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ABSTRACT 
In this paper, we propose a computational approach to modeling 
the Zone of Proximal Development of students who learn using a 
natural language tutoring system for physics. We employ a student 
model that predicts students’ performance based on their prior 
knowledge and their activity when using a dialogue tutor to 
practice with conceptual, reflection questions about high-school 
physics. Furthermore, we introduce the concept of the “Grey 
Area”, the area in which the student model cannot predict with 
acceptable accuracy whether a student has mastered the 
knowledge components or skills present in a particular step.  We 
envision that our approach will contribute to the way we design 
learning content for ITSs and the way we author dialogues for 
natural-language tutoring systems. We further discuss the impact 
of our approach on student modeling and discuss future work in 
systematically and rigorously evaluating the approach. 
Keywords 
Natural-language tutoring systems, intelligent tutoring systems, 
student modeling, zone of proximal development 

1. INTRODUCTION 
Intelligent Tutoring Systems (ITSs) support students in grasping 
concepts, applying them during problem solving activities, 
addressing misconceptions and in general improving students’ 
proficiency in science, math, reading and other areas [25]. 
However, we still face the challenge of developing tutoring 
systems that emulate the interactive nature of human tutoring and 
that are just as effective – if not better – than human tutors. ITS 
researchers and developers have been studying the use of 
simulated tutorial dialogues that aim to engage students in 
reflective discussions about scientific concepts [10, 13, 23]. 
However, to a large extent, these systems lack the ability to gauge 
students’ level of mastery over the curriculum that the tutoring 
system was designed to support. This is also challenging for 
human tutors, who do gauge the level of knowledge and 
understanding of their tutees to some degree, although they are 
poor at diagnosing the causes of student errors [7].  
We argue that integrating a student model into tutorial dialogue 
systems that maintain and dynamically update a representation of 
students’ ability level on targeted curriculum elements can help us 
address these differences between human and simulated tutors. 
Correspondingly, we propose that tutorial dialogue systems would 
be more effective if they were guided by the information about the 
student’s understanding of curriculum elements that is represented 
within a student model, along with other student characteristics 

such as demographic information and motivational traits such as 
interest in the targeted domain, self-efficacy, etc. [5]. 

1.1 Research Hypothesis and Impact 
We argue that in order to provide meaningful instruction and 
scaffolding to students, a tutoring system should appropriately 
adapt the learning material with respect to both content and 
presentation. A way to achieve this is to dynamically assess the 
students’ knowledge state and needs. Human tutors use their 
assessment of student ability to adapt the level of discussion to the 
student’s “zone of proximal development” (ZPD)—that is, a little 
bit beyond the student’s current level of understanding about a 
concept, ability to perform a skill, etc. [26]. Following the 
practice of human tutors, we propose a computational approach to 
model the ZPD of students who carry out learning activities using 
a dialogue-based intelligent tutoring system. In particular, we 
employ a student model to assess students’ changing knowledge 
as they engage in a dialogue with the system. Based on the 
model’s predictions, we define the concept of the “Grey Area”, a 
probabilistic region in which the model’s predictive accuracy is 
low. We argue that this region can be used to indicate whether a 
student is in (or not in) the ZPD. Poor predictive accuracy may 
have two sources: (a) lack of enough evidence (data points) upon 
which the model can make a good prediction. In that case 
(insufficient data), the grey area would not be a good approach for 
modeling the ZPD; (b) the student’s performance itself is too 
variable to make reliable predictions. This mirrors what happens 
with human tutors: 1) human tutors are not sure what the student 
knows at the start of a tutoring session (or of a new topic) and 2) 
human tutors may not be able to assess a student’s knowledge if 
the student is not giving consistent answers for a topic.  
We do not claim that the grey area depicts or is directly related to 
the ZPD. Rather, our research hypothesis is that we can use the 
outcome of the student model (i.e. the fitted probabilities that 
predict students’ performance) to model students’ ZPD. The core 
rationale is that if the student model cannot predict with 
acceptable accuracy the performance of a student (i.e. whether a 
student will answer a question from the tutor correctly), then it 
might be the case that the student is in the ZPD. To the best of our 
knowledge, this is a novel approach to modeling the ZPD. 
Furthermore, we envision that this approach will impact how ITS 
developers design learning activities and materials, author tutorial 
dialogues and provide scaffolding and feedback. Even though 
here we focus on dialogue-based tutoring systems, we expect that 
our approach can be generalized and expanded to other kinds of 
ITSs. 
In Section 2 we present work related to identifying the ZPD, such 
as dynamic assessment and provide an overview of student 



 

 

modeling. In Section 3 we discuss our approach and present the 
study methods. In Section 4 we present the results and findings. 
We discuss the evaluation, contribution and impact of our 
approach in Section 5 and conclude by discussing the limitations 
of our study and future work. 
2. RELATED WORK 
2.1 Zone of Proximal Development 
The Zone of Proximal Development (ZPD) is one of the most 
well-known concepts in educational psychology, defined by 
Vygotsky as: “the distance between the actual developmental 
level as determined by independent problem solving and the level 
of potential development as determined through problem solving 
under adult guidance or in collaboration with more capable 
peers” [26]. This definition of the ZPD points out the importance 
of appropriate assistance in relation to the learning process and 
development and thus it can be stated more simply as “the 
difference between what a learner can do without help and what 
he or she can do with help” [22].  
Deriving ways to identify and formally describe the ZPD is an 
important step towards understanding the mechanisms that drive 
learning and development, gaining insights about learners’ needs, 
and providing appropriate pedagogical interventions [4]. 
Approaches to identifying or to modeling the ZPD typically 
depend on finding instances of successful assisted performance; 
for example, tasks that a student carries out successfully after 
having received some kind of scaffolding [4]. Various methods 
that derive from or build on this notion have been developed for 
the dynamic assessment (DA) of the learning potential of students 
(or learners in general) [24]. Usually these approaches employ 
tests that measure the difference between unmediated and 
mediated performance [20] or the cognitive modifiability of 
learners (i.e., how students’ cognitive structures change when they 
fail a task and the teacher/expert gives them help or remediation 
tasks) [12]. However, Dynamic Assessment focuses on assessing 
the learning or development potential of the learner rather than the 
actual level of development.  
2.2 Intelligent Tutoring Systems and Student 
Modeling 
Intelligent Tutoring Systems (ITSs) commonly use a student 
model to track the performance of students and subsequently 
choose appropriate content for practicing skills and fostering 
knowledge. Most student models developed for ITSs are based on 
the notion of mastery learning; that is, the student is asked to 
continue solving problems or answering questions on a concept 
until she has mastered it almost to certainty. Only then will the 
student be guided to move forward to other concepts [1, 8, 9]. 
Mastery learning is in line with the notion of learning curves that 
is, how many opportunities a student needs in order to master a 
skill or knowledge component. One could argue that mastery 
learning is consistent with ZPD theory, in the sense that the 
student is considered to have mastered a skill when the student is 
able to successfully carry out, without help, a task that requires 
this particular skill. However, the ZPD does not directly address 
mastery but rather potential “development” under appropriate 
assistance; as aforementioned, by identifying the ZPD not only 
can we assess the state of a student’s knowledge but we also gain 
insight into how appropriate instruction can scaffold development 
[4, 14].  
Human tutors do not carry out detailed diagnoses of student 
knowledge and their assessments of students’ knowledge deficits 

are often inaccurate [7, 21]. However, they nonetheless construct 
and dynamically update a normative mental representation of 
students’ grasp of the domain content under discussion, as 
reflected in tutors’ adaptive responses to students’ need for 
scaffolding or remediation [18]. It follows logically that a tutorial 
dialogue system similarly needs a student model to adapt to the 
student’s needs. Otherwise, all students would be presented with 
the same topics, at the same level of detail or complexity. 
Moreover, if the student answers a question incorrectly and there 
is need for remediation, the simulated tutor will not be able to 
adapt the type of support that it provides. Indeed, it is the absence 
of information about the student that forces designers of tutorial 
dialogue systems to make a “best guess” about how to structure a 
dialogue—that is, what the main “line of reasoning” should be, 
what remedial or supplemental subdialogues to issue and when—
and then to hard code these guesses into the dialogues. 
Consequently, with the “one size fits all” approach to dialogue 
that is implemented in most tutorial dialogue systems, students are 
often under-exposed to material that they don’t understand and 
overexposed to material that they have a firm grasp of. The first 
problem renders these systems ineffective in enabling students to 
achieve mastery over the focal content; the second makes them 
inefficient. 

3. METHODS 
3.1 Rimac: A Dialogue Tutor for Physics 
In this study, we used data collected during three previous studies 
with the Rimac system to train a student model and test our 
research hypothesis. Rimac is a web-based natural-language 
tutoring system that engages students in conceptual discussions 
after they solve quantitative physics problems [19] and has been 
used successfully to teach physics concepts to high-school student 
[16, 17]. 
The three studies were conducted within high school physics 
classes at schools in the Pittsburgh, PA area and they followed a 
similar protocol. First, students took a pretest and were introduced 
to Rimac. Then they interacted with Rimac to discuss the physics 
conceptual knowledge associated with quantitative problems on 
dynamics. Finally, students took a post-test to measure learning 
differences after interacting with the system. The tests aimed to 
test students’ conceptual understanding of physics instead of their 
ability to solve quantitative problems.   
Rimac’s dialogues were developed to present a directed line of 
reasoning, or DLR [11]. The tutor presents a series of questions to 
the student. If the student answers a question correctly, she 
advances to the next question in the DLR. If the student provides 
an incorrect answer, the system launches a remedial sub-dialogue 
and then returns to the main line of reasoning after the sub-
dialogue has completed. If the system is unable to understand the 
student’s response, it completes the step for the student (for more 
details on how Rimac is implemented, see [15]). The knowledge 
components related to tutor question/student response pairings are 
logged during the system’s interactions with students and were 
used to train the student model as described next. 

3.2 The Student Model  
For this study, we used an Additive Factor Model (AFM) to 
model students’ knowledge. This student modeling method was 
introduced into ITS research by Cen et. al. [2, 3]. In this paper we 
implemented the AFM model following the approach of Chi et al. 



 

 

[6] since it has been used successfully before to model students 
who work on physics problems using a dialogue-based tutor. The 
model predicts the probability of a student completing a step 
correctly as a linear function of student parameters, knowledge 
components or skill parameters, and learning. AFM takes into 
account the frequency of prior practice and exposure to skills but 
not the correctness of responses.  
The dataset was collected by training 291 students on Rimac over 
a period of 4 years (2011-2015). During students’ interactions 
with Rimac, they answered reflection questions on physics 
problems about dynamics, such as:  
“Let`s consider three conceptual questions that are related to this 
problem and will help you understand the arrow`s motion. In our 
first question we will focus on the horizontal motion of the arrow. 
Let`s imagine a scenario in which an archer is standing at the 
edge of a high cliff. He shoots an arrow perfectly horizontally 
with an initial velocity of 60 m/s off this cliff. During the arrow`s 
flight, how does its horizontal velocity change (increases, 
decreases, remains the same, etc.)? Remember that you can 
ignore air resistance”. 
Students worked on three physics problems that explored motion 
laws and addressed 88 knowledge components (KCs). 
The dataset contained in total 15,644 student responses. Each 
student response answers a question posed by the tutor and was 
classified as correct or incorrect. For the training of the model we 
split our dataset following an 80% rule: 12,515 student responses 
were used for training the model and the remaining 3,129 were 
used for testing. On average, each student answered a total of 53 
questions, stemming from several reflection questions. The test set 
contained on average 11 entries per student (i.e., 20% of the total 
number of student responses; the rest were used for training the 
model). We chose this training approach because we wanted to 
study how the same students represented in the training data 
would perform on future and sometimes unseen steps, and how 
their knowledge level adapts with practice. 
3.3 The Grey Area and the Study Setup 
Our research hypothesis is that we can use the fitted probabilities 
as predicted by the student model to model the ZPD. The core 
rationale is that if the student model cannot predict with high 
accuracy whether a student will answer a tutor’s question 
correctly (or not), then it might be the case that the student is in 
the ZPD.  
To predict correctness of students’ responses in the test set, we 
used the AFM student model (described in 3.2). Then, we 
classified the outcome (as correct or incorrect) based on the fitted 
probabilities provided by the model. In this study, the student 
model provides predictions at the step level (one step is one 
question/answer of the tutorial dialogue). A step might involve 
one or multiple KCs. 
The classification threshold in this case (i.e., the cutoff 
determining whether a response is classified as correct or 
incorrect) is 0.5 and it was validated by the ROC curve for the 
binary classifier (Figure 1). For example, if the fitted probability 
for a step in the dialogue provided by the model is 0.8 (above 0.5) 
then we expect that the student will be able to answer the 
corresponding dialogue step correctly; hence it is classified as 
correct. Similarly, if the fitted probability for a step in the 
dialogue provided by the model is 0.2 (below 0.5) then we expect 
that the student will not be able to answer the corresponding 
dialogue step correctly; hence it is classified as incorrect.  

We show that the prediction probabilities correlate with students’ 
performance in the pre and post-tests: the student model will 
provide high probabilities of correctness (i.e., a high probability 
to answer a question correctly) for students who performed well in 
the pre and post-tests. Similarly, the model will provide low 
probabilities of correctness (i.e., a low probability to answer a 
question correctly) for students who performed poorly in the pre 
and post-tests. By showing that there is a correlation between 
students’ performance in the pre and post-tests and prediction 
probabilities, we argue that prediction probabilities are 
appropriate indicators of the ZPD. In this study the pre and post-
tests were developed to assess conceptual knowledge associated 
with the questions and problems that students were assigned  to 
work on, within Rimac. 
Furthermore, we expect that the closer the prediction is to the 
classification threshold, the higher the uncertainty of the model 
and thus, the higher the prediction error. In other words, when the 
student model predicts that the student will be able to answer a 
question with a probability close to 0.5, we are more uncertain 
than with any other prediction as to whether or not the student 
will answer the question correctly. Based on our hypothesis, this 
window where the prediction error is high can be used to 
approximately model the student’s zone of proximal development. 
Henceforth we will refer to this window of uncertainty as the 
“Grey Area”. The concept of the Grey Area is depicted in Figure 2 
and is on students’ performance at the step-level. 

 
Figure 1 ROC Curve for validating the classification threshold 
The space “Above the Grey Area” denotes the area where the 
student is predicted to answer correctly (the fitted probability is 
considerably higher than the cutoff threshold) and consequently 
may indicate the area above the ZPD; that is, the area in which the 
student is able to carry out a task without any assistance. 
Accordingly, the space “Below the Grey Area” denotes the area 
where the student is predicted to answer incorrectly (the fitted 
probability is considerably lower than the cutoff threshold) and 
consequently may indicate the area below the ZPD; that is, the 
area in which the student is not able to carry out the task either 
with or without assistance. In this paper, we model the grey area 
symmetrically around the classification threshold for simplicity 
and because the binary classifier was set to 0.5. However, the 
symmetry of the Grey Area is something that could change 



 

 

depending on the classification threshold and the learning 
objectives. This is also the case for the size of the Grey Area. We 
do not propose a specific size but rather try out grey areas of 
different sizes and study how the student model behaves within 
these areas. We believe that the decision about the appropriate 
size (or shape) of the Grey Area is not only a modeling issue but 
mainly a pedagogical one since it relies on the importance of the 
concepts taught, the teaching strategy and the learning objectives. 
That is, a teacher may consider that it is very important to elicit an 
answer even if the student is predicted not to be knowledgeable 
about the topic or a topic might be of minor importance and 
therefore even a low probability of correctness would be 
considered sufficient to classify the student as knowledgeable. 

 Figure 2. The Grey Area concept with respect to the fitted 
probabilities (i.e., the probability a student answers correctly 
on a particular step) as predicted by the student model for a 
random student and for the various steps of a learning activity. 
Here we depict the Grey Area ranging from 0.4 to 0.6 and 
extending on both sides of the classification threshold (dotted 
line).  
4. ANALYSIS AND RESULTS 
4.1 Model Behavior and Student Performance 
The research hypothesis is based on the rationale that the 
prediction probabilities of the student model can provide insight 
into student knowledge and performance; that is, the fitted 
probabilities for a high-performing student will be higher than the 
fitted probabilities for a low-performing student. The reason for 
this is that the fitted probability represents the probability that a 
student will correctly answer a question in the dialogue. Since 
high performers have a higher probability of answering questions 
correctly, the average of their fitted probabilities will be higher 
than those of low performing students. 
We performed a correlation analysis to explore this hypothesis. In 
particular, we correlated the average fitted probability (i.e., the 
average value of the fitted probabilities for the answers of each 
student) per user with the students’ knowledge pre-test scores. 
The correlation analysis showed that the average fitted probability 
correlates positively with the pre-test scores at a statistically 
significant level (Pearson’s r = 0.396**, p<0.01). The positive 
correlation was also confirmed for the post-test scores (Pearson’s 
r = 0.46**, p<0.01). This indicates that with a student who gets a 
pre-test score revealing she knows a particular KC, the model will 
predict that the student is able to answer a question that deals with 
this KC. Similarly, a student who has been classified as able to 
answer a question that deals with a particular KC will get a post-

test score that shows she is knowledgeable about this KC. 
Conversely, with a student who gets a pre-test score revealing she 
has no or little knowledge related to a particular KC the model 
will predict that the student is not able to answer a question that 
deals with this KC. Subsequently, a student who is classified as 
unable to answer a question on a particular KC will be expected to 
score a low post-test score for this KC. This finding indicates that 
the model can predict a student’s performance and may be further 
used to model the student’s zone of proximal development. 

4.2 Model Accuracy for cases inside the Grey 
Area 
As aforementioned, the grey area is defined as the area where the 
model cannot predict with accuracy whether a student will 
correctly answer a particular question. To operationalize the grey 
area with respect to size and threshold, we define areas of 
different sizes and further explore the model’s behavior within 
these areas. For this study, we considered five grey areas of 
different size:  
 Area 1: contains the fitted probabilities between 0.45 and 0.55  Area 2: contains the fitted probabilities between 0.4 and 0.6  Area 3: contains the fitted probabilities between 0.35 and 0.65  Area 4: contains the fitted probabilities between 0.3 and 0.7  Area 5: contains the fitted probabilities between 0.25 and 0.75 

 We chose these particular areas so as to cover the range around 
the classification threshold for which one would expect low 
predictive accuracy. For these areas, we calculated how many 
times the model predicted the student answer accurately or not. 
Accuracy is defined as the total number of times (1) the student 
answered correctly and the model also predicted the student 
would answer correctly and (2) the student answered incorrectly 
and the model also predicted the student would answer incorrectly 
divided by the total number of predictions.  
The results of this analysis are presented in Table 1 and Table 2. 
Table 1 presents the analysis of the cases that are contained only 
in the focal grey area under study (non-cumulative results) and 
excludes the cases that are also contained in preceding areas. For 
example, in Area 2 we examine 420 cases that are not contained 
in Area 1. Table 2 presents the analysis of cases that are contained 
in the current area but can also be part of the preceding grey area 
(cumulative results). For example, Area 2 analyzes 814 cases out 
of which 394 are also contained in Area 1.  
The results of the non-cumulative analysis show that most 
predicted cases fall in Area 2 – Non Cumulative (Table 1) (the 
largest increase in uncertain cases is with Area 2) and that 42.6% 
of them are predicted incorrectly. This means that for 13.4% (420 
cases) of the total number of cases (Total Number of Cases: 
3,129), the model gave a prediction with a probability from 0.4 to 
0.6. As we move away from the classification threshold (0.5), the 
number of the fitted cases tends to decrease (fewer cases are 
predicted with probabilities far from the cutoff threshold) but the 
percentage of the correct predictions improves. This is depicted in 
Figure 3. That finding was expected since the confidence of the 
model increases. For Area 1, the prediction error is higher (45.9% 
of the cases were not predicted correctly) but the number of fitted 
cases is lower than Area 2. In Figure 4 we depict the results for 
the cumulative analysis. As expected, more cases are predicted 
correctly as the area size increases.   

Area “Above 
the Grey Area” 

Area “Below 
the Grey Area” 



 

 

On one hand, choosing a narrow grey area to model the ZPD 
would limit the number of cases we scaffold since fewer cases 
would fall within the area.  On the other hand, choosing a wide 
grey area would affect the accuracy; that is, some cases that could 
be predicted correctly would be falsely labeled as “grey”. 
However this work does not aim to define the appropriate size for 
the Grey Area but rather to study how the model’s behavior may 
change for areas of different size. 
It is worth mentioning that for the area that is not included in the 
five areas we study—that is, the area [0,0.25)U(0.75, 1]—the  
model predicted 89% of the cases correctly while the overall 
accuracy of the model was 73%. 

Table 1. Predictions’ accuracy within grey areas of different 
sizes – non-cumulative results. Successive areas do not contain 
cases that were present in preceding areas (e.g., statistics for 

Area 2 do not take into account the cases contained in Area 1)  
Non- 
Cumulative Area 1 Area 2 Area 3 Area 4 Area 5 
#Cases  394 420 404 369 304 
Cases (%)  12.6 13.4 12.9 11.8 9.7 
#Correct 213 241 259 250 221 
#Incorrect 181 179 145 119 83 
Correct (%) 54.1 57.4 64.1 67.8 72.7 
Incorrect (%) 45.9 42.6 35.9 32.3 27.3 

 

 

Table 2. Predictions’ accuracy within grey areas of different 
sizes – cumulative results. Successive areas contain cases that 
were also present in preceding areas (e.g., statistics for Area 2 

also take into account the cases contained in Area 1) 
Cumulative Area 1 Area 2 Area 3 Area 4 Area 5 
#Cases 394 814 1218 1587 1891 
Cases (%) 12.6 26.0 38.9 50.7 60.4 
#Correct 213 454 713 963 1184 
#Incorrect 181 360 505 624 707 
Correct (%) 54.1 55.8 58.5 60.7 62.6 
Incorrect (%) 45.9 44.2 41.5 39.3 37.4 

 

 
Figure 3. Model behavior (percentage of total number of 
predicted cases, of cases predicted correctly and cases 

predicted incorrectly) within the five grey areas of different 
sizes. The areas are ordered from the narrowest (Area 1) to 
the widest (Area 5). Each area contains cases that are not 
contained in preceding areas (non-cumulative analysis). 

 
Figure 4. Model behavior (percentage of total number of 
predicted cases, cases predicted correctly and cases predicted 
incorrectly) within the five grey areas of different sizes. The 
areas are ordered from the most narrow (Area 1) to the widest 
(Area 5). Each area contains cases that are also contained in 
preceding areas (cumulative analysis). 
4.3 Grey Areas and Students’ Performance 
So far, we have studied how the model performs within grey areas 
of various sizes, but we have no indication of students’ 
performance. To that end, it would be interesting to explore the 
distribution of correct vs. incorrect student answers and whether 
this distribution would change for grey areas of different sizes. 
One could argue that based on the way the grey zone was 
modeled—that is, symmetrical around the cutoff threshold of the 
binary classified—correct and incorrect answers should be 
balanced and not vary significantly from one zone to the other.  
Again, here we only study students’ performance; therefore 
“correctness” refers to the student’s answers (i.e., whether a 
student answered a question correctly) and not whether the model 
predicted correctly (i.e., whether the model predicted that the 
student would answer the way she answered). For the five grey 
areas defined in 4.2, we have counted the number of correct and 
the number of incorrect student answers. 
Table 3. Distribution of correct and incorrect student answers 

in grey areas of different sizes. 
Area 1 Area 2 Area 3 Area 4 Area 5 

#Correct Answers 184 421 633 836 1010 
Correct (%) 46.7 51.7 52 52.7 53.4 
#Incorrect Answers 210 393 585 751 881 
Incorrect (%) 53.3 48.3 48.0 47.3 46.6 
Ratio(Cor/Incor) 0.9 1.1 1.1 1.1 1.2 
#Cases 394 814 1218 1587 1891 
 

The results are presented in Table 3. The table shows that the 
percent of correct answers increases as the area widens and that, 
except for Area 1, the percent of correct answers is larger than the 
percent of incorrect ones.  
In Figure 5 we present the distribution of correct and incorrect 
answers over grey areas of different sizes and over correct and 



 

 

incorrect model predictions (as shown in the cumulative analysis 
in paragraph 4.2, Figure 4). For example, for Area 1 the model 
predicted 54.1% of the cases correctly (e.g., the model predicted 
that a student would answer correctly and indeed the student 
answered correctly, or the model predicted that a student would 
answer incorrectly and indeed the student answered incorrectly). 
Out of these cases, 28.7% were correct answers to the question 
involved and 25.4% were incorrect. Likewise, for Area 1 the 
model predicted 45.9% cases incorrectly (e.g., the model 
predicted that a student would answer correctly but the student 
answered incorrectly, or the model predicted that a student would 
answer incorrectly but the student answered correctly). Out of 
these cases, 18% were correct answers to the question involved 
and 27.9% were incorrect. 
It is evident that even though the accuracy of the prediction 
changes between areas of different sizes, the distributions of 
correct and incorrect answers are similar. Another thing that can 
be noted is that for cases that the model predicts correctly, the 
ratio of correct/incorrect answers is around 1.2 (correct answers 
are slightly more than incorrect). On the contrary, for cases that 
are not predicted correctly by the model the ratio of 
correct/incorrect answers are about 0.7 signifying that incorrect 
answers outnumber correct ones. Nonetheless this is a pattern that 
is maintained for all of the grey areas and most probably it reveals 
that the student model tends to provide positive predictions. 

 
Figure 5. Graphical representation of the distribution of 
correct and incorrect answers (percentage) with respect to the 
model’s correct and incorrect predictions. 
5. DISCUSSION 
5.1 Contribution of the approach 
We envision that the contribution of the proposed approach, 
besides its novelty (to the best of our knowledge there is no 
quantified operationalization of the ZPD) will be in defining and 
perhaps revising instructional methods to be implemented by 
ITSs. As noted previously, the most popular instructional method 
used to choose learning content (problems, activities, examples, 
etc.) is mastery learning. This means that the student goes through 
the same concept again and again until the probability of having 
mastered it is near certainty. However, this might lead to tedious 
repetition or frustration and eventually discourage the student 
from achieving the goal. Choosing the “next step” is a more 
prominent issue in the case of dialogue-based intelligent tutors. 
Not only should the task be appropriate with respect to the 
background knowledge of the student, but it should also be 
presented in an appropriate manner so that the student will not be 

overwhelmed and discouraged – if the task is hard for the student 
– or bored and not challenged – if the task is too easy.  
 
To address this issue, we need an assessment of the knowledge 
state of each student and insight into the appropriate level of 
support the student needs to achieve the learning goals. This is 
described by the notion of ZPD. We claim that our approach 
makes an explicit link between student modeling and the ZPD and 
that this approach is a reasonable and novel operationalization of 
the ZPD. 
It is evident that if we can model the ZPD then we can adapt our 
instructional strategy accordingly. For example, if a student is 
above the ZPD—that is, able to solve a problem on her own and 
without any help—the tutor will probably challenge the student 
with some questions that go beyond the current problem’s level of 
difficulty. On the other hand, if a student is in the ZPD—that is, 
the student needs help and appropriate scaffolding to solve the 
current problem—the tutor will go slowly, perhaps clarifying step 
by step the knowledge the student seems to be lacking. Finally, if 
a student is below the ZPD—that is, the student completely lacks 
the necessary skills and will not be able to solve the problem, 
either with or without help—the tutor might choose to skip this 
problem or to select more appropriate (perhaps simpler) problems. 
Depending on the state of the student’s knowledge, the tutorial 
dialogue may be directed and focus on particular curriculum 
elements (facts, concepts, skills, etc.) to discuss during a given 
problem and to determine the appropriate level at which to discuss 
these elements.  
5.2 Validation of the proposed approach 
In this paper, we provide preliminary support for our approach.  It 
is also necessary to validate our approach. The challenge in doing 
so lies in the fact that there is no systematic way to ensure that a 
student is (or is not) in the ZPD. One way to explore this is to 
provide different levels of support to students using the proposed 
approach and then observe the outcome. Students who are 
expected to be in the ZPD and who receive appropriate 
scaffolding should be able to correctly answer the questions asked 
by the tutor. Thus, we plan to carry out larger scale studies where 
the dialogue will adapt to the student’s knowledge according to 
the guidance provided by the student model (and the Grey Area 
concept). The dialogue adaptation will take place on selected 
dialogue steps (in order to maintain the coherency of the dialogue) 
and will be implemented following three basic adaptation rules: 
1. Students who are above the Grey Area will receive more 

challenging questions, no help or even skip specific parts of 
the dialogue that the model predicts they have mastered; 

2. Students who are within the Grey Area will receive 
meaningful information, scaffolding and hints related to the 
step in question; 

3. Students who are below the Grey Area will either skip the 
step that the model predicts they are unable to answer or they 
will receive explicit information and instruction. 

To evaluate our approach, we will study the learning gains of 
students who receive different levels of support (hints, worked out 
examples, explicit information, etc.) based on their performance 
in pre- and post- knowledge tests and their performance during 
activities within Rimac. We are optimistic that the dialogue 
adaptation according to the Grey Area concept will improve 
students’ learning gains and motivation. 
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6. CONCLUSION  
In this paper, we present a computational approach that aims to 
model the Zone of Proximal Development in ITSs. To that end, 
we introduce the concept of the “Grey Area”. It is important to 
point out that we do not claim that the Grey Area is or can be 
perceived as the ZPD. Instead, our proposal is that if the model 
cannot predict the state of a student’s knowledge, it may be that 
the student is in the ZPD. 
To justify our reasoning, we used data collected from classroom 
studies where students reflected on the concepts associated with 
physics problems, using a dialogue-based tutoring system 
(Rimac). We explored the operationalization of our approach by 
studying the behavior of the student model and the performance 
of students within grey areas of various sizes. We found that the 
accuracy of the model changes depending on the size of the grey 
zone but the distribution of correct and incorrect student 
responses remains fairly constant. Additionally, we showed that 
the average prediction probabilities per student—that is, the 
average value of the fitted probabilities for a particular student 
during her interaction with the Dialogue Tutor—correlates 
positively on a statistically significant level with the student’s 
scores on pre- and post-knowledge tests. This indicates that the 
student model predictions can provide reliable indicators of 
students’ performance. 
A limitation of our work is that we have not yet been able to 
conduct a rigorous evaluation of our approach; however, plans to 
validate our modeling methods are being developed.  Our 
immediate plan is to carry out extensive studies to explore the 
proposed approach to modeling the ZPD further, as well as to 
better understand the strengths and limitations of using a student 
model to guide students through adaptive lines of reasoning. 
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