
nSEM for Causal Models 1 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Using n-level Structural Equation Models for Causal Modeling in Fully Nested, Partially Nested, 
 

and Cross-Classified Randomized Controlled Trials 
 

Yaacov Petscher 

Christopher Schatschneider 

Florida State University 

 

Published 2019 

Petscher, Y., & Schatschneider, C. (2019). Using n-level structural equation models for causal 

modeling in fully nested, partially nested, and cross-classified randomized controlled trials. 

Educational and Psychological Measurement, 79, 1075-1102 

 

This research was supported by Grant R324A130262 from the Institute of Education 
Sciences. The content is solely the responsibility of the authors and does not 

necessarily represent the view of the Institute of Education Sciences. 
 
 

 
 



nSEM for Causal Models 2 
 

Abstract 
 

Complex data structures are ubiquitous in psychological research, especially in educational 

settings. In the context of randomized controlled trials, students are nested in classrooms but may 

be cross-classified by other units, such as small groups. Further, in many cases only some 

students may be nested within a unit while other students may not. Such instances of partial 

nesting requires a more flexible framework for estimating treatment effects so that the model 

coefficients are correctly estimate. Although several recommendations have been offered to the 

field on handling partially nested data, few are comprehensive in their treatment of manifest and 

latent variables in the context of partial nesting, full nesting, and cross-classification. The present 

study introduces n-level SEM (Mehta, 2013a) as a flexible measurement and analytic framework 

for the estimation of treatment effects for complex data structures that frequently present in 

randomized controlled trials. In this tutorial, we explore how the notation of n-level SEM allows 

for parsimonious model specification whether data are observed or latent and in the presence of 

partial nested or cross-classified designs. By using the xxm package in R, the advantage of using 

n-level SEM framework is demonstrated through five examples for single outcome manifest 

variables, as in the traditional multilevel model, as well as latent applications as in multilevel 

SEM. 
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controlled trial 



nSEM for Causal Models 3 
 

Using n-level Structural Equation Models for Causal Modeling in Fully Nested, Partially Nested, 
 

and Cross-Classified Randomized Controlled Trials 
 

Nested factors refer to the relation between two factors whereby the levels of one factor 

occur only under one level of another factor.  One such example exists in the educational 

literature with students and schools factors, where each student is only present at one school.  

The students attending one school can be said to be nested or clustered at that school. Nested 

research designs are common in the social sciences (Baldwin, Bauer, Stice, & Rohde, 2011).  

These designs pose problems for many routine statistical models because the data from these 

designs often exhibit a lack of independence of observation, which is an assumption for most 

statistical models.  Violating this assumption has serious impacts on the Type 1 error rate and the 

standard errors obtained from these models.  To overcome such limitations, multilevel models 

were developed in part to address the needs to analyze data from nested designs. Multilevel (or 

mixed) models allow for a partitioning of the total variance into variance attributable either 

between or within clusters and allows the modeling of data from a number of different nested 

designs.  Mixed models estimate the clustering effects and correcting estimate the variances and 

standard errors of the model parameters.   

Although mixed models have distinct advantages over other models when it comes to 

estimating effects from nested designs, one drawback is that they cannot estimate latent 

variables.  Significant progress on this shortcoming has been made with the introduction of 

multilevel structural equation modeling (ML-SEM; Mehta & Neale, 2005).  ML-SEM allows for 

“…full-blown SEM models to be developed at each level of nesting for clustered data” (Mehta & 

Neale, 2005, p. 259).  The incorporation of ML-SEM into programs such as MPLUS has 

increased the usage of these models for a variety of designs – from individual differences studies 
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to cluster randomized control designs.  Employing ML-SEM minimizes the influence of 

measurement error and allows the researcher focus on constructs of interest instead of measures 

of interest which could also reduce the Type I error rate by estimating relations among fewer 

constructs instead of observed measures.  The reduction in measurement error will also increase 

the power of the model to detect effects.   

Even with the advances in ML-SEM, shortcomings remain.  Although they can fit a range 

of data with nested structures, their application is often limited in the number of hierarchical 

levels that can be fit, and mixed models are still more flexible in fitting complex data structures 

that have a mix of nested and crossed random factors.  But one particular data structure that both 

mixed models and ML-SEM models have difficulty is designs that contain partial nesting.  

Partial nesting occurs when clustering happens under one or more levels of another factor, but 

not consistently across all levels.  As an example, partial nesting would be observed in a 

treatment study if the participants in the treatment arm received intervention in small groups 

while the control arm did not.  In this case, the small groups clustering factor only occurs under 

one level of the treatment factor.  These types of designs are fairly common in the social 

sciences.  Bauer, Sterba, and Halfors (2008) reviewed articles from four public health journals 

and found that 32% of the randomized control trials had a partially nested design; moreover, the 

partially nested design was more prevalent than the often-used fully nested design (27%). In a 

similar way, Sanders (2011) reviewed articles from four education journals and discovered that 

15% of the randomized trials used a partially nested design.  

Across these studies using partially nested designs, two analytic approaches have 

predominantly been used: 1) ignore the nesting altogether and utilize single-level regression, or 

2) treat the data as a fully nested design with either a) individuals in the control arm set as being 
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nested in one broader group or b) artificially creating small groups in the control arm so that the 

design appears as fully nested. Neither of these approaches are acceptable. A single-level 

regression approach to partially nested data violates the independence assumption with Type I 

error rates differentially impacted according to the directionality of the within-group correlations 

(i.e., higher Type I error rates when Y is positively correlated among individuals within the 

treatment group and lower Type I error rates when Y is negatively correlated among individuals 

within a group; Bauer et al., 2008). Applying a fully nested design approach to partially nested 

data is also problematic and leads to biased estimates of treatment effects (Roberts & Roberts, 

2005) due to inappropriate assumptions made about the decomposition of variance in the control 

group (i.e., 𝑉𝑉(𝑌𝑌|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0) = 𝜏𝜏00 + 𝜎𝜎2) compared to the treatment group (i.e., 

𝑉𝑉(𝑌𝑌|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1) = 𝜏𝜏00 + 𝜎𝜎2) because the assumed grouping structures from a fully nested 

design (i.e., 𝜏𝜏00) does not apply to the control group in the partially nested design. 

The response to the lack of alignment between experimental research design and 

statistical analysis of data has been a series of studies that have begun to unpack how statistical 

tools may be adapted to estimate unbiased treatment effects based on correct decomposition of 

individual- and cluster-level variances. Baldwin, Bauer, Stice, & Rohde, (2011) proposed some 

adaptations to fully nested models with manifest variables to accommodate partially nested 

designs. The authors demonstrated through simulation that using a Satterthwaite or Kenward-

Rogers degrees of freedom maintains appropriate levels of Type I error rates with unbiased 

estimates of effects. Sterba et al (2014) presented two methodologies using structural equation 

models. The multivariate single-level structural equation model (SSEM) requires data 

manipulations of the dependent variable such that when data are in a wide format, y must be 

reorganized into 1 + 𝑇𝑇𝑡𝑡 columns where 𝑇𝑇𝑡𝑡 is the number of treatment arms. For example, with 
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one treatment condition, y is reorganized into two columns, one for the control condition (𝑦𝑦𝑐𝑐) 

and one for the treatment condition (𝑦𝑦𝑡𝑡) where missing data exists for individuals in the 

treatment condition on 𝑦𝑦𝑐𝑐 and missing data exists for individuals in the control condition on 𝑦𝑦𝑡𝑡. 

The multiple-arm multilevel structural equation model (MSEM) approach uses data in a long file 

format with a multiple group approach to testing for differences between the treatment and 

control conditions.  

The studies by Sterba et al. (2014) and Baldwin et al. (2011) have served the field by 

providing strategic insight into how statistical models may be used to address the partial nested 

condition, yet there is much more work to be done. By and large, most of the recommendations 

in the literature are focused on the mathematically underpinnings that show how data from 

partially nested designs in randomized controlled trials may be analyzed (e.g., Sterba, 2017). 

Further, even where these approaches are useful starters for supporting appropriate analytics 

matched to the design, there are a number of shortcomings in the approaches. First, many 

software packages do not have options for adjusting the estimator of the degrees of freedom as in 

the recommended approach from Baldwin et al. (2011). Second, the latent variable approaches 

outlined by Sterba et al. (2014) do not treat the data in its naturalistic format whereby additional 

data management via the creation of new variables and shifting data from wide-to-long are 

necessary means to achieve the analytic end. Third, no single paper can explicate or consider 

each and every variant of random effects modeling for partially nested data. One facet of these 

designs that has not yet been explored is the case of cross-classification that may occur with 

partial nesting. Although research has demonstrated the impacts of ignoring cross-classification 

with fully nested data via biased coefficients (Gilbert, Petscher, Compton, & Schatschneider, 

2016; Luo & Kwock, 2009; Meyers & Beretvas, 2006), only one study has examined cross-
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classification in the context of partially nested designs (Luo, Cappaert, & Ning, 2015). In the 

same manner that ignoring cross-classification in fully nested designs has shown to lead to 

biased coefficients, so too does cross-classification have bearing on partially nested designs. For 

example, within educational research where partial nested designs may use small groups for the 

treatment condition that involves student pull-outs from classrooms, the data structure is partially 

nested with cross-classification such that only treatment students are nested in small groups, but 

treatment and control students are nested in varying classrooms. It is important, therefore, to 

explore not only how data from partially nested designs may be more robustly analyzed but also 

how complex structures such as cross-classification should be accounted for as well. 

What these three exemplar limitations highlight is that in some ways our mechanisms for 

modeling partially nested data are more restrained by software and less by the statistical and 

measurement underpinnings in the partial nested design. Until recently, with the introduction of 

n-level structural equation model (nSEM; Mehta, 2013a) there was no naturalistic multilevel 

SEM model solution to the problem of partially nested data that avoids differential estimation of 

degrees of freedom, data management, or creation of new variables. nSEM expands upon ML-

SEM in its conceptualization of levels.  In ML-SEM, level typically refers to a random factor that 

exists in a hierarchical relation with other factors, such as students nested in classrooms. nSEM 

broadened the definition of level to also refer to levels of a fixed effects factor. For example, sex 

may constitute two levels, one for males and one for females or in a randomized controlled trial 

with one treatment group and one control group each of groups would be a separate level in the 

model.  In this framework, a much broader array of models can be estimated that can naturally 

handle complex data structures such as data from partially nested designs.  The nSEM 

framework can a broad array of SEM models at each level of nesting or each level of a fixed 
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effect.  In this way, designs with partially nested data can be directly modeled whereby the 

nested structure exists for one level of a fixed effect (treatment) but is absent from the other level 

of the factor (control). By treating the concept of level more flexibly in nSEM, it is possible that 

given an equivalence in results between an nSEM approach and approaches based on 

recommendations from prior studies (e.g., data manipulations and degrees of freedom estimator 

changes) an nSEM framework may render previous recommendations as unnecessary. With the 

attention that partial nesting has received in the literature (Baldwin et al., 2011; Bauer et al., 

2008; Moerbeek & Wong, 2008; Sterba et al., 2013), our goal in this tutorial is to demonstrate 

the usefulness of the nSEM framework using the xxM package in R (Mehta, 2013b) across of 

number of different potential datasets where simple or complex clustering exists (e.g., cross-

classification), especially where tests of causal inference are of importance.  

Our tutorial is broadly concerned with the question: to what extent does an nSEM 

framework yield identical or similar results to conventional applications of partial nesting for a 

randomized controlled trial? We consider four manifest variable examples using a common data 

set: Example 1 compares a fully nested unconditional model of students nested within 

classrooms using nSEM and a traditional multilevel model to compare estimated means, 

variances, and confidence intervals; Example 2 builds on Example 1 by considering a fully 

nested version of a randomized controlled trial with one treatment group and one control group 

where students are nested in classrooms; Example 3 considers the partial nested randomized 

controlled group with the treatment students nested within small groups and the control group is 

not nested; Example 4 is the partially nested, cross-classified causal model where students are 

cross-classified according to small groups and classrooms and the treatment students only are 
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nested in small groups. Our tutorial concludes with Example 5 that teaches how ML-SEM with 

latent variables can be done with partial nesting and cross-classification.  

To provide direct connections among the multilevel model, structural equation model, 

and nSEM framework, we begin with a brief refresher of the multilevel models and ML-SEM 

approaches to nested data and then we move directly to a demonstration of nSEM for fully 

nested, partially nested, and cross-classified models. Along the way, data and code are provided 

that the reader may use the replicate and extend to their own work. 

Manifest Variable Modeling Frameworks 

 A well-known framework for modeling data from cluster randomized trials is multilevel 

modeling (MLM). For a given two-level model, such as students nested within classrooms, the 

unconditional model is typically represented by  

ijjij euY ++= 000γ                                                       Eq. 1 

where ijY  is a post-test score Y for student i in classroom j, 00γ  is the grand mean intercept, ju0

represents the classroom deviations from the mean distributed as 00[0, ]N τ , and ije is the student 

deviation distributed as 2[0, ]N σ . An alternative perspective for modeling data with the same 

nesting structure is structural equation models (SEM) and would represent the unconditional 

model as  

ijjij eY ++= )(λην                                                     Eq. 2 

where ijY and ije maintain identical interpretations to those found in Equation 1, ν  represents the 

measurement intercept, jλη is the linking of each ijY   whereλ is a fixed factor loading at 1.0, and 

jη are the classroom means that are distributed  [ ],N α ψ , where α is the grand mean intercept, 

and is the variance (Mehta & Neale, 2005).  ψ
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The equivalence between parameters in Eqs. 1 and 2 is provided in Figure 1 as a 

measurement cross-walk for the two general approaches. A careful look at Figure 1 shows many 

commonalities between the multilevel and SEM approaches to data clustering: shapes, lines, 

Greek letters, and subscript notations characterize both frameworks. Rectangles or squares 

represent the measured variable ( ijY ); circles can represent both latent factors that are the 

unmeasured construct of interest associated with the measured variable ( j0β and jη ), and errors 

associated with the measured variable ( ije ); triangles represent the mean structure for latent 

variables. Straight lines in the model represent paths linking predictor variables to predicted 

variables, such as the latent variable predicting the measured variable. Curved lines with arrows 

at both ends can represent disturbances when the line is associated with one shape (i.e., jη , ije , 

ju0 ) as well as covariances between either latent or measured variables as well as disturbances. 

Greek letters symbolize the various parameters in the model, such as those shown in Figure 1, 

and subscript notation is used to distinguish among different levels of clustering within one’s 

data. Where the base mechanisms of the MLM and SEM diagrams are similar, differences are 

also seen. Grand mean intercepts, classroom deviations, and residual variances are represented 

with different parameters and subscript notations between the two representations. Classroom 

deviations are represented with different figures. Despite the equivalence of MLM and SEM 

when nesting exists (Curran, 2003), the differences in model representation and other noted 

limitations of each method (e.g., robustness of violations to assumptions, power, application of 

model constraints) may suggest that an alternative framework may be brought to bear generally 

for nested data and specifically for causal modeling. 

Considering n-level SEM and xxm  
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 An alternative framework to the general MLM and SEM approaches for nested data is 

that of n-level SEM (nSEM; Mehta, 2013a). nSEM represents a general structure that allows one 

to formulate and estimate complex data relations from cross-sectional and longitudinal studies 

rather simply. The burden of model specification in the presence of multiple levels of nesting, 

cross-classification, or multiple membership, coupled with complex nesting structures such as 

partial nesting, and multivariate outcomes, can be eased with an nSEM approach to model 

building which is, if you can draw it, you can model it. When estimated in software such as xxm 

(Mehta, 2013b), specified models have an exact equivalence among the graphical representation, 

the equations, the matrices, and the code. Consider the two-level example just presented in 

Figure 1 but expressed in Figure 2 through just the SEM and nSEM configurations. A careful 

comparison between the two shows identical structures with only parameter notation varying. 

Where the MLM and SEM equations and graphical representations include subscript notation to 

note clustering level they do not explicitly account for the number of variables in the model and 

the level at which the variable may belong. Rather than using the notation of i and j to denote 

unit clustering such as students and classrooms, nSEM utilizes subscript and superscript notation 

to denote variable number and level, respectively. 1
1Y  is the first variable ( 1Y ) at the first level 

(i.e., student level; 1Y ), 2
1η is the first latent variable at the second level (i.e., classroom) and are 

distributed as ],[ 2,2
1,1

2
1 ψαN  where 2

1α is the grand mean for the first latent variable at the second 

level. uu
pp

,
,ψ  is a variance of the pth latent variable at level u; thus, 2,2

1,1ψ is the variance associated 

with 2
1η . pu

qv
,
,λ  is a factor loading from variable q at level p to variable v at level u; thus, 2,1

1,1λ is the 

effect from 2
1η  to 1

1Y and is fixed at 1.0. 1
1ν is the measurement intercept for first variable at level 

1 ( 1
1Y ) and is fixed at 1.0, and 1

1e is the level-1 deviation distributed as ],0[ 1,1
1,1θN , where uu

pp
,
,θ is a 
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residual variance of the pth variable at level u. The general structure of the φ and θ parameters 

are such that they may be used expressed variances and covariances (φ) or residual variances and 

covariances (θ) (Mehta, 2013a). 

 The nSEM model parameters from Figure 2b may then be combined to form the equation 

of the examplar two-level model as 

1
1

2
1

2,1
1,1

1
1

1
1 )( eY ++= ηλν .                                                  Eq. 3 

Note that outside of the superscript and subscript notations, Eqs. 2 and 3 are identical just as the 

measurement models for these two equations (Figures 2a and 2b) are nearly identical in 

structure. By broadening the traditional subscript notation to denote nesting in multilevel/SEM to 

one that uses subscripts and superscripts, nSEM moves from a conventional interpretation of 

complex structures as one of nesting to that of influence (Mehta & Petscher, 2016). Equations 1 

and 2 primarily convey the relation between student and classrooms as one of structure where the 

former is nested within the latter, but Eq. 3 may be thought of as describing sources of influence 

from one level to another. This interpretation differences are largely semantic, but the 

implication of the changing from nesting to influence will becomes more apparent as the model 

complexity increases. 

Although it may seem unnecessarily complex to construct equations with this extended 

notation, it will be seen that its intricacies leads to parsimonious measurement, more intuitive 

model construction process, and greater symmetry among equations, measurement models, and 

code that preserves complex data structures. For example, the two-level RCT expression 

presented thus far has only represented the unconditional univariate outcome model. Causal 

inferencing via MLM or SEM rests on the inclusion of a group indicator to represent those 

individuals who were randomized to the treatment or control conditions. Figure 3a provides a 
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graphical display of a conditional multilevel model in a SEM framework where ijX represents a 

dummy-coded variable to denote group assignment and κ is the prediction of ijY from ijX . Figure 

3b also displays a conditional multilevel model, in an nSEM framework, yet does so in a 

different way where there are now three levels (i.e., treatment group, control group, and 

classroom). Because nSEM is focused on groups of individuals and the influences within and 

across groups, the representation in graphical model displays the inherent structure of the data 

more readily: 1) there are students who were randomly assigned to the treatment group (level 1) 

who have a set of observed scores ( 1
1Y ) with an intercept ( 1

1ν ) and a residual variance ( 1,1
1,1θ ), 2) 

there are students who were randomly assigned to the control group who have a set observed 

scores ( 2
1Y ) with an intercept ( 2

1ν ) and a residual variance ( 1,1
1,1θ ), and 3) student outcomes in the 

treatment and control groups are both influenced by their classroom environments (level 3). Two 

comments on this particular structure are important to state; first, 1,1
1,1θ has been constrained to be 

equal across the student levels. This equality conforms to the expression of the conditional SEM 

in Figure 3a with θ. Second, the intercepts at levels 1 and 2 ( 1
1ν and 2

1ν ) are freely estimated. The 

two equations that come from Figure 3b are 

           1
1

3
1

3,1
1,1

1
1

1
1 eY ++= ηλν                                                Eq. 4 

1
1

3
1

3,2
1,1

2
1

2
1 eY ++= ηλν                                               Eq. 5 

where 
3
1η are distributed ],[ 3,3

1,1
3
1 ψαN and 

1
1e are distributed ],0[ 1,1

1,1θN . By comparing the 

model in Figure 3b to a model where the intercepts in Eqs. 4 and 5 are constrained to be equal 

across student levels (i.e., 1
1ν ), a log likelihood test will provide the test of mean differences in 

the outcome similar to the test expressed in Figure 3a.  
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Manifest Variable Tutorial: Fully Nested RCT (FN-RCT) with Students and Classrooms 

At this point, it is useful to provide a tutorial for the example of students and classrooms 

used thus far as a way to demonstrate the similarities and differences in using multilevel and 

nSEM applications for nested data. The sample data of n = 412 participants used in this 

manuscript are drawn from a larger efficacy trial of a reading comprehension intervention (see 

Wanzek et al., 2017 for details on sampling, procedures, methods, and analyses). This study was 

exempt from IRB approval due to the use of de-identified data. The following files can be 

downloaded from the companion website: 

1. treatment.csv: contains rows for n = 199 students who were randomly assigned to the 

treatment group and 11 columns for: treatment group ID (“treatment”), small group ID 

(“smallgroup”), classroom ID (“class”), group name (“treat”), group indicator 

(“passport”), student posttest score 1 (“postrc1”), student posttest score 2 (“postrc2”), 

student pretest score 1 (“prerc1”), student pretest score 2 (“prerc2”), grand mean centered 

pretest score 1 (“prerc1c”), and grand mean centered pretest score 2 (“prerc2c”). 

2. control.csv: contains rows for n = 213 students who were randomly assigned to the 

control group and 11 columns for: control group ID (“control”), small group ID 

(“smallgroup”), classroom ID (“class”), group name (“treat”), group indicator 

(“passport”), student posttest score 1 (“postrc1”), student posttest score 2 (“postrc2”), 

student pretest score 1 (“prerc1”), student pretest score 2 (“prerc2”), grand mean centered 

pretest score 1 (“prerc1c”), and grand mean centered pretest score 2 (“prerc2c”). 

3. class.csv: contains rows on n = 50 classrooms and two columns for: classroom ID 

(“class”) and the cluster size (“clustern”). 
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4. smallgroup.csv: contains data on n = 43 small groups and two columns for small group 

ID (“smallgroup”) and the cluster size (“clustern”). 

5. student.csv: the combined data for treatment.csv and control.csv.  

For all manifest variable examples, SAS PROC MIXED is used for the MLM representation of 

nesting and the xxm package (Mehta, 2013b) in R software is used for the nSEM representation. 

In each section we provide an introduction to the nSEM building process through xxm and a 

comparison to PROC MIXED. As each examples builds upon the previous in terms of structure, 

only the features of the model that are unique to subsequent examples will be provided in text for 

the tutorial. Full, annotated code for each example is provided in the supplemental online 

materials. 

Example 1: Multilevel and nSEM Comparison of Unconditional Models. To illustrate 

the univariate unconditional model from Figure 1 using MLM (Figure 1a) and nSEM (Figure 

2b), the fulldata.csv file is used for both xxm and PROC MIXED. nSEM specification through 

xxm requires the user to specify the model (i.e., the number of levels), one to n submodels (i.e., 

level-to-level relations with identified outcomes and predictors), and within- and between-level 

matrices. It is further necessary to create separate files for each level identified in the model. For 

this first example of students and classrooms, the student.csv and class.csv should be loaded into 

R along with the xxm package. The first command for the univariate unconditional model is 

ex1<-xxmModel(levels=c("student","class")). 

The object ex1 creates an xxm model with two levels, student and class. The c() function 

combines the student and class vectors that are created next with submodel commands 

ex1<-xxmSubmodel (model=ex1,level="student", parents="class", ys="postrc1", xs=, etas=,  

data=studentr1). 



nSEM for Causal Models 16 
 

The first submodel defined above is for the student (level="student") and the nesting of 

students in classes is defined by parents="class". The outcome for this example, postrc1, is 

defined by ys="postrc1", predictors can be listed next to xs= , the etas= command defines 

latent variables (not present at the student level), and the data=studentr1 command names 

the student data frame. Although each command within the Submodel does not need to have 

listings (e.g., there are no predictors or latent variables at the student level), all seven commands 

must appear in the code. Next, the classroom submodel can be added with 

ex1<-xxmSubmodel(model=ex1, level="class”, parents=, ys=, xs=, etas="intercept", data=classr1). 

The difference between the two submodels is that the classroom model has no parent (i.e., 

classrooms are not nested within another level), and the outcome related to postrc1 in the student 

submodel is now expressed as etas="intercept". 

Once the model and submodels have been defined, four matrices are added that 

correspond to Figure 2b: the latent mean ( 2
1α ), the latent variance ( 2,2

1,1ψ ), the cross-level λ = 1.0 

linking of 2
1η to 1

1Y , and the residual variance ( 1,1
1,1θ ). Each matrix is programmed with two 

components: 1) a pattern matrix that defines whether the parameter is fixed (represented by a 

“0”) or freely estimated (represented by a “1”), as well as the number of rows and columns, and 

2) a value matrix that provides the start value at the row x column portion of the matrix. For 

example, the latent mean is specified with 

alpha_pattern<-matrix(c(1),1,1) 

alpha_value<-matrix(c(457),1,1) 

where the pattern matrix defines that 1 mean is freely estimated c(1) in a 1 x 1 matrix (1,1). 

The alpha value matrix specifies a starting value of 457 for the latent mean in the 1 x 1 alpha 

matrix. Next, the latent variance matrix is added 

psi_pattern<-matrix(c(1),1,1) 
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psi_value<-matrix(c(2.6),1,1) 

where 2.6 is a starting value for the freely estimated 2,2
1,1ψ , and the 1,1

1,1θ matrix is added in a 

similar manner with 

theta_pattern<-matrix(c(1),1,1) 

theta_value<-matrix(c(467),1,1). 

The cross-level linking of 2
1η to 1

1Y via λ occurs as 

lambda_pattern<-matrix(c(0),1,1) 

lambda_value<-matrix(c(1),1,1). 

Notice that the pattern matrix specifies that λ should be fixed and the value matrix gives a value 

of 1.0 in accordance with Figure 2b.  

 The final step in xxm is to connect the pattern and value matrices to the levels. Of the 

four parameter-type matrices specified, two are within-classroom matrices (i.e., alpha and psi), 

one is a within-student matrix (i.e., theta), and one is a cross-level matrix (i.e., lambda). 

Subsequently, four commands are given to connect the value and pattern matrices to levels. The 

connection of alpha and psi matrices to the classroom are made by 

ex1<-xxmWithinMatrix (model=ex1, level="class", type="alpha", pattern=alpha_pattern,  

value=alpha_value) 

ex1<-xxmWithinMatrix (model=ex1, level="class", type="psi", pattern=psi_pattern, value=psi_value) 

where xxmWithinMatrix defines the type of matrix, model=ex1 defines the model with 

which the matrix is associated, level="class" states the level at which the matrix is 

associated, type= states the type of matrix that is being connect to the level (i.e., alpha and psi), 

and then the pattern= and value= commands denote the respective pattern and values 

matrices that were previously programmed. The connection of the theta matrix to the student 

level is made by 

ex1<-xxmWithinMatrix (model=ex1, level="student", type="theta", pattern= theta_pattern, value=  

theta_value) 
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and the link between the classroom and student (i.e., cross-level matrix) is added with  

ex1<-xxmBetweenMatrix (model=ex1, parent="class", child="student", type="lambda",  

pattern=lambda_pattern, value=lambda_value) 

where both the parent and child levels must be defined in order to correctly link the classroom 

and student levels. 

 With all of the matrices defined and connect, the nSEM can be estimated with the 

following three commands  

ex1<-xxmRun(ex1) 

xxmCI(model=ex1) 

     xxmSummary(model=ex1) 

where the first command estimates the model ex1, the second command estimates confidence 

intervals for the results, and the third command summarizes the first two and includes the 

number of parameters, log likelihood, the sample size, the AIC and the BIC for the model. 

Results from this example are reported in Table 1 alongside findings from using PROC MIXED 

(see supplemental online materials). The fixed and random effect coefficients from the multilevel 

and nSEM approaches are identical for the intercept (463.23), classroom variance (99.11), and 

residual variance (566.98). Moreover, the confidence intervals across methods approximated 

each other well for each effect.  

Example 2: Multilevel and nSEM Comparison of Causal Models. Moving from the 

basic illustration of the unconditional means model, we now provide an illustration of causal 

modeling. Here, the direct congruence between MLM and nSEM approaches deviate as shown in 

Figures 3a and 3b, respectively. To estimate the causal model for the full nesting of students in 

classrooms, we now use the treatment.csv, control.csv, and classroom.csv data files and load 

them into R. From an nSEM programming perspective in xxm and using Figure 3b as a guide, 

we may observe that there will be three levels, two within-level pattern and value matrices at the 
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classroom level for 3
1α and 3,3

1,1ψ , and a within-level pattern and value matrices for 1,1
1,1θ  for each of 

the treatment and control levels. In addition to these components, we now add a nu matrix for the 

1
1ν  and 2

1ν observed means estimated at the treatment and control levels, respectively. For the 

configuration in Figure 3b, the xxm begins with 

ex2<-xxmModel(levels=c("treatment","control","class")) 

where the three levels of treatment group, control group, and classrooms are defined. The 

submodels associated with each level are 

ex2<-xxmSubmodel(model=ex2,level="treatment", parents="class", ys="postrc1", xs=,etas=,  

data=treatmentr1) 

ex2<-xxmSubmodel(model=ex2,level="control", parents="class", ys="postrc1", xs=,etas=,  

data=controlr1) 

ex2<-xxmSubmodel(model=ex2,level="class", parents=,ys=, xs=, etas=c("int"),data=classr1) 

where the treatment and control submodels show that they are both nested within classrooms. 

The pattern and value matrices are the same for psi, theta, and lambda as in Example 1, save for 

an addition to theta matrix programming. Labels in xxm serve to provide equality constraints 

across groups for specified parameters. In the current example, we assume that 1,1
1,1θ is the same 

for both the treatment and control groups, and by specifying the following command, the 

construction of the within-group matrices will apply the constraint during estimation: 

theta_label<-matrix(c("thetac"),1,1). 

The treatment and control intercepts are added via the defined nu pattern and value matrices 

nu_pattern<-matrix(c(1),1,1) 

nu_value<-matrix(c(457),1,1). 

As with the previous examples, the pattern matrix here states that nu should be freely estimated 

with a starting value of 457 in the value matrix. The final change to the matrix programming 

pertains to the alpha matrix. Unlike the first example, where the latent mean was estimated at the 

classroom level for all students, the means are now estimated via the nu matrices. As such, the 
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alpha matrices are now represented with the following to designate that a mean is not to be 

estimated at the classroom level. 

alpha_pattern<-matrix(c(0),1,1) 

alpha_value<-matrix(c(0),1,1) 

Connecting the matrices to levels maintains an identical process as in Example 1. The 

alpha and psi matrices are connected to the classroom example using the same code as Example 

1 but changing the object and model names to “ex2”. At the treatment and control group levels, 

respectively, the nu and theta matrices are added in the same way that student matrices were 

added in Example 1: 

ex2<-xxmWithinMatrix(model=ex2,level="treatment", type="nu", pattern=nu_pattern, value=nu_value) 

ex2<-xxmWithinMatrix(model=ex2,level="treatment", type="theta", pattern=theta_pattern,  

value=theta_value, label=theta_label) 

 

ex2<-xxmWithinMatrix(model=ex2,level="control", type="nu", pattern=nu_pattern, value=nu_value) 

ex2<-xxmWithinMatrix(model=ex2,level="control", type="theta", pattern=theta_pattern,  

value=theta_value, label=theta_label). 

Note that the theta matrices now include the label command, constraining the coefficient to 

equality during estimation. The construction of the between-matrix requires to commands, one 

for each of the treatment and control groups. As Figure 3b shows separate cross-level links from 

3
1η to 1

1Y and 2
1Y , separate between-level matrices are specified 

ex2<-xxmBetweenMatrix(model=ex2,parent="class",child="treatment", type="lambda",  

pattern=lambda_pattern, value=lambda_value) 

ex2<-xxmBetweenMatrix(model=ex2,parent="class",child="control",type="lambda",  

pattern=lambda_pattern, value=lambda_value). 

With all matrices constructed and linked, the model may be estimated as before. Results for the 

nSEM causal model of students nested within classrooms are compared to the multilevel model 

and reported in Table 1. Both classroom and residual variance coefficients are identical across 
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methodologies, with nearly identical confidence intervals. The primary difference in reporting 

can be seen in the fixed effects. The multilevel representation of the causal model is 

ijjijij euTreatmentY +++= 00100 )(γγ  

such that the resulting coefficients in Table 1 are expressed through the intercept and slope. 

Because ijTreatment)(01γ is a dichotomous variable, the intercept of 457.22 represents the mean 

of the control group, and the slope value of 12.23 is the positive, fitted deflection from the mean. 

As seen in Figure 3b and Eqs. 4 and 5 for this model, the nSEM approach estimates the marginal 

means directly for each level. The means for in Table 2 both reflect this estimation and provides 

congruence with the multilevel model, such that the difference between the Control Mean 

(457.22) and the Passport Mean (469.45) is equal to the Passport coefficient in the multilevel 

model (i.e., 12.23). The statistical test of equality between 1
1ν and 2

1ν is evaluated by a re-

estimation of the nSEM model but including an equality constraint in the nu matrix such as 

nu_label<-matrix(c("txcon_nu"),1,1) 

and performing a log likelihood test. In the present example the difference between the freed 

(deviance = 3730.51) and constrained (3757.13) models was statistically significant (Δχ² = 

26.62, Δdf = 1, p < .001) favoring the freed model and pointing to a significant treatment effect. 

Manifest Variable Tutorial: Partial Nested RCT (PN-RCT) with Students and Small 

Groups 

 Suppose now that the classroom influence on students is ignored and we consider the 

partial nesting influence on treatment students. An example graphical illustration for this model 

is presented in Figure 4a. Note that even though Figure 3b and 4a both present configurations of 

a three-level model, they differ whereby the former includes the third level for the full nesting of 
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students in classrooms and the latter includes the third level to characterize that only treatment 

students are influenced by small groups. The equations associated with this model are 

1
1

3
1

3,1
1,1

1
1

1
1 eY ++= ηλν                                                  Eq. 6 

  1
1

2
1

2
1 eY +=ν                                                              Eq. 7 

and denote that the only the treatment group maintains an influence of small groups on the 

outcome. xxm software is flexible to estimate this model and is done so in a manner similar to 

previous examples. 

Example 3: Multilevel and nSEM Comparison of Causal Models. The specification of 

models, submodels, and matrices for the partially nested condition deviates very minimally from 

the fully nested, causal model in Example 2. The xxm model associated with Figure 4a is 

ex3<-xxmModel(levels=c("treatment","control","smallgroup")) 

showing that we have the three levels of treatment, control, and small groups. The submodel 

commands for each level are as follows 

ex3<-xxmSubmodel(model=ex3,level="treatment",parents="smallgroup", ys="posttest", xs=,etas=,  

data=treatmentr1) 

ex3<-xxmSubmodel(model=ex3,level="control",parents=,ys="posttest", xs=, etas=, data=controlr1) 

ex3<-xxmSubmodel(model=ex3,level="smallgroup",parents=,ys=,xs=, etas=c("int"),data=smallgroupr1) 

where the small group submodel is identical in form and function as the classroom model in the 

previous example, and treatment students are nested within small groups. The primary difference 

between the partial and fully nested submodel code is in the control group where there is no 

affiliation with an upper-level unit. In this way, the expectation for matrix programming is that 

only the between-matrix linking of levels will change. The pattern and value programming of 

alpha, psi, nu, lambda, and theta matrices are identical to Example 2, as are the treatment and 

control group’s within-level nu and theta linking to those matrices. Whereas Example 2 

demonstrated that two between-level matrices were needed to separately link the classrooms to 
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treatment and small groups, the partial nesting necessitates only one between-level matrix 

connecting the small groups to the treatment group 

ex3<-xxmBetweenMatrix(model=ex3,parent="smallgroup",child="treatment", type="lambda",  

pattern=lambda_pattern, value=lambda_value). 

The model is then estimated with the same three commands as before with results for provided in 

Table 1. The estimates of the residual variance are the same across method (multilevel = 549.16, 

nSEM = 549.18) as are the small group variances (multilevel = 127.60, nSEM = 127.59). The 

intercept from the multilevel model is identical to Control group intercept (i.e., 455.49), and the 

difference between the Control and Treatment group intercepts is identical to the Passport slope 

coefficient in the multilevel model (i.e., 12.03). The confidence intervals for the Control 

intercept and residual variance are approximately similar across methodologies, with a wider 

estimated range interval of small group variance observed when using the multilevel approach 

(95% CI: 63.45, 375.84) compared to the nSEM (95% CI: 44.36, 276.74). A possible reason for 

the difference in confidence interval estimates for the small group variance may lie in the 

methodology system itself. Causal inferencing with traditional mixed modeling packages that 

assume full nesting (e.g., SAS and Mplus) require data manipulations, additional clustering 

considerations in programming, and adjustments to estimation that are not specifically inherent 

to the data. It is possible that these data manipulations, especially when pertaining to required 

estimation changes (e.g., the need to use ddfm = satth in PROC MIXED), may lead to biased 

confidence interval estimates that would not be otherwise observed when the natural clustering 

of the data is modeled without the need for additional data adjustments prior to testing, such as 

when using nSEM. 

Manifest Variable Tutorial: Partial Nested, Cross-Classified Model Causal Model  
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 The final manifest variable examples combine the full nesting context of students in 

classrooms and the partial nesting of treatment group students in small groups (Figure 4b). The 

combined influences of classrooms and small groups are now represented by levels 3 and 4, 

respectively, in the model and are observed in scalar form as 

 
1
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1,1
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1,1

1
1

1
1 eY +++= ηληλν                                        Eq. 8 
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1,1
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1

2
1 eY ++= ηλν                                                          Eq. 9 

where 4
1η is distributed ],[ 4,4

1,1
4
1 ψαN  and the other parameters as distributed as previously 

reported. The combination of cross-classification, full nesting in classrooms, and partial nesting 

in small groups is flexibly presented in both equations and measurement models. Rather than a 

change to the model subscript notation as in MLM and SEM, the nSEM equations in Eqs. 8 and 

9 are only distinguished by addition of 4
1η with the associated cross-level λ links that are fixed at 

1.0. The test of causal inference is identical to that presented in example 2 where the intercepts in 

Eqs. 6 and 7 are differentially constrained to equality and then freed with a log likelihood test of 

model differences. 

 Example 4: Comparison of Partially Nested Causal Models. By combining elements 

of Examples 2 and 3, the nSEM analysis in xxm becomes quite simple, even for a four-level, 

multilevel, cross-classified, partially nested randomized trial. Because the configuration of 

Figure 4b contains elements of the fully nested example in Figure 3b and the partially nested 

example in Figure 4a, the implications for the matrices in Figure 4b are that the treatment group 

should have two within-level matrices (nu and theta), the control group should have two within-

level matrices (nu and theta), the classrooms should have two-within level matrices (alpha and 

psi), the small groups should have two within-level matrices (alpha and psi), and then three 
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between-level matrices should be coded to account for the influence of classrooms on the 

treatment group, classrooms on the control group, and small groups on the treatment group. The 

model statement associated with Figure 4b is 

ex4<-xxmModel(levels=c("treatment","control","class","smallgroup")). 

The submodel for the control group is identical to the statement from Example 1 where the 

parent is the classroom. The class and subgroup submodels are also nearly identical to previous 

iterations and are only altered by the need to give different labels for the etas (e.g., “int” for class 

and “int1” for smallgroup). Only the treatment group differs here due to the presence of both 

classroom and small group influences 

ex4<-xxmSubmodel(model=ex4,level="treatment", parents=c("class","smallgroup"), ys="postrc1", xs=,  

etas=, data=treatmentr1). 

The alpha, psi, nu, lambda, and theta matrices are all written identically to those presented in 

Example 3 and the within-level matrices for each level are also written identically to those 

presented in Example 3. Even the construction of the between-level matrices are identical when 

linking the classrooms to treatment and control groups (Example 2) and the small groups to the 

treatment group (Example 3). Once the full model has been built, the model may be estimated; 

results are reported in Table 1. Again we observe symmetry between using a traditional 

multilevel approach with nSEM for the intercept and control intercept coefficients (456.85), the 

classroom variance (70.77 in the multilevel and 70.87 in nSEM), and the residual variance 

(518.67). Only in the small group variance and confidence intervals do we observe differences 

between the multilevel (43.25, 95% CI = 15.40, 1,348.64) and nSEM (53.21, 95% CI = .001, 

184.74) approaches. 

Latent Variable Models 

 As frequent as causal modeling is with observed outcomes, there exists a parallel call for 

increased focused on measurement at the construct level. Because of inherent limitations to 
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observed outcome models (e.g., poor precision, truncated estimates of effect sizes), latent 

variable modeling serves as an effective solution to such limitations for both causal modeling 

and the study of individual differences. Suppose that Example 4 is now extended in two ways: 1) 

multiple, observed measures of reading comprehension are used to form a common factor of 

reading comprehension, and 2) baseline performance of latent reading comprehension is used as 

a covariate. Figure 5 provides a picture of this model whereby the four-level model of treatment 

students, control students, classrooms, and small groups are included, as well as latent post-test 

constructs of reading comprehension (i.e., 1
1η and 2

1η ), latent baseline constructs of reading 

comprehension (i.e., 1
2η and 2

2η ), factor loadings of the observed variables on the latent variables 

(i.e., 1,1
1,1λ  and 1,1

1,2λ ), and the regression of latent post-test on the latent baseline construct (i.e., 1,1
2,1β

), where vu
qp
,
,β  describes the relation of the qth latent variable at level v, to the pth latent variable 

at level u. Note that Figure 5 includes five constraints that are part of the model building and 

testing process: 1) 1,1
2,1β  is constrained to be equal across levels 1 and 2 and allows for an explicit 

test of the homogeneity of regression (i.e., baseline moderation of treatment effects), 2) 1,1
1,1λ  is 

constrained across 1
1Y , 1

3Y , 2
1Y ,  and 2

3Y to assume measurement invariance of the first reading 

comprehension measure across time points (baseline and post-test) and levels (treatment and 

control), 3) 1,1
1,2λ  is constrained across 1

2Y , 1
4Y , 2

2Y ,  and 2
4Y to assume measurement invariance of 

the second reading comprehension measure across both time points  and levels, 4) 1,1
1,1θ  is 

constrained across 1
1Y , 1

3Y , 2
1Y ,  and 2

3Y to assume measurement invariance for the residual of the 

first reading comprehension measure across time points and levels, and 5) 1,1
1,2θ  is constrained 

across  1
2Y , 1

4Y , 2
2Y ,  and 2

4Y to assume measurement invariance for the residual of the second 
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reading comprehension measure across time points and levels. All such constraints can 

empirically tested to evaluate at which places strict or partial measurement invariance exists for 

the given parameters. 

 When considering the equations for the latent variable version of Example 4, the 

measurement model for treatment group students’ reading comprehension achievement can be 

written as: 

1
1

1
1
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1
1

1
1 eY ++= ηλν  

1
2

1
1

1,1
1,2

1
2

1
2 eY ++= ηλν  

1
1

1
2

1,1
1,1

1
3

1
3 eY ++= ηλν  

1
2

1
2

1,1
1,2

1
4

1
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where sets of 1,1
1,1λ  and 1,1

1,2λ as well as 1
1e and 1

2e  are differentially constrained across the observed 

measures in accordance with assumption of measurement invariance loadings residuals, the 

intercepts are freed across all observed measures ( 1
1ν - 1

4ν ), 1
1e  is distributed ],0[ 1,1

1,1θN , 1
2e  is 

distributed ],0[ 1,1
1,2θN , and 1

2η  is distributed ],0[ 1,1
2,2ψN . The structural model for the regression 

of latent post-test on latent baseline is then 

1
1

1
2

1,1
2,1

4
1

4,1
1,1

3
1

3,1
1,1

1
1 ξηβηληλη +++=  

where the factor loadings 3,1
1,1λ  and 4,1

1,1λ  are fixed at 1.0 linking the small groups and classrooms, 

respectively, to the treatment group, 3
1η and 4

1η are distributed as previously shown, 1
2

1,1
2,1 ηβ  is the 

regression parameter, and 1
1ξ  is distributed ],[ 1,1

1,1
1
1 ψαN . The control group equations are nearly 
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identical to those presented for the treatment group with the exception that there is no linking of 

3
1η to 2

1η , and p
uη are distributed with corresponding changes to variable number and level.  

 Example 5: Comparison of Latent Partially Nested Causal Models. Where our final 

example departs from the previous examples are the introduction of the latent variables as well 

as the inclusion of baseline achievement data. These additions necessitate extra steps in model 

building such as longitudinal invariance testing within- and between- levels as well as individual 

time-point invariance testing between levels. Due to the way that nSEM structures the model and 

the number of invariance tests, we have opted to include five sets of invariance testing in the 

supplemental online materials that can be applied to the sample data. The specification of the 

latent partially nested model in xxm requires additional considerations in the construction of the 

matrices pertaining to the scaling of the latent variable and expanded matrices to accommodate 

the inclusion of multiple indicators across multiple latent constructs. The creation of the 

submodels are parallel to previous iterations and are extended to include the baseline measures. 

For example, the level one submodel for the treatment condition is 

impact<-xxmSubmodel(model=impact,level="treatment", parents=c("smallgroup","class"), 

ys=c("postrc1","postrc2","prerc1","prerc2"),xs=,etas=c("spring","fall"),data=treatmentr1) 

where the ys now include two indicators for latent reading comprehension at the post-test (i.e., 

eta=”spring”) and two indicators for baseline latent reading comprehension (i.e., eta=”fall”). 

Different from the manifest variable examples, separate pattern and value matrices are created 

for levels 1 and 2 for α in order to reflect an estimated baseline alpha for the treatment group (see 

txalpha in supplemental online materials) but fixed at zero in the control group (see conalpha in 

supplemental online materials) for longitudinal scaling and providing standardized means. 

Similarly, the ψ matrix for the treatment group allows the baseline variance to be freely 

estimated but fixed at 1 in the control group, again, for developmental scaling and standardized 
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means. In totality, the inclusion of four indicators in each of the treatment and groups 

necessitates the following within-level matrices for the treatment and control groups: 

•  2x1 α matrix 

• 2x2 ψ matrix  

• 4x4 θ matrix with variances estimated on the diagonal and covariances on the off-

diagonal 

• 4x2 λ matrix for the loadings of manifest variables on the level-1 and level-2 latent 

variables 

• 2x2 within-level β matrix for the regression of latent post-test on baseline 

• 4x1 ν matrix. 

The classroom and small group levels include the α and ψ matrices as in previous examples, as 

well a 2x1 between-level β matrix, with values fixed at 1.0, for the linking of small groups and 

classes to the latent post-tests in the treatment and control groups. Once the model is specified 

with appropriate constraints, a sample result is included in Figure 6. Findings include a 

standardized latent post-test mean of 0.85 for the control group along with a standardized value 

of 1.73 for the treatment group. The fit for this model with freed intercepts for the treatment and 

control was -2LL = 13,199.94 with 17 parameters, AIC = 13,233, BIC = 13,326. When 

compared to a model that constrained the intercepts to be equal across levels 1 and 2, the fit 

degraded to -2LL = 13,229.98 with 16 parameters, AIC = 13,262, BIC = 13,348. The difference 

in deviance statistics was statistically meaningful (Δ-2LL = 30.04, Δdf = 1, p < .001) and 

because the level 1 and level 2 means were standardized values, the difference represents the 

average treatment effect (i.e, 1.73 – 0.85 = 0.88). 

Discussion 
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 There exists an abundance of resources for modeling complex data structures in terms of 

measurement frameworks (e.g., MLM and SEM) and software. The relation between complex 

data structures in the context of randomized controlled trials has been studied extensively such 

that comprehensive materials and best practice recommendations exist for the prospective 

planning of randomized studies (Spybrook, Raudenbush, Liu, Congdon, & Martinez, 2006) and 

subsequent evaluation of causal impacts (What Works Clearinghouse, 2016). These strategies 

and their predecessors have proven useful for decades of research so that unbiased estimates of 

treatment effects may be estimated. At the same time, a noted limitation of existing frameworks, 

strategies, and best practice recommendations is that they have been focused on fully nested 

design structures. 

Partial nested designs have gained greater traction in psychological research (Sterba et 

al., 2014), yet even as these designs are widely utilized for the implementation of treatment 

effect studies in educational and psychological research, only recently have methodological 

recommendations begun to emerge for handling such structures in terms of both theoretical 

considerations for the model (e.g., Bauer et al., 2008; Lee & Thompson, 2005) and practical 

application for sample size planning and estimation (e.g., Lohr et al., 2014; Sterba et al., 2014). 

When modeling nested data, whether partially nested, fully nested, or otherwise, most 

applications have focused on multilevel or structural equation modeling frameworks for 

estimation (Sterba et al., 2014), and the current recommendations require the user to engage in 

additional data management and variable creation in order to override or allow the model to be 

estimated in the appropriate manner. In the present study, our goal was to both generally 

introduce nSEM as a viable framework for handling design complexities of many kinds of 

nesting structures and specifically introduce nSEM as useful for handling partially nested data 
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for causal modeling. The development of nSEM modeling and software by Mehta (2013a, 

2013b) was born out of an attempt to bridge MLM, SEM, and ML-SEM traditions into a general 

unifying framework that allows for direct correspondence among matrices, measurement models, 

and equations. As well, nSEM was developed as a framework to flexibly handle many levels of 

structure, whether the levels represent the sources of influence (e.g., higher-order clustering 

units, cross-classification, multiple membership) as they do in an MLM framework, or 

categorical grouping variables (e.g., treatment conditions, sex, or groupings of socio-economic 

status) as they are handled in a SEM framework.  

The answer to our research question of, to what extent does an nSEM framework yield 

identical or similar results to conventional applications of partial nesting for a randomized 

controlled trial?, is that in the context of the sample data results from the examples on manifest 

variables demonstrated a strong correspondence between nSEM and MLM approaches. 

However, it is important to note the differences in model conceptualization and estimation. 

Though producing the same result as nSEM, the MLM specification requires additional data 

management and code specification to get around estimation issues. Specifically, MLM 

applications require the creation of multiple variables, addition of controlling statements, and 

changes in estimation procedures that are not typically part of estimating mixed models in 

software packages (Lohr et al., 2014). Where nSEM differs from MLM applications in 

conventional software packages is that its straightforward modeling of influences allows for a 

more direct model building approach. A conventional two-level model for randomized controlled 

trials in MLM (e.g., students in classrooms) can instead be viewed as a three-level model in 

nSEM (i.e., treatment students, control students, and classrooms). The estimation of the 

treatment effect in the MLM is typically obtained by including a dummy-coded indicator that 
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reflects one group’s fitted post-test mean deflection from the other group, whereas in nSEM the 

treatment effect comes from testing and comparing a model with freely estimated group means 

from a model of constrained group means. Notwithstanding these differences, the results are just 

about identical except for differences in the estimated confidence intervals for the small group 

variance, a potential consequence of including extra data manipulations and estimation 

procedures in the MLM approach. The nSEM for ML-SEM applications differs from what a 

traditional ML-SEM approach in specification in that the former views the causal model of as a 

four-level model (i.e., treatment students, control students, small groups, and classrooms) and the 

latter views the structure as three-level with the two student groups collapsed.  The specification 

of multiple sources of influence in nSEM allows for a broad set of longitudinal invariance 

models to be specified and tested across all four levels in a way that more directly models the 

individual parameters that exist across any level.  

Importantly, even as each example demonstrates the unique value of nSEM, Example 5 

adds unique value that addresses limitations of the partial nesting literature raised by Sterba et al. 

(2014); namely, that when considering partial nesting a balance is needed in decision-making 

about the type of model, the nature of form of the data (long or wide), and how specialized the 

software package is for running multilevel or SEMs. Findings from this tutorial demonstrate that 

regardless of variable type (e.g., manifest or latent), nesting design (full or partial), leveling of 

the model (single level or multilevel), or complexity of the design structure (e.g., cross-

classification), the nSEM approaches assists for what other data management mechanisms may 

ail. With relatively little training in nSEM materials (Mehta, 2013b) it is possible to specify the 

types of complex models here as well as alternatives that are frequently germane to causal 

modeling in psychological research. For example, Wanzek et al. (2017) expanded the use of 
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nSEM to test for moderation of treatment effects through: 1) heterogeneity of regression slopes, 

2) the influence of continuous predictors on treatment effects, and 3) the influence of categorical 

predictors on treatment effects. Heterogeneity of regression slopes is commonly tested in MLM 

and SEM causal models via an interaction term of the treatment indicator and baseline 

performance. In nSEM, heterogeneity is tested by freeing the latent posttest on pretest regression 

parameter, such as 1,1
2,1β  in Figure 5, and comparing the model fit for the presence of varying 

regression effects across groups. The influence of continuous predictors may be tested by 

creating additional level-based latent constructs, whether common-factor or single-indicator, and 

testing freely estimated effects compared to constrained effects. The influence of categorical 

predictors may be tested by creating additional levels or subsetting the data pertaining to the 

levels of interest and testing for treatment effects for the subgroups of interest. Multilevel 

moderation and mediation is also possible in nSEM through xxm software (Mehta, 2013b). 

Conclusion 

Complex data structures are here to stay. Methodologies for understanding and estimating 

such complexities continue to grow, and as such, approaches will continually be refined for the 

purpose of estimating treatment effects in ways that are unbiased and useful to the practitioner 

and the data modeler. Although the nSEM approach introduces added complexities in equation 

notation, the framework allows for model specification malleability that is only as limited as 

one’s computer resources and data allows. 

 

 

 

 



nSEM for Causal Models 34 
 

References 

Baldwin, S. A., Bauer, D. J., Stice, E., & Rohde, P. (2011). Evaluating models for partially 

clustered designs. Psychological Methods, 16, 149. Doi:  10.1037/a0023464. 

Bauer, D. J., Sterba, S. K., & Hallfors, D. D. (2008). Evaluating group-based interventions when 

control participants are ungrouped. Multivariate Behavioral Research, 43, 210-236. Doi: 

10.1080/00273170802034810. 

Curran, P. J. (2003). Have multilevel models been structural equation models all 

along?. Multivariate Behavioral Research, 38, 529-569. Doi: 

10.1207/s15327906mbr3804_5. 

Gilbert, J., Petscher, Y., Compton, D. L., & Schatschneider, C. (2016). Consequences of 

misspecifying levels of variance in cross-classified longitudinal data structures. Frontiers 

in psychology, 7, 695. 

Lee, K.J., & Thompson, S.G. (2005). The use of random effects models to allow for clustering in 

individually randomized trials. Clinical Trials, 2, 163–173. Doi: 

10.1191/1740774505cn082oa.  

Luo, W., Cappaert, K. J., & Ning, L. (2015). Modelling partially cross‐classified multilevel 

data. British Journal of Mathematical and Statistical Psychology, 68(2), 342-362. 

Luo, W., & Kwok, O. M. (2009). The impacts of ignoring a crossed factor in analyzing cross-

classified data. Multivariate Behavioral Research, 44(2), 182-212. 

Mehta, P.D. (2013a). N-level structural equation modeling. In. Y. Petscher, C. Schatschneider, 

and D. Compton (Eds.) Applied quantitative analysis in education and the social sciences 

(pg. 329-361). NY, NY: Routledge. 

https://dx.doi.org/10.1037%2Fa0023464


nSEM for Causal Models 35 
 

Mehta, P.D. (2013b). xxm: Structural Equation Modeling for Dependent Data. R package 

version 0.6.0. 

Mehta, P. D., & Neale, M. C. (2005). People are variables too: Multilevel structural equations  
 

modeling. Psychological Methods, 10, 259. Doi: 10.1037/1082-989X.10.3.259. 
 

Mehta, P.D., & Petscher, Y. (2016). N-level structural equation model of student achievement 

data nested with repeated teachers, schools, and districts. In J.R. Harring, L. M. 

Stapleton, and S.N. Beretvas (Eds.). Advances in multilevel modeling for educational 

research: Addressing practical issues found in real-word applications (pg. 193-228). NY, 

NY: Information Age Publishing. 

Meyers, J. L., & Beretvas, S. N. (2006). The impact of inappropriate modeling of cross-classified 

data structures. Multivariate Behavioral Research, 41(4), 473-497. 

Moerbeek, M., & Wong, W. (2008). Sample size formulae for trials comparing group and 

individual treatments in multilevel model. Statistics in Medicine, 27, 2850-2864. 

Roberts, C. & Roberts, S. A. (2005). Design and analysis of clinical trials with clustering effects 

due to treatment. Clinical Trials, 2, 152–162. 

Sanders, E. A. (2011). Multilevel analysis methods for partially nested cluster randomized trials.  
 

University of Washington. 
 
Spybrook, J., Raudenbush, S. W., Liu, X. F., Congdon, R., & Martínez, A. (2006). Optimal 

design for longitudinal and multilevel research: Documentation for the “Optimal 

Design” software. Ann Arbor: University of Michigan School of Education, Hierarchical 

Models Project. 



nSEM for Causal Models 36 
 

Sterba, S.K., Preacher, K.J., Forehand, R., Hardcastle, E.J., Cole, D.A., & Compas, B.E. (2014). 

Structural equation modeling approaches for analyzing partially nested data. Multivariate 

Behavioral Research, 49, 93-118. 

Sterba, S.K. (2017) Partially nested designs in psychotherapy trials: A review of modeling 

developments, Psychotherapy Research, 27, 4, 425-436. 

Wanzek, J., Petscher, Y., Al Otaiba, S., Rivas, B., Jones, F., Kent, S., Schatschneider, C. & 

Mehta, P. (2017). Effects of a year-long supplemental reading intervention for students 

with reading difficulties in fourth grade. Journal of Educational Psychology. Doi: 

10.1037/edu0000184. 

What Works Clearinghouse (2016). Procedures and standards handbook (Version 3.0). 

Retrieved from 

https://ies.ed.gov/ncee/wwc/Docs/referenceresources/wwc_procedures_v3_0_standards_

handbook.pdf 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://psycnet.apa.org/doi/10.1037/edu0000184


nSEM for Causal Models 37 
 

Table 1 
 
Manifest variable example results 
 
        95% CI 
Example Method Effect Estimate LB UB 
Example 1 Multilevel Intercept 463.23 459.30 467.16 

  Classroom Variance 99.11 51.33 265.72 
    Residual Variance 566.97 491.77 660.95 

 nSEM Intercept 463.23 459.38 467.31 
  Classroom Variance 99.11 38.20 204.42 

    Residual Variance 566.98 490.90 659.63 
Example 2 Multilevel Intercept 457.22 452.71 461.73 

  Passport 12.23 7.65 16.81 
  Classroom Variance 98.63 51.96 254.57 

    Residual Variance 528.68 458.58 616.26 

 nSEM Control Mean 457.22 452.81 461.80 
  Passport Mean 469.45 465.02 474.03 
  Classroom Variance 98.63 39.81 200.02 

    Residual Variance 528.67 457.77 615.03 
Example 3 Multilevel Intercept 455.49 452.28 458.69 

  Passport 11.95 6.11 17.79 
  Small Group Variance 127.60 63.45 375.84 
   Residual Variance 549.16 477.30 638.66 

 nSEM Control Mean 455.49 452.29 458.69 
  Passport Mean 467.44 462.49 472.31 
  Small Group Variance 127.59 44.36 276.74 

    Residual Variance 549.18 476.47 634.40 
Example 4 Multilevel Intercept 456.85 452.64 461.07 

  Passport 12.02 6.86 17.19 
  Classroom Variance 70.77 29.99 321.69 
  Small Group Variance 43.25 15.40 1348.64 
   Residual Variance 518.67 448.46 606.86 

 nSEM Control Mean 456.85 452.73 461.28 
  Passport Mean 468.88 463.93 473.76 
  Classroom Variance 70.87 10.21 174.29 
  Small Group Variance 53.21 0.001 187.74 

    Residual Variance 518.67 447.49 605.37 
Note. Example 1 = Unconditional means model with students and classrooms, Example 2 = Conditional means model with 
students and classrooms, Example 3 = Conditional means model with students and small groups, Example 4 = Conditional means 
model with students, classrooms, and small groups. nSEM = n-level structural equation model; LB = 95% confidence interval 
(CI) lower bound estimate; UB = 95% confidence interval (CI) upper bound estimate. 
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Figure 1. Diagram of a two-level model using hierarchical linear modeling notation (left) and 
structural equation modeling notation (right). 
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Figure 2. Graphical representations of SEM (left) and nSEM (right) for a two-level model. 
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Figure 3. Conditional SEM (left) and conditional nSEM (right) measurement representations of a 
fully-nested randomized controlled trial. 
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Figure 4. nSEM representations of partially nested (left) and partially nested, cross-classified (right) randomized controlled trial 
structures. 
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Figure 5. nSEM representations of latent partially nested, cross-classified randomized controlled trial structure. 
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Figure 6. nSEM result for latent partially nested, cross-classified randomized controlled trial. 
 


