
Roberts & Wright 

2019. In G. Hine, S. Blackley, & A. Cooke (Eds.). Mathematics Education Research: 
Impacting Practice (Proceedings of the 42nd annual conference of the Mathematics 
Education Research Group of Australasia) pp. 596-603. Perth: MERGA.  
 
 

Learning Progressions for Students working within Level 1 of the 
New Zealand Mathematics Curriculum 

Julie Roberts 
New Zealand Council for Educational 

Research 
<julie.roberts@nzcer.org.nz> 

Vince Wright 
 

<vince.wright.3.14@gmail.com> 

Learning trajectories/progressions are an emerging research focus in mathematics education. 
A set of descriptors of early progress in mathematics was developed for students with 
complex needs. Developers leveraged off existing research-based frameworks and meta-
analyses, as well as integrating findings from individual research studies in some sub-
constructs. Issues emerged during the process that are informative to others working on the 
development of learning trajectories/progressions. 

Introduction 
Research into learning trajectories in mathematics has momentum internationally though 

trajectories, or progressions, vary in grain size, scale, and the methodology used to create 
them (Siemon, Horne, Clements, Confrey, Maloney, Sarama, Tzur & Watson, 2017). In New 
Zealand learning progressions frameworks (LPFs) were developed recently. These 
frameworks provide high-level (or big-picture) illustrations of the typical pathways students 
take as they make progress in reading, writing, and mathematics (Ministry of Education, 
2019).  

This paper shares the results of a partnership between the New Zealand Council for 
Educational Research (NZCER) and the New Zealand Ministry of Education to develop an 
inclusive developmental mathematics framework for students who are learning within Level 
1 of the New Zealand Curriculum (NZC) (Ministry of Education, 2007). The rationale for 
this development is that detailed descriptions of progress will support educators, particularly 
those working with learners with high and complex needs (learning, hearing, vision, 
mobility, language use, and social communication) of various ages, to provide needs-based 
opportunities to learn, monitor achievement, and inform students and parents.    

This paper outlines how existing research is influencing the development of the 
progressions, and discusses the challenges faced by the team to develop descriptors that are 
inclusive of a diverse range of learners. The research question is: “How can existing 
literature be used to create learning progressions for students at the early stages of their 
mathematical development?” 

Background 
Establishing growth paths for student learning is an on-going research focus in 

mathematics education (Weber & Lockwood, 2014; Wright, 2014). Weber, Walkington, and 
McGalliard (2015) distinguish learning progressions from learning trajectories. They 
describe progressions as pre-determined, sequential checkpoints that are underpinned by a 
validation view of student learning. Learning trajectories, usually described as hypothetical, 
arise from an emergent view of student learning as it occurs in classrooms, interviews, and 
naturalistic settings. Curriculum statements are usually progressions while trajectories are 
the product of empirical research. The authors also trace types of learning trajectories back 
to epistemological positions of their authors; radical constructivist, cognitive science, or 
situated cognition.  
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Siemon et al. (2017) position trajectories and progressions as synonymous. They 
document a panel discussion of prominent researchers in the field of learning trajectories. 
While the authors clearly outline their different epistemological perspectives, there is 
considerable consensus about the approaches they adopt. Development of learning 
trajectories begins with a conjectured pathway that is developed from experience and a 
detailed search and synthesis of the pertinent literature. This static trajectory is tested and 
iteratively revised with the aim of improving its usefulness for developing students’ 
knowledge and understanding of the mathematical topic or field, within instructional 
settings. Usually trajectories include a framework for conceptual development, methods of 
evaluating students’ thinking at points in time, instructional materials, and evidence for 
validation of the final trajectory. The research reported here adopts Siemon et al. (2017) 
perspective.  

Research into learning trajectories looks for commonality among the relevant population 
of learners. The unique nature of the work reported here is that the intended learners are 
those with high and complex learning needs. Rankin and Regan (2004) identify the essence 
of complex needs as including both breadth (multiple needs that are interrelated or 
interconnected) and depth of need (profound, severe, serious, or intense needs). In New 
Zealand school settings, there is further definition by level of need for funding purposes—
either very high or high needs. The areas of need are learning, hearing, vision, mobility, 
language use, and social communication.   

The project team drew on the existing research literature, particularly that related to early 
childhood, to create a set of progressions relevant to students with high and complex needs. 
The most informative and readily applicable literature sources are established frameworks, 
learning trajectories, and meta-analyses of the known research. Few established research-
informed frameworks exist for students with complex needs. A notable exception is the 
ABLES framework developed at the University of Melbourne (Strickland, Woods, & 
Pavlovic, 2016). Some detailed trajectories exist for a few mathematical topics. Clements, 
Wilson, and Sarama (2004) provided a detailed trajectory for young children’s composition 
and decomposition of geometric shapes, as did Confrey, Maloney, Nguyen, Mojica, and 
Myers (2009) for equi-partitioning. Tzur (2019) developed a reorganisation conjecture into 
a trajectory for fractional number. Some meta-analyses of research on mathematical topics 
provide learning trajectories. For example, Baroody and Purpura (2017) include a table of 
significant developments in young children’s development of number concepts. They list 
expected ages from birth to 7 years for key accomplishments, citing significant research in 
support of their claims.   

With other topics, detailed research summaries of learners’ development are general, 
partial, or non-existent. Classification of shapes is a good example. The prevailing theory of 
development—van Hiele’s levels (van Hiele, 1986)—is too broad to provide a finer grained 
description of progression. A main criticism of the van Hiele levels is that students exhibit 
different levels for different tasks in the same mathematical domain. It is difficult to link 
trajectories with progressions for topics where the research is not well summarised. 

A requirement of this project was that the descriptors connect with the early steps of the 
Learning Progressions Framework (LPF) (Ministry of Education, 2019). The developers 
created a set of hypothetical progressions based on research literature and their experience. 
The progressions were then validated by modelling data from teacher judgments about the 
sophistication of students’ individual responses to tasks, as opposed to the modelling of 
student schemes most typical in trajectory research.  
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Method 
Strategic planning for the research project began in 2017 with the establishment of 

principles, purposes, and audience for the set of progressions to be developed. The agreed 
principles were that the progressions contained clear descriptions of performance that were 
inclusive of all students working within Level 1, promoted and illustrated effective 
pedagogical practices, built on student strengths rather than deficits, and allowed for 
variability in progression. Important purposes were to provide data for educators to plan next 
learning goals and provide feedback to learners, to support monitoring of student progress, 
to help parents to support their student’s learning at home, and to provide a focus for 
reflective discussions among educators. A range of stakeholders was considered, including 
teachers and leaders in schools, specialist support teachers, learners, and whānau (family 
members).  

The exploratory study consisted of three phases over a period of 2 years.  
• Phase One: Literature review investigated trends and developments nationally and 

internationally in assessment, descriptions of progress, and mechanisms for 
reporting.  

• Phase Two: Exploratory study in mathematics focused on adapting existing 
approaches to reporting progress to include all learners, including those working long 
term within Level 1 of NZC due to high and complex needs.   

• Phase Three: Development and exemplification of an inclusive mathematics 
progression framework occurred with the support of researchers and practitioners 
from the sector.  

This paper reports on Phase Three. Work began with a comparison of existing 
frameworks for numeracy, either for students with complex needs or students in the years 
birth to 7 years. Progression frameworks from Australia, the United States, the United 
Kingdom, Ireland, and New Zealand were compared. Common sub-constructs were 
identified, from which a set of 18 indicators was created. The project team reviewed the set 
of indicators on three criteria; breadth of mathematical ideas, specificity, and functionality. 
Specificity meant a clear and discrete definition of the sub-construct—for example, counting 
as discrete from number sequence. Functionality meant the usability of the indicator for 
educators.   

Indicators included Forward and Backward Word Sequences, Subitising, Counting, 
Finding Difference, Equal Sharing, Repeating Patterns, Classifying and Structuring Shapes, 
Sequencing Events, and Organising Data. A smaller set of eight indicators was selected for 
development, consultation, and trialling. It was anticipated that some indicators such as 
Counting would be supported by a broad literature, while others, such as Sequencing Events, 
would be more difficult in terms of locating relevant research.  

Each indicator comprised descriptors of student schemes (i.e., action structures), and 
examples of situations in which students might demonstrate those schemes. Descriptors 
within each indicator were arranged vertically from less sophisticated behaviours at the 
bottom to more sophisticated at the top. Each individual descriptor described a scheme that 
was observably distinct from the one above and below it. The most sophisticated descriptors 
represented behaviours that are approximately aligned to the boundary between Level 1 and 
Level 2 of the NZC. Figure 1 shows the algorithm used by researchers to create descriptors. 

Examples were developed to illustrate behaviour (schemes) that exemplify the 
descriptor. Situations were carefully selected to show a diverse range of contexts and 
learners (e.g., ages, ethnicities, modes of communication, school/home settings, learning 
areas), in consultation with a small working group of educators with considerable experience 
of working with students of complex needs. 
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Figure 1. Flowchart of the descriptor creation algorithm. 

Findings 
Two indicators, Counting and Sequencing Events, are used below to illustrate key 

findings from the process of developing the set of descriptors. Below in the examples, the 
reader’s attention is drawn to issues that emerged in the development process rather than to 
the artefact of the complete set of descriptors. The Counting indicator is chosen because it 
illustrates a sub-construct of mathematics for which a set of conceptual principles, and 
sequence of schemes, are extensively researched (Gelman & Gallistel, 1978; Steffe & Cobb, 
1988; Wright, 1991). A meta-analysis (Baroody, Lai, & Mix, 2006) clearly described 
development from birth to 7 years or more. Other comprehensive meta-analyses were also 
available. Table 1 shows three of the six descriptors in the Counting indicator. The examples 
are a sample of those produced. 

Creation of the Counting descriptors exposed two main issues— relationships among 
descriptors, and the use of specialised terminology. Creation of discrete indicators suggests 
that the learning progressions are independent of those in other indicators. Perceptions of 
independence can be an unintended consequence of creating discrete descriptors.  Counting 
with understanding involves the integration of multiple schemes and concepts. For example, 
developing cardinality (count as quantity) involves using subitised images of intuitive sets 
(1–4) to create grouping knowledge for larger collections; matching of spoken nouns to these 
larger collections, across variable contexts; and connecting forward and backward word 
sequences with increasing and decreasing quantities. Separate indicators were created for 
Subitising, Forward and Backward Number Sequences. 

Tension occurred with adapting research terminology for an educator audience. 
Researchers spend effort assigning terms to phenomena to capture nuances that are important 
to meaning making. For example, the term “intuitive numbers” describes numbers instantly 
recognised. The initial counting descriptors used the terminology “recognising intuitive 
numbers 1–4” to describe the observable actions of quantifying small sets of objects by 
appearance, rather than by counting. Feedback from the focus group indicated that teachers 
would not understand or engage with the term “intuitive”. “Intuitive” was replaced with 
“instantly recognised numbers” or was removed entirely, as illustrated in descriptors two 
and three (refer to Table 1). Key feedback from the focus group was that teachers and parents 
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needed to recognise the observable actions of their learners within the language of the 
descriptors. Finding ‘middle ground’ between commonly used language and the introduction 
of new vocabulary that has specific meaning in the research was a significant challenge. 
“Intuitive” conveys the fact that recognising quantities of one to four occurs innately, so 
some meaning is lost. Terminology from research was often adapted to make the descriptors 
accessible to the audience. 

 
Table 1  
Counting Indicator 

Counting— Finding the number of items in a collection or set 

Descriptor progression  Examples (sample) 

Counts and forms sets of up to 
ten objects by pointing to, or 
looking at, the objects one by 
one, and saying the whole 
number counting sequence 
correctly.  

• Student nods and sub-vocalises, “One, two, three, 
four, five, six, seven, eight, nine, ten,” as they 
count each biscuit when asked, “How many 
biscuits are in the packet?”  

• Student closes their eyes and listens to the beats on 
a drum.  Student sub-vocalises as they count each 
beat and names the correct number of beats.  

Correctly counts and forms sets 
of objects with instantly 
recognised numbers (1–4), 
and compares greater sets 
by global appearance.  

• Student accurately counts pencils verbally, “One, 
two, three, four,” when asked to get four 
pencils. They point to one pencil for one number 
word.  

• When asked, “Which bowl of apples has more?” 
(five and eight), the student indicates the bowl 
with eight because “The bowl is more full.”  

Attempts to count a set of 
objects 1–4 using number 
words, but without accurate 
one-to-one correspondence.  

• Student attempts to count five cars given to them 
by the teacher.  Student counts two cars as one and 
says “One, two, three, four.” 

• Student counts out five when asked to collect four 
blocks.  Student uses the number words to count 
but says two words for the same block.  

 
The Sequencing Events indicator illustrates a descriptor for which the literature within 

mathematics education is sparse (Thomas, Clarke, McDonough, & Clarkson, 2017). Yet 
schemes for sequencing time are particularly important for student in their everyday life. 
The project team found no useful meta-analysis to create the Sequencing Events indicator, 
and existing frameworks tended to develop measurement through more tangible attributes, 
such as length or capacity. Time-focused research was sourced from the psychology and 
science education literature (e.g., Droit-Volet & Coull, 2016; McCormack & Hoerl, 2017). 
Although the articles described micro-developments, it was possible to combine the results 
of individual studies into a coherent progression, using data about average age bands for 
development. Four of the seven steps in the indicator are given in Table 2, for purposes of 
illustration.   
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Table 2  

Sequencing Events Indicator  

Sequencing Events—Ordering events chronologically including past and future 

Descriptor progression  Examples (sample) 

Plans future sequences of events 
with causal awareness of both 
order and duration, based on 
past experiences.  

• Student plans and executes getting ready to go 
home. They allow for different durations to 
complete activities, e.g., tidying the desk or tote 
tray takes longer than getting the homework bag.   

Plans future sequences of events 
realising the causal significance 
of order.  

• Student correctly orders pictures of actions to 
make pancakes, aware of the causal significance, 
e.g., “If you don’t butter the pan, the pancakes 
stick.”   

• Student correctly orders pictures of actions to 
make toast, aware of the causal significance, e.g., 
knows that the toaster button needs to be pushed 
down to cook the toast.   

Realises that time is linear, 
directional and independent of 
events.  

• Student acts on instructions that involve present 
and future actions, such as “Can you please brush 
your teeth and get your coat. We will tidy your 
room later.”  

• Student accepts that two events can happen at the 
same time, e.g., “I went down the slide. Mere 
climbed the ladder.”  

Discriminates between past and 
present events.  

• Student orders events that happened yesterday, 
e.g., “I got up, then went to rugby, then Dad 
picked me up.”  

• Student relates today and tomorrow, e.g., “Today 
is Friday. It is Saturday tomorrow.” Student can 
indicate this on a calendar.   

 
The most significant issues that arose in the development of the Sequencing Events 

indicator were the importance of integration of related research studies, the power of clearly 
described progressions, and linkage to Levels 1 and 2 of the NZC. Meta-analyses play a key 
role in the development of research-based trajectories, a finding that became obvious to the 
project team when no such resource existed. Through their own reading of the literature team 
members developed their personal understanding of learners’ development of sequencing 
events. For example, existing in the present generally precedes recalling of past events and 
predicting the future. Students’ anticipation of order and duration are important to their 
planning for the future. This explicit knowledge guides educators in interacting with 
students. The process of creating examples helped team members better understand a stage, 
through describing students’ actions and ways of communicating. For example, 
understanding that time is linear and one-directional can be shown through students 
distinguishing the past as unalterable, from the future which can be altered. Students with 
physical disabilities might use computer technologies to communicate with their carers about 
their preferences for what happens to them next.  
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The third issue of linkage occurred because schemes for Sequencing Events did not 
integrate easily with the achievement objectives given in the NZC. Level 1 in measurement 
begins with students’ attendance to attributes through direct comparison, before transitive 
reasoning and the use of informal and formal units are taught. Time is less tangible than 
physical attributes, such as length. Non-synchronous events cannot be directly compared. 
Other attributes, such as speed, and emotions about a situation, distort students’ perception 
of duration. Measure with units is needed to compare separate events. That is a higher degree 
of sophistication than normally expected with physical attributes at the beginning of 
schooling. Time is a complex sub-construct that involves connection of ideas about 
sequence, duration and measurement, including knowledge of devices. The current 
descriptor integrates sequence and duration but how measurement of time develops during 
early schooling and for students with complex needs remains unclear and poorly researched. 

Discussion 
The development of descriptors is a work in progress and field trials are needed to 

explore how useful the descriptions are for educators, students and families. It is difficult to 
create a set of descriptions that meet the needs of all educators and families irrespective of 
their situations.  

Creation of the descriptors in this project was made significantly easier by reference to 
existing literature, particularly research-based developmental frameworks and meta-
analyses. In many significant sub-constructs of early mathematical learning, such literature 
does not exist. This is particularly true in the areas of spatial and geometric thinking, 
measurement of time, and statistical investigation. This project showed that both learning 
trajectories and progressions can be supported by research but more work in the above areas 
is needed.  

There were compromises made through the development of descriptors. Fragmentation 
of mathematics into discrete sub-constructs improves specificity but is balanced with loss of 
connection among the sub-constructs. In a similar way, organising progressions by steps 
creates clearly described growth paths, but is balanced by acknowledgement that learners 
vary considerably in their behaviour in the short term. Expert terminology was displaced by 
naturalistic language at times. Compromise occurred between conveying meaning and the 
usability of the descriptors for educators and parents. Inclusion of examples involved 
compromise between providing situations that clearly illustrate the meaning of wording of a 
step, and the need for representation of all students with complex needs. Examples can only 
be representative of the diverse situations and learners that educators encounter.  

Other important issues emerged in the development process. The trajectories for early 
childhood and older learners with complex needs may not be the same. The project team 
made no assumption in that respect. Mostly, the progressions were developed from the early 
childhood literature. Similarity and difference in the way young children and learners with 
complex needs develop their schemes requires investigation. Development of the descriptors 
was a powerful learning experience for members of the project team. Educators would 
benefit from similar opportunities to hypothesise trajectories and compare their ideas with 
trustworthy research, as this is likely to be a more powerful experience than being given a 
completed artefact. However, compromises are always made between ideals for professional 
learning, and the constraints of resourcing. Learning trajectories are an important component 
of pedagogical-content knowledge and are noticeably absent for students with complex 
needs internationally. It is hoped that the set of research-informed descriptors can support 
educators and parents to provide students with targeted opportunities to learn. 
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