.563

Small Schools of Choice
9th grade credits accumulated (#) Math score (z) 0.86��� 0.94��� 0.59��� 0.98��� 0.57��� 0.292
9th grade credits accumulated (#) Reading score (z) 0.70��� 0.87��� 1.02��� 0.62��� 0.61��� 0.453
9th grade on track (%) Math score (z) 8.39��� 8.51��� 7.90��� 8.16��� 7.68��� 0.999
9th grade on track (%) Reading score (z) 8.57��� 8.01��� 11.00��� 4.97� 8.46��� 0.453
Graduated (%) Math score (z) 3.61 4.02 3.24 9.14��� 6.27��� 0.306
Graduated (%) Reading score (z) 4.94 3.44 10.15��� 3.23 6.10�� 0.207

Source: The mean treatment effect for each bin within each study/outcome/pretest scenario was estimated using
Equation 1 with data for that bin and scenario.
Note. A two-tailed test was used to assess the statistical significance of each bin’s estimated mean treatment effect, and
a Hotelling test was used to assess the statistical significance of differences across bins in their estimated mean treat-
ment effects. Significance levels are indicated by p values and by ���� 0.001, ��� 0.01, and �� 0.05.
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and A.4, respectively). Doing so revealed that ninth-grade on-track rates rapidly
approach their maximum possible value of 100% as one moves across bins. For example,
this rate increased from 74.0% to 87.0% to 96.1% to 97.3% to 98.6% across math pretest
bins one through five and had a similar pattern for reading pretests. Thus, after bin
two, there was almost no room for treatment to improve the outcome. Fortunately, a
ceiling effect like this can be identified empirically (as we did here), which makes it pos-
sible to avoid making inappropriate RDD generalizations when it occurs.15 Interestingly,
no ceiling effect was observed for high school graduation rates, which are 70.1%, 81.8%,
87.4%, 88.3% and 86.0% for control-group members in math pretest bins one through
five, respectively, and exhibit a similar pattern for reading pretests.

Now, consider the SSC findings in Table 2. As can be seen, these findings for three out-
comes and two pretests provide no evidence of covariation between treatment effects and
pretest scores. All estimates of b2 are small in magnitude and are not statistically significant.
Furthermore, no Hotelling test indicates statistically significant variation in treatment effects
across bins.

As a final step, we identified scenarios with consistent evidence of a quadratic
treatment-effect/pretest score relationship based on two criteria. The first criterion
was whether the estimated quadratic coefficient, b03; in Equation 4 was statistically
significant. If so, this suggests but does not fully demonstrate a non-monotonic treat-
ment-effect/pretest-score relationship. The second criterion was whether together P2

and P (the pretest score squared and the pretest score) in Equation 4 had a statistic-
ally significant ability to predict treatment effects. If the two criteria are met, this
suggests a systematic overall relationship between treatment effects and pre-
test scores.16

Findings in Online Appendix Table C.4 indicate that only one of 18 scenarios met
our two criteria—that for the relationship between graduation effects of Early College
High Schools and their students’ math pretest scores. (However, this scenario had no
evidence of linear covariation between treatment effects and pretest scores.) We
examine the bias implications of this finding and the preceding findings in the
next section.

Implications for RDD Generalization Bias

On balance, findings in Tables 2, 3, and online Appendix Table A.1 provide evidence of
linear covariation between treatment effects and pretest scores for four of the 18 scen-
arios we examined. In addition, findings in online Appendix C.4 provide evidence of
quadratic covariation for one additional scenario. Hence, for 13 of the 18 scenarios we
examined, we did not find evidence of covariation between treatment effects and pre-
tests. This suggests that had an RDD been used to estimate treatment effects for those
scenarios, the resulting findings would have generalized well across the range of pretest
scores in those study samples and thus to relevant target populations for the

15A ceiling effect can be identified for positive impacts but not for negative effects.
16In our judgement, meeting the first criterion without meeting the second does not constitute consistent evidence of a
non-monotonic relationship between treatment effects and pretest scores.
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interventions being tested.17 To help describe these populations and those for the other
scenarios in our analysis, Table 4 reports the 10th, 50th, and 90th percentile pretest
scores for each scenario plus the corresponding difference between their 90th and 10th
percentile scores, which we refer to as an 80-percentile span.18

Note first that samples for five of the six studies in our analysis represent students
with pretest scores that are disproportionately below their respective national, state, or
district average. This is consistent with the compensatory nature of the interventions
being tested. However, pretest scores for the ECHS sample are disproportionately above
their state average, even though this intervention targets groups that historically have
been underrepresented in college, such as students from specific racial/ethnic groups
and from families with low incomes or no prior college attendance.

Note second that the 80-percentile pretest-score span is substantial for each study—
with the smallest being 1.07 standard deviation for ERO, a highly targeted compensatory
intervention, the largest being 2.73 standard deviations for HSIS, which has a nationally
representative sample of program sites, and the remainder varying between 1.68 and
2.21 standard deviations. Because each of these samples represents a diverse target
population that is policy relevant, a likely ability to generalize RDD findings to those
target populations for 13 of 18 scenarios is quite promising.

Now consider the four scenarios which appear to exhibit some linear treatment-
effect/pretest-score covariation. As noted earlier, the best summary of this covariation is
the estimated value of b2; which is the average rate at which treatment effects change
per standard deviation change in pretest scores across the range of pretest scores exam-
ined. For example, the difference between mean Head Start effects on receptive vocabu-
lary for children whose pretest scores differ by half a standard deviation—a potentially
consequential pretest-score difference—is b2 0:5ð Þ ¼ 0:059 0:5ð Þ � 0:030 standard devi-
ation, which is probably not a consequential treatment-effect difference for Head Start.
The corresponding treatment-effect difference for children whose pretest scores differ by
a full standard deviation is 0.059 standard deviation, which might or might not be con-
sidered consequential depending on the standard applied.

The preceding example illustrates a “point-to-point” treatment-effect comparison for
two subpopulations with two different pretest scores. However, when assessing RDD
generalizability, it is usually more relevant to compare the mean treatment effect at an
RDD cut-point to the mean treatment effect for a target population defined by a range
of pretest scores. For example, one might want to know how well an RDD estimate of
the mean Head Start effect on receptive vocabulary would generalize to children with
pretest scores between an RDD cut-point and one-half standard deviation below that
cut-point. Thus, RDD generalizability is best framed as a “point-to-range” treatment-
effect comparison.

17It is theoretically possible that with no overall impact/pretest-score covariation and no variation in mean impacts
across pretest-score bins, that impact variation within bins could produce problematic RDD generalization bias. However,
for this to occur would require: (1) a large and abrupt impact aberration within a bin, which seems unlikely, plus (2) an
RDD cut-point that falls on this impact aberration, which seems unlikely. The joint occurrence of these two unlike
conditions is thus very unlikely.
18These percentiles are for the non-parametric sample. For more information, Online Appendix Tables A.6 and A.7
report median pretest scores for each of three bins and each of five bins.

16 H. BLOOM ET AL.

https://doi.org/10.1080/19345747.2019.1634169


Ta
bl
e
4.

Pe
rc
en
til
e
pr
et
es
t
sc
or
es

fo
r
ea
ch

an
al
ys
is
sa
m
pl
e.

St
ud

y
&
ou

tc
om

e
Pr
et
es
t

10
th

Pe
rc
en
til
e
sc
or
e

50
th

Pe
rc
en
til
e
sc
or
e

90
th

Pe
rc
en
til
e
sc
or
e

80
Pe
rc
en
til
e
sp
an

H
ea
d
St
ar
t
Im
pa
ct

St
ud

y
Re
ce
pt
iv
e
vo
ca
b.

sc
or
e
(z
)

Le
tt
er
/w

or
d
sc
or
e
(z
)

�2
.0
9

�0
.7
4

0.
65

2.
73

Le
tt
er
/w

or
d
sc
or
e
(z
)

Le
tt
er
/w

or
d
sc
or
e
(z
)

�2
.0
9

�0
.7
4

0.
65

2.
73

O
ra
lc
om

p.
sc
or
e
(z
)

Le
tt
er
/w

or
d
sc
or
e
(z
)

�2
.0
9

�0
.7
4

0.
65

2.
73

Af
te
r
Sc
ho

ol
M
at
h

M
at
h
sc
or
e
(z
)

M
at
h
sc
or
e
(z
)

�1
.6
4

�0
.6
7

0.
52

2.
17

Af
te
r
Sc
ho

ol
Re
ad
in
g

Re
ad
in
g
sc
or
e
(z
)

Re
ad
in
g
sc
or
e
(z
)

�2
.0
6

�1
.0
8

�0
.2
3

1.
83

En
ha
nc
ed

Re
ad
in
g
O
pp

or
tu
ni
tie
s

%
of

re
qu

ire
d
co
ur
se
s
pa
ss
ed

Co
m
p.

sc
or
e
(z
)

�1
.6
0

�1
.0
0

�0
.5
3

1.
07

Re
ad
in
g
vo
ca
b.

sc
or
e
(z
)

Co
m
p.

sc
or
e
(z
)

�1
.6
0

�0
.8
7

�0
.5
3

1.
07

Re
ad
in
g
co
m
p.

sc
or
e
(z
)

Co
m
p.

sc
or
e
(z
)

�1
.6
0

�0
.8
7

�0
.5
3

1.
07

Ea
rly

Co
lle
ge

H
ig
h
Sc
ho

ol
s

9t
h
gr
ad
e
on

tr
ac
k
(%

)
M
at
h
sc
or
e
(z
)

�0
.8
3

0.
35

1.
38

2.
21

9t
h
gr
ad
e
on

tr
ac
k
(%

)
Re
ad
in
g
sc
or
e
(z
)

�0
.7
0

0.
36

1.
40

2.
09

G
ra
du

at
ed

(%
)

M
at
h
sc
or
e
(z
)

�0
.8
3

0.
30

1.
30

2.
13

G
ra
du

at
ed

(%
)

Re
ad
in
g
sc
or
e
(z
)

�0
.7
7

0.
35

1.
38

2.
15

Sm
al
lS

ch
oo
ls
of

Ch
oi
ce

9t
h
gr
ad
e
cr
ed
its

ac
cu
m
ul
at
ed

(#
)

M
at
h
sc
or
e
(z
)

�1
.0
1

�0
.1
3

0.
68

1.
69

9t
h
gr
ad
e
cr
ed
its

ac
cu
m
ul
at
ed

(#
)

Re
ad
in
g
sc
or
e
(z
)

�1
.1
3

�0
.3
0

0.
71

1.
84

9t
h
gr
ad
e
on

tr
ac
k
(%

)
M
at
h
sc
or
e
(z
)

�1
.0
5

�0
.1
7

0.
68

1.
73

9t
h
gr
ad
e
on

tr
ac
k
(%

)
Re
ad
in
g
sc
or
e
(z
)

�1
.1
7

�0
.3
0

0.
71

1.
89

G
ra
du

at
ed

(%
)

M
at
h
sc
or
e
(z
)

�0
.9
9

�0
.1
3

0.
68

1.
68

G
ra
du

at
ed

(%
)

Re
ad
in
g
sc
or
e
(z
)

�1
.1
3

�0
.2
3

0.
71

1.
84

So
ur
ce
:
Fi
nd

in
gs

in
th
is

ta
bl
e
w
er
e
co
m
pu

te
d
fr
om

da
ta

fo
r
th
e
no

n-
pa
ra
m
et
ric

an
al
ys
is

sa
m
pl
e
fo
r
ea
ch

st
ud

y/
ou

tc
om

e/
pr
et
es
t
sc
en
ar
io
.
To

fa
ci
lit
at
e
in
te
rp
re
ta
tio

n,
ea
ch

pr
et
es
t
is

ex
pr
es
se
d
as

a
st
an
da
rd
iz
ed

z
sc
or
e
ba
se
d
on

th
e
m
ea
n
an
d
st
an
da
rd

de
vi
at
io
n
of

sc
or
es

on
th
e
sa
m
e
te
st

fo
r
a
br
oa
d-
ba
se
d
re
fe
re
nc
e
po

pu
la
tio

n
lik
e
th
e
na
tio

n;
a
st
at
e;

or
a
la
rg
e,

ur
ba
n
sc
ho

ol
di
st
ric
t.

USING DATA FROM RANDOMIZED TRIALS 17



To provide such comparisons for the present analysis, we first defined alternative
target-population pretest-score ranges. We next defined alternative target-population
density functions across those pretest-score ranges. Then, for each combination of pre-
test-score range and density function, we predicted the difference between the mean
treatment effect at one end of the pretest-score range (to emulate an RDD cut-point)
and that for the full range (to emulate a target population). This predicted treatment-
effect difference, Ds; is the bias, GENBIAS; we would expect if an estimate of the treat-
ment effect at an RDD cut-point were generalized to the adjacent target population.

Our bias assessment is based on two illustrative target populations: (1) students with
pretest scores between an RDD cut-point and one-half standard deviation below it, and
(2) students with pretest scores between an RDD cut-point and a full standard deviation
below it. Our assessment focuses on students below an RDD cut-point because most
educational interventions are targeted on students who need assistance.19 However, our
approach and findings apply equally well to target populations that are above an RDD
cut-point.

For each target population, we consider the three density functions in Figure 2. The
top function in the figure is for densities that decrease at a constant rate from Dmax at
P1 to zero at P2: The middle function is a uniform distribution with density Dmax for
each pretest score from our RDD cut-point, P1; to the far end of our target-population
pretest-score range, P2: The bottom function is for densities that increase at a constant
rate from zero at P1 to Dmax at P2: These simple density functions approximate a broad
range of possible target-population distributions.

Note that a constantly decreasing density has most of its target population near the
RDD cut-point, P1: Thus, its mean treatment effect is heavily weighted toward treatment
effects for population members who are close to the cut-point. We therefore refer to its
GENBIAS findings as “optimistic” predictions.20 At the opposite extreme, the constantly
increasing density function has almost none of its target population near the RDD cut-
point and its mean treatment effect is heavily weighted toward treatment effects for
population members who are far from the cut-point. We refer to GENBIAS findings for
this density function as “worst-case” predictions. Note, however, that for a pretest distri-
bution with so few sample members near the cut-point, an RDD would be very under-
powered and thus probably would not be conducted for other than extremely large
samples. Between these two extremes, the uniform distribution gives equal weight to
treatment effects that are close to and far from the cut-point. We thus refer to
GENBIAS findings for this distribution as our “best-guess.”

Online Appendix C derives the following GENBIAS expressions for a linear treatment
effect model with each of our three density functions.

19Two important exceptions to this general treatment assignment tendency are the Thistlethwaite and Campbell (1960)
study of the effects of National Merit Scholarships (which first introduced the regression discontinuity design) and the
Angrist and Rokkanen (2015) study of Boston’s elite exam schools discussed earlier.
20The three characterizations of our bias predictions discussed here hold for the full range of possible pretest scores
when treatment effects are a monotonic function of pretest scores, as in our linear model. These characterizations also
hold for potentially large portions of the pretest-score range when treatment effects are a non-monotonic function of
pretest scores, as in our quadratic model, the results of which are discussed later.
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GENBIASdecreasing ¼ 1
3
b2 P1�P2ð Þ optimistic prediction (7)

GENBIASuniform ¼ 1
2
b2 P1�P2ð Þ best guess (8)

GENBIASincreasing ¼ 2
3
b2 P1�P2ð Þ worst-case prediction (9)

Based on these expressions and our linear treatment-effect findings, Table 5 presents
GENBIAS predictions for the four scenarios with evidence of linear treatment-effect/pre-
test-score covariation. Narrowing the focus to these four scenarios makes it clear that
evidence of this covariation was only found for two types of outcomes: (1) vocabulary
measures (for HSIS and ERO) and (2) a percentage measure with observations that are
heavily concentrated near its maximum possible value (for ECHS). It is not clear why
the two vocabulary measures exhibit treatment-effect/pretest-score covariation. However,
as discussed earlier, covariation for the ECHS constrained percentage measure reflects a
pronounced ceiling effect, which could be diagnosed in practice and therefore need not
produce unwarranted RDD generalizations.

Now consider the magnitude of our linear bias predictions in Table 5. Note first that
for a target population with a half–standard deviation pretest-score range, our best-guess

Density

Rating

Constantly Increasing Density

Dmax

Density

Rating

Uniform Density

Dmax

P2

Density

Rating

Constantly Decreasing Density

Dmax

P1

P2 P1

P2 P1

Figure 2. Alternative pretest-score density functions.
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biases are modest in magnitude (�0.030 standard deviation for the two vocabulary
measures and �1.377 percentage points for the percentage measure). In addition, the
worst-case biases (which, as noted earlier, are unlikely to occur in practice for an RDD)
do not change this conclusion. For a target population with a full–standard deviation
pretest-score range, our best-guess bias is modest in magnitude for receptive vocabulary
(0.029 standard deviation) and moderate in magnitude for the other three measures
(0.060 standard deviation for reading vocabulary and 2.088–2.755 percentage points for
ninth-grade on-track rates). Here, too, the worst-case bias predictions do not change
our overall conclusion. Furthermore, linear bias predictions reported in Online
Appendix Tables C.2 and C.3 for the 14 scenarios without evidence of linear treatment-
effect/pretest-score covariation indicate little margin for RDD generalization bias.

To assess the sensitivity of our linear GENBIAS predictions to the functional form of
our model of the relationship between treatment effects and pretest scores, we reesti-
mated those bias predictions for all 18 scenarios using the quadratic model described
earlier. To do so, we first estimated b01; b

0
2; and b03 from Equation 4 for each scenario

(see Online Appendix Table C.4). Using these findings and quadratic GENBIAS expres-
sions derived in Online Appendix C, we computed bias predictions for each scenario.
Because quadratic GENBIAS predictions depend on the actual values of P1 and P2; not
just on their difference, it was necessary to select a value of P1 for each prediction. We
set P1 equal to the mean sample pretest score for each scenario because uncertainty
about predictions from an estimated regression model is least at its sample mean. We
then set P2 for each scenario equal to one-half a standard deviation and a full standard
deviation below P1:

21 Online Appendix Tables C.5 and C.6 report the resulting
GENBIAS findings.

Table 5. Linear predictions of RDD generalization bias for scenarios with evidence of linear treat-
ment-effect/pretest-score covariation.

Study & outcome Pretest

Predicted bias

Optimistic prediction
Best
guess

Worst-case
prediction

For a half–standard deviation rating range

Head Start Impact Study
Receptive vocab. score (z) Letter/word score (z) �0.010 �0.015 �0.020

Enhanced Reading Opportunities
Reading vocab. score (z) Comp. score (z) 0.020 0.030 0.040

Early College High Schools
9th grade on track (%) Math score (z) �0.918 �1.377 �1.836
9th grade on track (%) Reading score (z) �0.696 �1.044 �1.392

For a full–standard deviation rating range

Head Start Impact Study
Receptive vocab. score (z) Letter/word score (z) �0.020 �0.029 �0.039

Enhanced Reading Opportunities
Reading vocab. score (z) Comp. score (z) 0.040 0.060 0.080

Early College High Schools
9th grade on track (%) Math score (z) �1.836 �2.755 �3.673
9th grade on track (%) Reading score (z) �1.392 �2.088 �2.784

Note. Optimistic predictions reflect a steeply declining density of individuals as ratings move away from their cut-point
value; best-guess predictions reflect a uniform density of individuals as ratings move away from their cut-point value;
worst-case predictions reflect a steeply rising density of individuals as ratings move away from their cut-point value.
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Now consider the single scenario that showed evidence of a quadratic treatment-
effect/pretest score relationship—that for the relationship between graduation effects of
Early College High Schools and their students’ math pretest scores. Findings in Online
Appendix Tables C.5 and C.6 for the scenario indicate RDD generalization bias that is
modest in magnitude (ranging from 0.255–0.641 percentage points across our optimistic
to worst-case predictions) for a half–standard deviation rating range and moderate in
magnitude (ranging from 0.772–2.067 percentage points across our optimistic to worst-
case predictions) for a full–standard deviation rating range. Thus, overall, our findings
for a quadratic model indicate limited potential for substantial RDD generalization bias.

Discussion

To conclude, we briefly summarize and interpret the present findings, note their limita-
tions and strengths, and consider several additional issues.

Summary and Interpretation

The present findings suggest that RDD estimates of educational treatment effects can
often generalize to meaningful target populations. The first step toward this conclusion
is the fact that little covariation was observed between educational intervention effects
and students’ pretest scores, which is the source of RDD generalization bias. For
example, Figure 3 illustrates that, together, our parametric and non-parametric analyses
provide no evidence of this covariation for 13 of the 18 study/outcome/pretest scenarios
examined, some evidence of covariation for three scenarios, and strong evidence of
covariation for only two scenarios. Furthermore, these latter two scenarios represent

2 scenarios

3 scenarios

13 scenarios

Strong evidence of covaria�on with empirically iden�fiable ceiling effects

Some evidence of covaria�on

No evidence of covaria�on

Figure 3. Pretest-score/treatment-effect covariation.

21Sensitivity tests that we conducted indicate that our quadratic GENBIAS predictions for the one scenario with evidence
of a quadratic relationship between treatment effects and pretest scores vary somewhat for moderate changes in the
value of P1:
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pronounced ceiling effects that can be identified in practice, making it possible to pre-
vent unwarranted RDD generalizations.

To help readers visualize the range of our best-guess RDD generalization bias find-
ings, Figure 4 plots the 95% confidence interval for the best-guess linear bias estimate
for each of our 18 scenarios in order from most negative to most positive bias. To
report all bias estimates on the same scale, we converted those for the nine scenarios
with outcomes measured in percentage points and those for the two scenarios with out-
comes measured in course credits into effect sizes reported in standard deviation units.
The top plot in Figure 4 is for a half–standard deviation target population, and the bot-
tom plot is for a full–standard deviation target population. (Online Appendix Table A.8
reports the point estimate for each bias assessment).

To place these findings in context, note that when considering impact estimation bias
due to sample attrition, The What Works Clearinghouse (WWC) states that, “A toler-
able level of bias is defined as an effect size of 0.05 standard deviation or smaller… .The
WWC’s threshold for the tolerable level of bias was based on extensive consultation
with experts” (U.S. Department of Education, Institute of Education Sciences, 2017, p.
10).22 For easy reference, we superimposed this bias threshold on the plots in Figure 4.

Note that our best-guess linear bias estimates for a half–standard deviation target
population vary from slightly negative (approximately –0.05 standard deviation) to
slightly positive (0.03 standard deviation), with 15 of these 18 estimates and their
confidence intervals clustering tightly around zero and none of them exceeding the
WWC bias threshold. Furthermore, the two bias estimates with the largest magni-
tudes (approximately –0.05 and –0.04 standard deviation) represent the readily diag-
nosable ceiling effect discussed earlier for ECHS ninth-grade on-track rates.
Corresponding findings for a full–standard deviation target population reflect the
same pattern, although with magnitudes that are twice those of their counterparts
for a half–standard deviation target population.23 As can be seen, 15 of these esti-
mates are within the WWC threshold for an acceptable bias, one is just outside the
threshold, and the two that are furthest outside the threshold represent empirically
identifiable ceiling effects. As a sensitivity test, for the one scenario with evidence of
quadratic covariation between impacts and pretest scores, we computed the RDD
generalization bias from our quadratic model. Our resulting best-guess quadratic bias
estimates were –0.01 standard deviation for a half–standard deviation target popula-
tion and –0.04 standard deviation for a full–standard deviation target population.
Both estimates are within the WWC bias threshold.

Limitations and Strengths

When assessing the present results, it is important to consider the limitations and
strengths of the analysis that produced them. Perhaps the most important limitation of

22WWC standards for acceptable bias from sample attrition should apply equally well to bias from RDD generalization,
because both biases represent the distance between the expected value of an estimator and the actual value of its
estimand, where an estimand represents a specific parameter for a specific population.
23It is interesting to note that two of the three previous studies of RDD generalizability that we discussed earlier
(Angrist & Rokkanen, 2015; Wing & Cook, 2013) found empirical support for RDD generalizability, whereas the third
study (Dong & Lewbel, 2015) found evidence of RDD generalization bias.
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this analysis is that it is based on the experience of only six RCTs. Thus, its generaliz-
ability is limited. Fortunately, those six RCTs span the developmental gamut from pre-
school to high school and involve large and diverse samples from many locations across
the United States. Hence, they reflect a wide range of educational practices, educational
environments, and student populations. In addition, they reflect the experience of six
quite different interventions.

A second potential limitation of the present analysis is its inability to identify with
confidence precise functional forms for relationships between treatment effects and pre-
test scores. To minimize this threat to the validity of our findings, we took several steps.
First, we conducted a non-parametric analysis that provides a simple, direct and
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Figure 4. Linear best-guess bias in standard deviation units. Source: Bias estimates in this figure were
obtained as explained in Online Appendix C and then converted into standard deviation units where
necessary. Point estimates are shown in Online Table A.8. Note: the What Works Clearinghouse (WWC)
states that “A tolerable level of bias is defined as an effect size of 0.05 standard deviations or small-
er… .The WWC’s threshold for the tolerable level of bias was based on extensive consultation with
experts” (U.S. Department of Education, Institute of Education Sciences, 2017, p. 10).
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informative look at treatment-effect/pretest-score covariation patterns unconstrained by
assumed functional forms.

Second, we conducted two alternative parametric analyses that together represent the
most frequently cited theories of relationships between educational treatment effects and
student pretest scores. Our linear parametric analysis imposes a monotonic relationship
that can represent either a compensatory theory of treatment effects (e.g., Ramey &
Ramey, 1998) with negative covariation between treatment effects and pretest scores, or
a “skills begets skills” theory of treatment effects (e.g., Cunha & Heckman, 2007) with
positive covariation. In addition, our quadratic parametric analysis imposes a non-
monotonic relationship that can represent a “bubble-kid” or “sweet-spot” theory with
the largest positive effects occurring for students with midrange pretest scores, who
might have a strong enough educational base to effectively participate in an intervention
but enough room for growth to exhibit demonstrable improvement. We are not aware
of established theories that predict more complex functional forms with multiple local
maximum or minimum treatment effects. However, if such cases arise in future research
of the type we have presented, researchers might want to consider using more flexible
(although complex) data-driven estimation methods that are emerging in the literature,
such as Bayesian Additive Regression Trees (Hill, 2011).

Additional Issues

Before concluding our discussion, it is useful to consider four additional issues. First is
the role of pretest reliability in producing the present dearth of observed treatment-
effect/pretest-score covariation. As described earlier, covariation between treatment
effects and an empirical measure (e.g., student pretest scores) is the product of two fac-
tors: (1) the reliability of the measure and (2) covariation between treatment effects and
whatever is being measured systematically. Thus, in theory, one explanation for the pre-
sent dearth of observed covariation is weak pretest reliability. To explore this possibility,
we reviewed the literature on the reliability of the pretests used for the present analysis
(see Online Appendix D). Findings from our review suggest that the reliability of those
pretests is uniformly high, ranging mainly from about 0.85–0.95 (which is probably
because we used well-established pretests). Hence, weak pretest reliability cannot explain
the weak treatment-effect/pretest covariation that we found.24 Instead, these findings
probably represent weak covariation between treatment effects and true prior academic
achievement.

A second issue to consider is the use of sample density functions to help assess RDD
generalizability in practice.25 Specifically, for any given RDD study we recommend that
researchers examine the location of the cut-point in the sample density distribution. If
the cut-point is in a high-density region, the proportion of sample members with ratings
near the cut-point—and thus with potentially similar treatment effects—is larger than if
the cut-point is in a low-density region. Thus, to the extent that a study sample repre-
sents a relevant target population, RDD findings are more likely to generalize to a

24Because the reliability estimates we found were based on different reliability measures for different pretests (e.g.,
internal consistency, split-half or test-retest reliability), these findings are not fully comparable.
25We thank Mike Weiss for this suggestion.
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relevant population when their cut-points are in a high-density sample region than
when their cut-points are in a low-density sample region, other things being equal.

A third issue to note is that all RDD generalization bias estimates that we report are
for target populations that lie on one side of a potential RDD cut-point. However, it is
likely that policy-relevant target populations for some educational interventions straddle
an RDD cut-point. For example, it might be important to estimate the mean effect of
an educational intervention for a target population that lies in the pretest-score neigh-
borhood of an RDD cut-point (both above and below it). In such cases, if the relation-
ship between intervention effects and pretest scores is approximately monotonic, the
mean intervention effect at the cut-point might be very close to the mean intervention
effect for the target population, even with strong covariation between intervention
effects and pretest scores. This is because a negative bias on one side of the cut-point
will tend to offset the corresponding positive bias on the other side of the cut-point. For
such target populations, the present findings probably overstate RDD generalization
bias, perhaps by a lot. Indeed, for a symmetric target-population density function that is
centered on an RDD cut-point and a linear relationship between intervention effects
and pretest scores, RDD generalization bias for the target population will be zero,
regardless of the strength or direction of covariation between intervention effects
and pretests.

A fourth and final issue to consider is the relative roles of the present approach to
RDD generalizability and those of the three approaches discussed earlier. For example,
recall that Wing and Cook (2013) propose a pretest-enhanced RDD for extrapolating
RDD findings based on observable relationships between a pretest and post-test meas-
ured on the same scale by the same instrument and a rating which measures something
different. Although promising, this approach is limited to situations with the requisite
pretests, outcomes, and ratings.

Next, recall that Angrist and Rokkanen (2015) propose a method for extrapolating
RDD findings by conditioning on covariates that render treatment assignment condi-
tionally ignorable. In addition, they demonstrate how to test the validity of this condi-
tional ignorability assumption (their CIA) for a given RDD. If passed, this test opens
the door to using conventional regression or matching methods to estimate treatment
effects away from an RDD cut-point. Although promising, this approach requires cova-
riates that predict RDD treatment assignment and individuals’ potential outcomes well
enough to eliminate the conditional correlation between potential outcomes and treat-
ment assignment.

Last, recall that Dong and Lewbel (2015) propose an approach for using standard
RDD methods to estimate the treatment-effect change rate at an RDD cut-point to
explore the causal implications of very small changes in a treatment-assignment thresh-
old. Although promising, this approach is not readily applicable for estimating the mean
treatment effect for a target population with ratings that are not immediately adjacent
to an RDD cut-point.

In contrast to the preceding approaches which use data from a given RDD study to
help generalize treatment-effect estimates from that study, the present approach uses
RCT data from a group of studies to assess the likely generalizability of RDD estimates
from other studies. Thus, although the present approach can help to inform
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expectations about the generalizability of specific RDD findings, it cannot directly assess
or enhance the generalizability of those findings.

Each of the preceding approaches attempts to address different questions about RDD
generalizability, each approach is applicable to different situations, and each approach
has different strengths and weaknesses. However, together as a methodological portfolio,
the four approaches comprise a formidable set of tools for expanding and enhancing the
use and usefulness of the regression discontinuity design, which in the judgement of
many researchers (e.g., Lee & Lemieux, 2010), is an especially strong quasi-experimen-
tal design.
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Appendix

Study synopses

Head Start Impact Study (HSIS)

Intervention: The Head Start (HS) program seeks to improve school readiness among children
from low-income families. The most common HS programs are center-based programs, engaging
children primarily in a classroom setting and providing at least two home visits per year. Other
HS models include home-based programs, family child care programs, and combination pro-
grams. HS participation can last for up to two years.

Target population: Low-income children (3- to 4-year-olds) in a nationally representative sam-
ple of HS programs, excluding those intended to serve specific populations.

Study design: Individual random assignment within HS centers. The study compares students
who were offered enrollment in HS with students who were not allowed to enroll in HS.

Outcomes: Cognitive measures from an abbreviated version of the Peabody Picture Vocabulary
Test-III, and the letter-word identification, oral comprehension, and applied problems subscales
of the Woodcock-Johnson III. Socioemotional measures created based on parent-reported items
from the Child Behavior Checklist and the Leiter-R Assessor Report. All assessments were done
at the end of the year in which the student enrolled in Head Start.

Study sample: Approximately 300 HS centers and 3,500 children.
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Report: Bloom and Weiland (2015); Puma et al. (2010).

After-School Math (ASM)

Intervention: A structured and academically rigorous after-school program using the Harcourt
math curriculum. Program enrollment could last for up to two years.

Target population: Students in Grades 2–5 who attend after-school programs.
Study design: Individual random assignment within after-school center/grade/cohort blocks.

The study compares students who were randomized to an academically oriented after-school pro-
gram with students who were randomized to less formal academic support offered in a regular
after-school program. Both programs operated in the same after-school centers.

Outcome: SAT-10 total math score at the end of students’ first year in the study.
Study sample: 25 after-school centers and approximately 2,500 students (Black, Somers,

Doolittle, Unterman, & Grossman, 2009).
Report: Black et al. (2009).

After-School Reading (ASR)

Intervention: A structured and academically rigorous after-school program using the Success
for All reading curriculum. Program enrollment could last for up to two years.

Target population: Students in Grades 2–5 who attend after-school programs.
Study design: Individual random assignment within after-school center/grade/cohort blocks.

The study compares students who were randomized to an academically oriented after-school pro-
gram with students who were randomized to less formal academic support offered in a regular
after-school program. Both programs operated in the same after-school centers.

Outcome: SAT-10 total reading score at the end of students’ first year in the study.
Study sample: 25 after-school centers and approximately 2,300 students (Black et al., 2009).

These centers and students differ from those in the After-School Math demonstration.
Report: Black et al. (2009).

Enhanced Reading Opportunities (ERO)

Intervention: Ninth-grade students take a supplemental reading course in place of an elective
class, using either the Reading Apprenticeship Academic Literacy (RAAL) program or the Xtreme
Reading program. Program enrollment was intended to last for one year.

Target population: Ninth-grade students whose reading ability is at least two years below grade
level.

Study design: Individual random assignment within each school by cohort block. In addition,
schools were randomly assigned to one of the two reading curricula. The study compares students
who were selected to enroll in the supplemental reading class (using either RAAL or Xtreme
Reading) with students who took some other elective class regularly offered by the school.

Outcomes: Reading comprehension and vocabulary scores on the GRADE assessment, and
credits earned as a percentage of credits required for graduation during the program year and fol-
low-up year.

Study sample: 34 public schools and approximately 5,500 students (Somers et al., 2010).
Report: Somers et al. (2010).

Early College High School (ECHS)

Intervention: Early College High Schools provide students with concurrent high school and
college experiences. Students attend high school on a college campus, enroll in college courses,
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and are expected to complete two years of transferable college credits or an associate degree by
the time they earn their high school diploma.

Target population: High school students who are underrepresented in college: first in their
family to go to college; low-income students; members of racial and ethnic groups that are
underrepresented.

Study design: Schools were selected based on whether they were overenrolled and agreed to
use a lottery system to assign students. Students were randomly assigned within each school by
cohort block. In some cases, the lottery for a given school by cohort block gave students different
probabilities of selection into the program group.

Outcomes: Ninth-grade “on-track” indicator and five-year graduation rate.
Study sample: 19 schools and approximately 4,000 students (depending on the outcome).
Report: Edmunds et al. (2017).

Small Schools of Choice (SSCs)

Program: Small schools of choice are academically nonselective high schools with typically
around 500 students, and they are based on the principles of academic rigor, real-world relevance,
and personalized relationships.

Target population: Incoming first-time ninth graders in New York City who listed an SSC
among their high school choices.

Study design: Individual random assignment from a lottery-based admission system. The study
compares students who indicated interest in enrolling in an SSC and were assigned by lottery to
an SSC with those who indicated interest in an SSC but were not assigned to one.

Outcomes: The number of course credits accumulated in ninth grade, the percentage of first-
time ninth graders who were on track toward graduation, and the percentage of first-time ninth
graders who graduated from high school in four years.

Study sample: 85 SSCs and approximately 13,000 to 15,000 students (depending on
the outcome).

Report: Bloom and Unterman (2014).
Notes. Adapted with permission from Weiss et al. (2017).
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