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Rowland’s Knowledge Quartet (KQ) model can provide illuminating insights into teacher 
practice in mathematics classrooms. This paper explores a framework developed for 
pedagogical technology knowledge (TPACK) to consider teacher practice in integrated 
technology classrooms alongside the KQ model. Observations of a Year 11 class in an 
Australian school provides evidence that technology may impact practice in each of the four 
component areas, Foundation, Connections, Transformation and Contingency knowledge of 
the Knowledge Quartet model. 

The Powerful Knowledge Project 
Many studies in recent years have explored teachers’ knowledge for teaching 

mathematics (e.g., Ball, Thames, & Phelps, 2008; Rowland, Turner, Thwaites, & Huckstep, 
2009). The Powerful Knowledge Project, from which this paper reports, aimed to consider 
changes in the ways that teachers drew on their subject and pedagogical content knowledge 
as the subject matter they taught became more specialised and advanced. The project was 
implemented in two curriculum areas—Mathematics and English—across two Australian 
states where the curriculum is similar, but the context of schooling differs, and in New 
Zealand, where there is a different curriculum and schooling structure. In volunteer teachers’ 
classrooms, single lessons were video-recorded for later analysis and the recordings were 
supplemented by field notes taken by an experienced observer. Brief interviews were held 
with the teachers concerned before and after lessons. The lessons were not specially staged 
for the project but aimed to be a snapshot of regular lessons. The video-recordings were 
viewed, transcribed and analysed by the research team using indicators described in the four 
quadrants of the Knowledge Quartet (Rowland et al., 2009).  

This paper reports on observations from a Year 11 mathematics lesson in an Australian 
classroom where technology was highly integrated. 

Theoretical Perspectives: The Knowledge Quartet and Technology 
Since the seminal work on Pedagogical Content Knowledge (PCK) by Shulman (1987), 

there has developed a consensus that teachers need to be competent in both pedagogy and 
content to be effective mathematics teachers (e.g., Hill, Schilling, & Ball, 2004). Studies 
have shown that professionally competent, experienced teachers demonstrate substantive 
knowledge regarding mathematics content and pedagogy with respect to mathematics 
specifically, and in general teaching practices (e.g., Beswick, Callingham, & Watson, 2012; 
Blömeke, Suhl, & Kaiser, 2011; Schmidt et al., 2008). These different knowledge 
components should be reflected meaningfully in classroom teaching for effective student 
learning outcomes. Such understandings underpinned the research by Rowland and his 
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colleagues (e.g., Rowland, 2013; Rowland et al., 2009), which used a grounded theory 
approach to analyse the behaviours and practices of novice pre-service teachers of 
mathematics in primary and middle school classrooms from the United Kingdom. Within 
their framework known as the Knowledge Quartet (KQ), they identified four dimensions of 
knowledge and the processes for using that knowledge for teaching mathematics, as 
described in Table 1. 
Table 1 
Summary of the KQ framework (drawn from Rowland, 2013, p. 26) 

The KQ framework has proved effective in the analysis of lessons recorded for the 
Powerful Knowledge Project to date (e.g., Getenet & Callingham, 2019 [submitted]). 
However, there is some uncertainty of its generalisability outside of the context in which it 
was developed (novice-primary teachers in the UK). How applicable is it at higher secondary 
levels and what value does it have in examining the practice of expert teachers? A review of 
the analysis of lessons (Rowland et al., 2009) indicates that the pre-service teachers were 
frequently operating within a traditional teacher-led instructional paradigm with teacher talk 
the main medium of instruction. How might the framework change, for example, in an 
inquiry-focused or a technology-rich classroom with experienced teachers? In addition, we 
have explored the value of additional frameworks to further inform our analysis. In one of 
these, Getenet and Callingham (2019, submitted) used the framework developed by Behr et 
al. (1997) to examine the teaching of fractions. They used the five interrelated constructs of 
the Behr et al. (1997) framework (part-whole, ratio, operator, quotient, and measure) to 
investigate a fraction lesson in a New Zealand Year 7 classroom. Their findings showed 
students often initiated unexpected uses of fractions as quotient and as operator, with 
implications for the teacher’s Foundation knowledge and Contingency. More recently, 
Oates, Callingham and Hay (2019, submitted) trialled the Pedagogical Technology 
Knowledge (PTK) framework developed by Thomas and Hong (2013) to examine the use of 
integrated technology in a Year 9 probability lesson.  

The integration of technology in teaching has received increasing attention as a factor 
for the development of students’ learning, and changing classroom dynamics (e.g., Getenet, 
2017; Mishra & Koehler, 2006; Thomas & Hong, 2013). In this respect, researchers have 
considered the three intersecting domains of technical knowledge, content knowledge, and 

Categories Brief description 
Foundation Teachers’ mathematical content knowledge which includes teachers’ 

beliefs about and understandings of mathematics itself and their ability 
to make meanings and create descriptions of relevant mathematical 
concepts, and of relationships between them 

Transformation Teachers’ ability to transform their foundation mathematical 
knowledge into pedagogical actions, for example using powerful 
analogies, illustrations, explanations, and demonstrations  

Connection The ability of teachers to make connections between different 
meanings and descriptions of mathematical concepts and make these 
explicit. It also examines the teacher’s skill in suggesting alternative 
ways of representing ideas and carrying out procedures 

Contingency The teacher’s response to classroom events that were not planned or 
anticipated in the teachers’ planning, and the subsequent decisions they 
make (i.e., their capacity to “think on one’s feet”) 
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pedagogical knowledge for effective teaching (e.g., Mishra & Koehler, 2006). Various 
attempts have been made to conceptualise and analyse teachers’ practice using integrated 
technology, for example, in the PTK of Thomas and Hong (2013), which extended 
Shulman’s PCK-model (1987) to incorporate technology: 

A teacher's PTK applied to mathematics includes the principles, conventions and techniques required 
to teach mathematics through the technology (Thomas & Hong, 2013, p. 69). 

In this paper, we adopt the conceptual framework Technological Pedagogical Content 
Knowledge (TPACK) proposed by Mishra and Koehler (2006) as depicted in the right-hand 
component in Figure 1. The model shows three intersecting components of teacher 
knowledge, which in effect adds a third component, Technological Knowledge (TK), to the 
conceptualisations of Pedagogical Knowledge (PK) and Content Knowledge (CK) described 
in previous studies (e.g., Ball et al., 2008; Shulman, 1987). To integrate technology in 
effectively into teaching practice (the intersection of all three components conceptualised as 
TPACK), the claim is that teachers need to be competent in all three domains (Mishra & 
Koehler, 2006). However, Mishra and Koehler’s (2006) definitions of knowledge types are 
based on a generic definition of content and hence of pedagogical knowledge and PCK. Only 
a few studies have related the TPACK framework to specialised subject contexts and 
mathematics in particular (Getenet, 2017; Guerrero 2010).  

 

                   

Figure 1. Complementing frameworks: The KQ (Rowland et al., 2009) and TPACK (Mishra & Koehler, 
2006).  

Figure 1 shows how the TPACK framework might be used to complement the KQ, as is 
explored in this paper. On the one hand, the KQ, which explicitly defines PCK specific to 
mathematics teaching, can be used to analyse teacher practice across the four components of 
the model; on the other hand, we can use TPACK as an additional framework to help explain 
the influence of technology on teachers’ Foundation, Transformation, Connection, and 
Contingency knowledge. 

The Research Setting 
The research for this paper took place in an independent (non-government, non-

denominational) boys’ school in Australia. It offered education from Year 5 to Year 12, with 
the school identified as being in a high socio-economic band (Index of Community Socio-
educational Advantage (Australian Curriculum, Assessment and Reporting Authority, 2013) 
value 1215) and makes extensive use of digital learning practices. Teachers were asked not 
to prepare a special lesson but to go about their regular teaching. Researchers took notes 
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from brief interviews with the teachers before and after the lesson, to determine where this 
lesson fitted in with their overall teaching plan and the nature of their students, so the 
researchers might better interpret the progression of the lesson and the teachers’ actions. 
Participating teachers were given a wireless lapel microphone linked to a single portable 
tripod-based video camera set up at the back of the room. One researcher operated the 
camera, while another observed and took notes. Recordings were transcribed identifying the 
teacher and generic student contributions. 

The class on which this paper reports was a Year 11 class of 18 boys, seated in four long-
row tables. The teacher (Neil, not his real name) was an experienced registered teacher of 
secondary school mathematics with a degree in mathematics and science and a postgraduate 
university qualification in Education. He had taught mathematics at the school for more than 
10 years and the lesson occurred towards the end of the school year, so the teacher knew his 
students well. The observed lesson was a 60-minute part of a calculus unit that the teacher 
had been developing over several lessons. The main theme of the lesson was visually 
connecting the graphs of the gradient function with its initial function before differentiation 
and followed a previous lesson in which they had looked at differentiation from first 
principles.  

After a brief review of the learning, the students worked individually and with their 
immediate neighbours through the prepared activities and problems. Each student used a 
tablet-laptop computer (i.e., a laptop with the facility to write on the screen), connected to 
the internet and the school’s e-portal, which provided access to the lesson and enabled 
students to revise and review past content. The teacher used a tablet and a large-screen 
television monitor at the front of the room as his instructional focus point, connected through 
the e-portal to students’ computers. At different times he brought the class group together 
and used the screen to explain something to the whole group or to have the students review 
the problem under investigation and its “solution”. Although the teacher could monitor all 
laptops from the front, he constantly moved around the room talking to students in groups 
and individually.  

Linking TPACK and the Knowledge Quartet: Evidence from the Lesson 
Transcripts of the lesson were first analysed separately by three of the researchers to 

identify examples of practice within the four KQ components (Rowland et al., 2009) with 
close agreement in the resultant coding. We then looked for ways in which the seven 
categorisations of the TPACK framework (Mishra & Koehler, 2006) might distinguish 
between, or afford additional insights into, the examples identified within the KQ model. 
We also looked for examples from the lesson that might reflect elements of the TPACK 
model not previously identified in our KQ analysis. Figure 1 shows the relationship between 
the seven components of the TPACK Model as described earlier (PK, CK, TK, TPK, TCK, 
PCK, & TPACK), and we summarise some examples of these in Table 2.  

With respect to the KQ framework, the lesson clearly demonstrated the teacher’s strong 
Foundation knowledge across all parts, but more so at the start and end, in setting up and 
drawing the lesson together. At the start of the lesson for example, Neil reviewed the 
previous lesson and positioned the new lesson, stating:  

…yesterday, we were looking at differentiation by first principles and I kind of said, look, you could 
probably be very successful Year 11 and 12 calculus at the university if you didn’t really, if you got 
that right once and then you forgot about it, you could go on and be very good in terms of your 
calculus knowledge.  What we’re doing today is pretty central, okay?  So, you’re going to learn a 
whole bunch of things over the next couple of years, chain rule, product rule, quotient rule, integration, 
a whole lot of algebraic techniques, but this conceptual understanding and the graphical representation 
of what we mean by differentiation’s really important. 



   
 

 536 

This example illustrates Neil’s Foundation content knowledge (CK) in terms of the 
purpose and value in teaching differentiation from first principles; what Ball et al. (2008) 
would further categorise as Horizon Knowledge. It also identifies Neil’s knowledge of the 
importance of graphical representations for students to understand the concepts that they will 
meet in coming years and the need to make Connections between the various concepts (PK). 
Table 2  
Technology influencing Foundation, Transformation, Connection, and Contingency 
knowledge 

Other components became evident as the lesson progressed. Connections were seen for 
example in the procedures and the sequencing of concepts in the lesson. Neil began with 
concrete examples of calculating gradients on the curve of a function 𝑓(𝑥) using estimates 
from drawing tangents on the curve (estimating ∆&

∆'
), and moved towards connecting this with 

the graph of the gradient function 𝑓((𝑥). Soon after explaining the importance of what they 
would be doing, Neil demonstrated a powerful example of Transformation in describing the 
way he had set up the graphs, with the graphs of two functions 	𝑓(𝑥) drawn at the top, and 

Categories Observed evidence (“N” is the teacher Neil; “S” is used 
generically for student comments) 

TPACK 
Code(s) 

Example 1 
Foundation 

Instead of using the formula for differentiation, the teacher 
made a deliberate decision for the students to use a graphics 
calculator to estimate the gradients of a function on the 
graph of f(x) and connect this to the graphical representation 
of the gradient function. 

CK 
TPK 

 
PCK 

Example 2 
Transformation 

N: So, you’re going to get your graphics calculator out and 
for 𝑦 = 𝑥-, you’re going to find the gradient when x 
equals negative three. Or, the gradient when x equals 
negative two, etcetera. And then you’re going to plot those 
points on this set of axes, the one underneath… So for 𝑦 =
𝑥-, you’re going to plot the gradient function using those 
points here [Neil demonstrates on the screen]… so this 
gets the gradient function and state the equation of it. Then 
you’re going do the same thing for the second function… 
So guys, if you want to open up your tablet so you can fill 
that in, it’s fine but I’ll leave it up on the board.   

TPK 
 
 
 
 

TCK 
TK 

 
 
 

Example 3 
Connection 

N: So, guys, we’ve come across our first important point 
here. If you put negative 3, you said negative 3 squared 
is 9 and so you’re filling in the table and say oh (-3, 9).  
That’s great, you just found a point on the curve [Neil 
indicates on the screen]. But that’s not what the question 
asks you to do. It asks you to find the gradient at that 
point. Now clearly the gradient in there is negative. So, 
whatever you get has to be a negative value. 

 
CK 

 
 

TPK 

Contingency N: Okay. So, you reckon the gradient, when x is negative 3 
is 9? You reckon it’s got a positive gradient? 

S: Yeah, not really 
N: You need to use the trace function. You found the y 

values. You’ve got to find the gradient.   

CK 
 
 

TPACK 
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another set of axes aligned immediately below each function for sketching the points 
calculated for the gradient of 𝑓(𝑥). While one function was easily recognisable by the 
students as 𝑓(𝑥) = 𝑥-, the second function was more complex and there were no scales on 
the axes to help them determine its equation. Students had to make connections between the 
procedures and the concept of .&

.'
	 for 𝑓(𝑥) = 𝑥- to help them with the second more complex 

example, using the aligned axes to help them and transform this knowledge to a new context. 
Well, it just so happens that you went through a process to find the gradient function and it gave you 
the line .&

.'
= 2𝑥.  Alright? So, even before you start this one, you should be able to work out what 

you're expecting in advance…this is deliberately a graph with no scale. That's the origin, but you've 
got no numbers to work with. I want you to sketch… again, the Y axes or the vertical axis is lined up. 
I want you to sketch a possible gradient function of that on the axes below. No numbers. You can't 
use your calculator. You've got to look at it and interpret, right, "What have I just learnt and how can 
I apply that to a function that has no scale when I don't have any numbers?"   

Contingency is shown across the lesson as the teacher exchanges dialogue and stops and 
starts many times as the students come to an issue needing assistance. At one point in the 
lesson, Neil could see many students were confused about what turning points for a function 
itself told them about the gradient of that function, as distinct from the turning points of the 
gradient function. Neil asked one student to demonstrate on the screen how he used the 
turning points to help sketch the graph of the gradient function: 

S: So, firstly just these two points, the turning points, you know that they're going to be… the 
intercept's on the next graph because the gradient here is zero and so, you can plot them easily.  
And the next thing is… the turning point and the turning point's going to be the highest gradient 
on the graph, which is here. 

N: Hang on, so you mean the turning point of your gradient function? 

N: Sorry, I'm interrupting here, but you're telling me that… you're saying that this point has the 
highest gradient in this section? 

This extract shows Neil dealing with Contingency and connecting this back to 
Foundation knowledge using the definitions of turning points and gradients. This example 
also illustrates frequent observations from the lesson with respect to the sophisticated 
language used by the students in their conversations; further support for Neil’s attention to 
content knowledge (CK) and making connections (PCK). Neil revisited the concept of 
maximum and minimum turning points and their relationship to the gradient of the function 
later in the lesson to reinforce these connections. His choice of difficult examples was 
causing the students to struggle, requiring him to go back over terms and procedures. The 
suggestion here is that Neil’s strong Foundation knowledge and confidence in dealing with 
Contingency allowed for more effective Transformation and scaffolded the students in their 
struggle. This in turn helped students to make connections between the complex concepts. 

With respect to the use of technology, it is useful here to distinguish between 
“demonstration” technologies used by the teacher (e.g., OneNote to prepare the class 
materials provided to students and project on the screen) and tools for actually “doing” 
mathematics such as the graphics calculators used by the students and the teacher’s use of 
his tablet to show calculations and sketch directly onto graphs shown on the digital screen. 
Example 1 in Table 2 demonstrates how Neil used his awareness of the affordances of the 
graphics calculator (TPK) to design a lesson with an innovative approach to differentiation 
(CK) rather than what may be the more common approach using the formula (PCK). 
Example 2 shows how Neil used the technology to transform students’ knowledge, making 
connections between the gradients of a function calculated using technology (TK) and the 
gradient function itself, again lotted using technology (TPK). Examples 3 and 4 show how 
Neil responded to the Contingency by using the technology to distinguish between the 
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gradient of a function, and the value of the function itself at a certain point (CK). In doing 
this, he demonstrated his technical knowledge (TK) in the value of the calculator’s trace 
function and his technological pedagogical knowledge (TPK) in how this may help students 
understand this potentially confusing but critical conceptual difference. 

Summary 
The evidence and discussion presented here reinforce the findings from Oates et al. 

(2019, submitted) that there is indeed value in using the KQ framework (Rowland, 2013) to 
examine an experienced teacher’s practice at the upper secondary level, and thus supports 
extending the use of the KQ framework across curriculum levels (i.e., from primary to 
secondary). There are multiple examples that demonstrate how the teacher’s practice may 
be examined within all four components of the KQ model. The preliminary analysis by Oates 
et al. further suggested a greater exploration of the role of technology within the KQ 
framework when they observed that: 

There is an implication that the contributing codes within each of the four components may need some 
modification or extension to accommodate the impact of technology on teacher practice and the 
mathematics classroom (Oates et al., 2019 submitted, p. 7). 

The findings here add weight to this proposition, with clear examples of the impact of 
technology on the lesson within each of the four KQ components, and the additional insights 
into these provided by the TPACK framework. The teacher had a strong understanding of 
the purpose of the lesson and was working to build Foundation and Connection. He allowed 
the students to have control of the software but continually monitored their outputs to address 
any misconceptions (Contingency). Technology (OneNote) played a significant role by 
consolidating students’ work within one place while allowing for individual exploration. In 
this respect, Transformation is seen at the macro-control of the software and technology 
while the choice of activities and the time on task indicated the teacher had high levels of 
TPK (awareness of the technology’s affordances) and PCK in making Connections between 
procedures and concepts.  

Casting a TPACK lens over the Transformation, Connection, and Contingency 
dimensions of the KQ framework suggests the technology helped to facilitate students’ 
active engagement in learning and helped them connect concepts and consolidate their 
learning (TPK). There is no “dumbing down” of the software (TK) or the mathematics (CK); 
instead, we see the technology used to scaffold their learning (TPK) as the students worked 
at the high end of their knowledge (PK). Contingency was typically linked back to the 
foundation knowledge (PK) and the connection between concepts (CK). For the teacher, the 
technology was seen as a tool to advance the students’ mathematics knowledge (TCK) in a 
seamless, integrated manner. The teacher may therefore be regarded as working within the 
intersection of the three components of TK, PK, and CK, conceptualised as TPACK by 
Mishra and Koehler (2006, see Figure 1). 

We thus conclude that using complementary models such as depicted in Figure 1 
provides valuable insights into teachers’ classroom practice. The next steps might be to 
compare different lessons and examine to what extent such an approach allows us to identify 
the implications for effective teacher classroom practice. 
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