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Estimation of Contextual Effects through Nonlinear Multilevel Latent

Variable Modeling with a Metropolis-Hastings Robbins-Monro Algorithm

Abstract

The main purpose of this study is to improve estimation efficiency in obtaining maxi-
mum marginal likelihood estimates of contextual effects in the framework of nonlinear
multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro
algorithm (MH-RM; Cai, 2008, 2010a, 2010b). Results indicate that the MH-RM algo-
rithm can produce estimates and standard errors efficiently. Simulations, with various
sampling and measurement structure conditions, were conducted to obtain information
about the performance of nonlinear multilevel latent variable modeling compared to
traditional hierarchical linear modeling. Results suggest that nonlinear multilevel la-
tent variable modeling can more properly estimate and detect contextual effects than
the traditional approach. As an empirical illustration, data from the Programme for
International Student Assessment (PISA; OECD, 2000) were analyzed.

Keywords: contextual effect, multilevel modeling, latent variable modeling, multilevel
latent variable modeling
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1 Introduction

In social science research, a contextual effect is traditionally defined as the differ-

ence between two coefficients in a hierarchial linear model (HLM) analysis framework

(Raudenbush & Bryk, 1986; Willms, 1986; Lee & Bryk, 1989; Raudenbush & Willms,

1995): one from the individual-level and the other coefficient from the group-level. A

representative application of this kind of contextual effect in education was discussed in

Raudenbush and Bryk (2002) using a subset of High School and Beyond (HS&B) data.

In this example, individual math achievement is regressed on individual-level socioeco-

nomic status (SES) and school-level math achievement is regressed on aggregated school-

level SES using multilevel modeling. The result shows that two coefficient estimates are

not the same, indicating two students who have the same SES level are expected to have

different levels of math achievement depending on to which school a student belongs.

Statistically significant difference between these two coefficients represents a significant

compositional effect. Though hierarchical linear modeling opened the door to estimating

contextual effects, there have been two unresolved problems. The first one is related to

the attenuated coefficient estimates due to measurement error in predictors (Spearman,

1904), and the other is biased parameter estimates due to sampling error associated with

aggregating level-1 variables to form level-2 variables by simply averaging the values

Raudenbush & Bryk, 2002, Ch. 3).

To handle measurement error and sampling error more properly, multilevel latent vari-

able modeling has been suggested as an alternative to traditional methods (e.g. Lüdtke et

al., 2008; Lüdtke, Marsh, Robitzsch, & Trautwein, 2011; Marsh et al., 2009). Lüdtke et al.

(2008) proposed a multilevel latent variable modeling framework for contextual analy-

sis. Lüdtke et al. (2008)’s simulation study is noteworthy in that the study examined the

relative bias in contextual effect estimates when the traditional HLM is used under dif-

ferent data conditions. The results showed that the relative percentage bias of contextual

effect was less than 10% across varying data conditions when a multilevel latent variable
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model was used. On the other hand, the relative percentage bias of contextual effect was

up to 80% when the traditional HLM was used. However, the traditional HLM can yield

less than 10% relative bias under favorable data conditions - that is, when level-1 and

level-2 units exceed 30 and 500, respectively, and when there is substantial intra-class

correlation (ICC) in the predictor (e.g., 0.3). However, the type of manifest variables is

limited to continuous only in Lüdtke et al.’s (2008) study.

Marsh et al. (2009) conducted another noted study using multilevel latent variable

modeling for contextual effect analysis. Marsh and colleagues compared several contex-

tual modeling options related to ”big fish-little-pond effect (BFLPE)” estimation using an

empirical data set in which academic achievement (predictor) and academic self-concept

(outcome) were measured by, respectively, three and four continuous manifest variables.

Among the tested models, a multilevel latent variable model yielded the largest BFLPE

estimate. The authors described this model as a doubly latent variable contextual model.

Such a model is theoretically the most desirable choice for researchers, since the model

tries to take both measurement and sampling error into account by utilizing information

from all the manifest variables, rather than using summed or averaged scores at both

individual- and group-level. The study also illustrated how the nonlinear multilevel

latent variable modeling approach can provide flexibility in modeling by including ran-

dom slopes, latent (within-level or cross-level) interactions, and latent quadratic effects.

In both Lüdtke et al.’s (2008) and Marsh et al.’s (2009) studies, they utilized continuous

manifest variables, while the current study considers categorical indicators (item-level

data) for all latent variables in the model.

While theoretically desirable, nonlinear multilevel latent variable modeling poses sig-

nificant computational difficulties. Standard approaches such as numerical integration

(e.g., adaptive quadrature) based EM or Markov chain Monte Carlo (MCMC, e.g., Gibbs

Sampling) based estimation methods have important limitations that make them less

practical for routine use. With respect to numerical integration, its computational bur-
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den increases exponentially when the dimensionality of latent variable space is high, as

is the case with the current nonlinear multilevel latent variable model. On the other

hand, while MCMC is entirely free from the curse of multidimensionality, it is not im-

mune from issues that include advanced tuning requirements, specification of priors,

and convergence analysis for complex models. Lüdtke et al. (2011) also reported the oc-

currence of unstable estimates. The model has difficulty converging when small sample

size is combined with low intraclass correlation coefficient (ICC) in predictors, and also

when there are substantial amount of missing observations in the manifest variables.

The main objective of this study is to develop a more efficient and stable estima-

tion method for contextual effects in the nonlinear multilevel latent variable modeling

framework, by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM;

Cai, 2008, 2010a, 2010b). This study significantly extends the applications of MH-RM

algorithm to the case of multilevel modeling. Prior research using MH-RM is limited

to single level applications, e.g., exploratory and confirmatory item factor analysis (Cai,

2010a, 2010b), latent regression modeling (von Davier & Sinharay, 2010), and item re-

sponse theory modeling with non-normal latent variables (Monroe & Cai, 2014).

Computational efficiency and parameter recovery were assessed in a comparison

with an implementation of EM algorithm using adaptive Gauss-Hermite quadrature

(Mplus; Muthén & Muthén, 2008). Another objective was to find, through a simula-

tion study, the extent to which measurement error and sampling error can influence

contextual effect estimates under different conditions. The results can provide practical

rationales for the application of computationally demanding nonlinear multilevel latent

variable models. The last objective of this study was to provide an empirical illustration

of estimating contextual effects by applying nonlinear multilevel latent variable models

to empirical data that contain complex measurement structures and unbalanced data. A

subset of data from Programme for International Student Assessment (PISA; Adams &

Wu, 2002) were analyzed to illustrate a contextual effect model.
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2 Contextual Effects in a Nonlinear Multilevel Latent Variable Model

The particular contextual effect of interest in the current study is one that occurs

when a group-level characteristic is measured by individual-level variables, and the

individual-level variables are in turn measured by categorical manifest variables. This

study considers a contextual effect as a compositional effect that captures the influence

of contextual variables on individual-level outcomes, controlling for the effect of the

individual-level predictor.

2.1 Structural Models

In traditional HLM, a compositional effect βc can be defined as follows:

Yij = β0j + β1j(Xij − X̄.j) + rij,

β0j = γ00 + γ01(X̄.j − X̄..) + u0j,

β1j = γ10,

βc = γ01 − γ10. (1)

In Equation (1), Yij and Xij denote the outcome and predictor values of individual i in

level-2 unit j, respectively. For the level-1 equation, the predictor values are centered

around the group means X̄.j. For the level-2 model, the predictor values are centered

around the grand mean X̄...

In typical educational research settings, Yij and Xij can be constructed by summing or

averaging item scores from self-reports or other instruments. The random effects rij and

u0j are assumed to be normally distributed with zero means and variances σ2 and τ00,

respectively. In this particular definition of a contextual effect as a compositional effect,

the slope γ10 is the same across the level-2 units (a fixed effect).

In a nonlinear multilevel latent variable model, the predictors and outcomes become

latent variables that are denoted as ηij and ξij. Those latent variables are connected

to manifest variables through measurement models. For notational simplicity, latent
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individual deviations from latent group means can be defined as δij = ξij − ξ.j, and

group mean deviations from the latent grand mean can be defined as δ.j = ξ.j− ξ... Then

the latent variable counterpart to Equation (1) is:

ηij = β0j + β1jδij + rij,

β0j = γ00 + γ01δ.j + u0j,

β1j = γ10,

βc = γ01 − γ10 (2)

Note that we have centered the latent level-1 predictor values around the group means,

and the latent level-2 predictor values around the grant mean, maintaining comparability

with Equation (1). Similarly, the random effects rij and u0j are assumed to be normally

distributed with zero means and variances σ2 and τ00, respectively.

For identification purposes, we impose the restriction of ξ.. = 0 to fix the location

of the predictor latent variable in the model. This implies that δ.j = ξ.j and the level-1

latent predictor value is expressed as a group mean plus a deviation term ξij = ξ.j + δij.

To identify the location of the outcome latent variable, we set the intercept γ00 to 0

as well. To identify the scale of the latent variables, we impose additional restrictions

on δij and rij. These are disturbance terms, so they should have zero means and as

is customary in other item response theory modeling situations, we set their variances

to unity, i.e., var(δij) = 1 and σ2 = 1. This particular identification constraint leaves

open the possibility to estimate the variance of ξ.j, which will be denoted ψ, as well

as the variance of u0j, which is τ00. We also make the regression model specification

assumption that the deviation ξ.j and the random effect u0j are statistically independent.

2.2 Measurement Models

The measurement models define the relationship between manifest variables and la-

tent variables. For brevity, only the measurement models of the latent predictor variable
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ξij will be described in this section, since the measurement models for the latent outcome

ηij can be defined analogously.

When manifest variables are ordinal response variables with multiple categories (in-

cluding 0-1 responses), as is often the case with instruments used in educational re-

search, a logistic version of Samejima (1969)’s classical graded response model can be

utilized. Let item l have Kl ordered categories. The conditional cumulative probability

for a response in category k ∈ {0, 1, ..., Kl − 1} and above are defined as follows:

T0(ξij) = 1,

T1(ξij) =
1

1 + exp[−(c1,l + alξij)]
,

...

TKl−1(ξij) =
1

1 + exp[−(cKl−1,l + alξij)]
, (3)

where c1,l, . . . , cKl−1,l represent a vector of Kl − 1 item intercept parameters, and al is the

item slope. The category response probability is defined as the difference between two

adjacent cumulative probabilities:

Pk(ξij) = Tk(ξij)− Tk+1(ξij), (4)

for k ∈ {0, 1, ..., Kl − 1}, where TKl(ξij) = 0.

Let Xijl ∈ {0, 1, ..., Kl − 1} be a random variable representing the ith individual’s

response in the jth level-2 unit to the lth item, and let xijl be a realization of Xijl. Condi-

tional on ξij, the distribution of Xijl is multinomial with trial size 1 in Kl categories:

fθ(xijl|ξij) =
Kl−1

∏
k=0

Pk(ξij)
χk(xijl), (5)

where χk(xijl) is an indicator function which equals 1 if and only if xijl is equal to k, and
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0 otherwise. Note that missing observations are handled naturally in this conditional

multinomial formulation. If xijl is a missing data point, the indicator function is always

0, and hence only observed responses contribute to the measurement of ξij.

The conditional density fθ(xijl|ξij) is indexed by θ, which is our generic notation for a

vector of all free parameters in the model that includes the item intercepts and slopes, the

fixed effects (γ01, γ10), and the variance components (τ00 and ψ). Let xij = (xij1, . . . , xijLx)
′

be a Lx × 1 vector of item responses from individual i in level-2 unit j to the Lx items

measuring ξij. Invoking the critically important assumption of conditional independence

of item responses given the latent variable, we may write

fθ(xij|ξij) =
Lx

∏
l=1

fθ(xijl|ξij) = fθ(xij|ξ.j, δij), (6)

where the last equality follows from the fact that ξij = ξ.j + δij.

2.3 Observed and Complete Data Likelihoods

Similar to the case of ξij, let us consider the measurement of ηij. Let Ly be the number

of manifest variables for ηij. Again under conditional independence, the conditional

response probabilities factor into item response probabilities:

fθ(yij|ηij) =
Ly

∏
l=1

fθ(yijl|ηij), (7)

where yij is the Ly × 1 vector of item responses from individual i in level-2 unit j to the

outcome measures. Recall from Equation (2) that

ηij = β0j + β1jδij + rij = γ00 + γ01ξ.j + u0j + γ10δij + rij.

We note that given fixed effects, if we knew the random effect u0j, the latent group mean

ξ.j, the latent deviation term δij, and the equation disturbance term rij, ηij would be

completely determined. This implies that we may rewrite the conditional distribution of
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yij as:

fθ(yij|ηij) = fθ(yij|ξ.j, u0j, δij, rij). (8)

If we integrate rij out of Equation (8), we have left

fθ(yij|ξ.j, u0j, δij) =
∫

fθ(yij|ξ.j, u0j, δij, rij) f (rij)d(rij), (9)

where f (rij) is the density of a standard normal random variable, given preceding as-

sumptions about the disturbance term. Bringing in results from Equation (6) and in-

tegrating out δij yields a conditional density that depends only on the level-2 latent

variables and random effects

fθ(yij, xij|ξ.j, u0j) =
∫

fθ(xij|ξ.j, δij) fθ(yij|ξ.j, u0j, δij) f (δij)d(δij), (10)

where f (δij) is the density of a standard normal random variable. Equation (10) makes

it clear that we assume, under correct model specification, the outcome measures (yij)

and predictor measures (xij) are conditionally independent.

Let J and Ij stand for the number of level-2 units and number of individuals in

level-2 unit j. Let Yj =
{

yij
}Ij

i=1 and Xj =
{

xij
}Ij

i=1 represent the collected responses

to the outcome manifest variables and predictor manifest variables, respectively, from

all individuals in level-2 unit j. We now make the critical assumption of conditional

independence again - that the individuals are independent conditionally on the level-2

latent variables/random effects ξ.j and u0j. Thus the conditional joint density of Yj and

Xj becomes:

fθ(Yj, Xj|ξ.j, u0j) =

Ij

∏
i=1

fθ(yij, xij|ξ.j, u0j). (11)

Integrating out the level-2 latent variables and random effects yields the marginal prob-
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ability, wherein we have utilized the independence of ξ.j and u0j:

fθ(Yj, Xj) =
∫ ∫ Ij

∏
i=1

fθ(Yj, Xj|ξ.j, u0j) f (ξ.j) f (u0j)d(ξ.j)d(u0j) (12)

By this point we have integrated all latent variables and random effects out of the

joint probabilities. We now make the routine multilevel modeling assumption that the

level-2 units are the independent sampling units. Upon observing Yj and Xj and treating

them as fixed, the marginal (observed data) likelihood function for the entire sample is

L(θ|Y, X) =
J

∏
j=1

fθ(Yj, Xj), (13)

where Y =
{

Yj
}J

j=1 and X =
{

Xj
}J

j=1 collect together the full set of outcome and predic-

tor observed variable responses, respectively. Directly maximizing this marginal likeli-

hood function over θ would lead to the maximum marginal likelihood estimator of the

structural parameters.

An obvious computational limitation to the direct marginal likelihood approach is the

integration involved in arriving at the observed data likelihood. All of the integrals must

be approximated numerically, which can be computationally challenging. An alternative

stance is to treat the random effects and latent variables rij, δij, ξ.j, and u0j as missing

data. This leads to a missing data formulation of the latent variable model. Had the

missing data been observed, the complete data likelihood function can be written as

L(θ|Y, X, Z) =
J

∏
j=1

 Ij

∏
i=1

fθ(yij|ξ.j, u0j, δij, rij) fθ(xij|ξ.j, δij) f (δij) f (rij)

 fθ(u0j) fθ(ξ.j), (14)

where Z collects together all the level-1 random effects/latent variables
{
{rij, δij}

Ij
i=1

}J

j=1

as well as those at level-2
{

u0j, ξ.j
}J

j=1. In other words, Z represents the “missing data.”

This missing data formulation prompts us to consider an alternative estimation ap-
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proach that eschews numerical integration. In particular, the missing data may be “filled

in” by drawing imputations from their posterior predictive distribution f (Z|Y, X, θ).

Note that in our case the posterior predictive distribution is proportional to the com-

plete data likelihood, greatly facilitating the use of MCMC sampling methods to draw

from the posterior. The imputations lead to complete data sets, and the complete data

likelihood function is much easier to handle than the observed data likelihood function

due to its completely factored form. Instead of directly solving the observed data op-

timization problem, a sequence of complete data optimizations can iteratively improve

the parameters estimates until convergence.

3 Metropolis-Hastings Robbins-Monro Algorithm for Contextual Models

3.1 Metropolis-Hastings Robbins-Monro Algorithm

The MH-RM algorithm was initially proposed by Cai (2008) for nonlinear latent

structure analysis with a comprehensive measurement model, and the application of

the algorithm has been expanded to other measurement and statistical models (e.g.

Cai, 2010a; Cai, 2010b; Monroe & Cai, 2014). The MH-RM algorithm combines the

Metropolis-Hastings (MH; Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, Teller, &

Teller, 1953) algorithm and the Robbins-Monro (RM; Robbins & Monro, 1951) stochastic

approximation algorithm.

Utilizing the missing data formation of the latent variable model, the random effects

and latent variables are treated as missing data. Once the missing data are ”filled in”

by the MH sampler, complete data likelihoods can be optimized iteratively. Because

imputation noise is introduced in the MH step, the RM algorithm is used to filer out

the noise. Let the parameter estimate at iteration t be denoted θ(t), the (t + 1)th itera-

tion of the MH-RM algorithm consists of three steps: Stochastic Imputation, Stochastic

Approximation, and Robbins-Monro Update.

Step 1. Stochastic Imputation

Draw Mt sets of missing data, which are the random effects and latent variables, from a
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Markov chain that has the posterior predictive distribution of missing data f (Z|Y, X, θ(t))

as the target. Then, Mt sets of complete data are formed as follows:

{
Y, X, Z(t+1)

m ; m = 1, ..., Mt

}
. (15)

Step 2. Stochastic Approximation

Let

s(θ(t)|Y, X, Z(t+1)
m ) =

∂

∂θ
log L(θ(t)|Y, X, Z(t+1)

m ) (16)

denote the gradient vector of the complete data log-likelihood function, evaluated at the

current parameter value θ(t) and missing data imputation Z(t+1)
m . We first compute the

sample average of gradients of the complete data log-likelihood:

s̃t+1 =
1

Mt

Mt

∑
j=1

s(θ(t)|Y, X, Z(t+1)
m ). (17)

By Fisher’s Identity (Fisher, 1925), the conditional expectation of the complete data gra-

dient vector over the posterior distribution of the missing data is the same as the gradient

vector of the observed data log-likelihood, under mild regularity conditions, i.e.,

∂

∂θ
log L(θ|Y, X) =

∫
∂

∂θ
log L(θ|Y, X, Z) f (Z|Y, X, θ)dZ. (18)

In other words, though noise-corrupted, s̃t+1 gives the direction of likelihood ascent

because it is a Monte Carlo approximation of the conditional expected complete data

gradient vector (the right hand side of Equation 18), which is also an approximation of

the observed data gradient vector (the left hand side of Equation 18).

Step 3. Robbins-Monro Update

To improve stability and speed, we also compute a recursive approximation of the con-
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ditional expectation of the information matrix of the complete data log-likelihood:

Γt+1 = Γt + εt

[
1

Mt

Mt

∑
m=1

H(θ(t)|Y, X, Z(t+1)
m )− Γt

]
, (19)

where

H(θ|Y, X, Z) = − ∂2

∂θ∂θ′
log L(θ|Y, X, Z)

is the complete data information matrix, i.e., the negative second derivative matrix of

the complete data log-likelihood. Updated parameters are computed recursively:

θ(t+1) = θ(t) + εt(Γ
−1
t+1s̃t+1), (20)

where {εt; t ≥ 0} is a sequence of gain constants (to be elaborated).

The iterations are started from initial values θ(0) and a positive definite matrix Γ0.

They can be terminated when the changes in parameter estimates are sufficiently small.

As a practical method for convergence check, Cai (2008) proposed to monitor a ”win-

dow” of the largest absolute differences between two adjacent iterations. Cai (2008)

suggested 3 as a reasonable width of the window to be monitored in practice. Cai (2008)

showed that the MH-RM iterations converge to a local maximum of the observed data

likelihood L(θ|Y, X) with probability one as t increases without bounds.

The gain constant εt is a sequence of decreasing non-negative real numbers such that

εt ∈ (0, 1], ∑∞
t=0 εt = ∞, and ∑∞

t=0 ε2
t < ∞. In practical implementations of MH-RM,

the starting parameter values θ(0) are often sufficiently far away from the mode of the

marginal likelihood that extra care must be taken with the gain constant sequence so that

MH-RM does not terminate prematurely. We typically implement a 3-stage procedure

wherein the first M1 iterations of MH-RM uses non-decreasing gain constants to quickly

move the provisional estimates to a vicinity of the final solution. The next M2 iterations

use the same non-decreasing gain constants but the estimates are averaged to start the
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final MH-RM iterations with decreasing gain constants. For the last stage, the sequence

of gain constants is taken to be εt = 0.1/(t + 1)0.75 as some experimentation.

3.2 Approximating the Observed Information Matrix

One of the benefits of using the MH-RM algorithm is that the observed data infor-

mation matrix can be approximated as a byproduct of the iterations. The inverse of

the observed data information matrix becomes the large-sample covariance matrix of

parameter estimates. The square root of the diagonal elements are the standard errors.

Utilizing Fishier’s Identity, the gradient vector is approximated recursively,

ŝt+1 = ŝt + εt{s̃t+1 − ŝt}, (21)

where s̃t is defined as Equation (17). A Monte Carlo estimate of the conditional expec-

tation of the complete data information matrix minus the conditional covariance of the

complete data gradient vector is defined as follows:

G̃t =
1

Mt

mk

∑
j=1

[
H(θ(t)|Y, X, Z(t+1)

m )− s(θ(t)|Y, X, Z(t+1)
m )[s(θ(t)|Y, X, Z(t+1)

m )]′
]

. (22)

A more stable estimate can be found by further recursive approximation:

Ĝt+1 = Ĝt + εt{G̃t+1 − Ĝt}. (23)

Finally, the observed information matrix is approximated as

It+1 = Ĝt+1 + ŝt+1ŝ′t+1. (24)

Cai (2010a) discussed the rationale behind this approximation as a recursive applica-

tion of Louis’s (1982) formula. The main benefit is that the information matrix becomes a

by-product of the MH-RM iterations. Another practical option for approximating the ob-
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served information matrix is a direct application of Louis’s (1982) formula, in which the

gradient vector and the conditional expectations are approximated directly after con-

verge of the MH-RM algorithm using additional Monte Carlo samples. In this study,

standard errors obtained by the first method are called recursively approximated standard

errors and those from the latter are called post-convergence approximated standard errors.

4 Simulation Studies

4.1 Simulation Study 1: Comparison of Estimation Algorithms

4.1.1 Methods

The first study examined parameter recovery and standard errors across two algo-

rithms, MH-RM algorithm and an existing EM algorithm. The data-generating and fitted

models followed Equation (2). The simulated data are balanced in that the number of

level-2 units (ng) is 100 and the number of level-1 units per group (np) is 20. The gener-

ating ICC value for the latent predictor was 0.3.

For the measurement model, five dichotomously scored manifest variables were gen-

erated for each latent trait (i.e., η, and ξ) using the graded model in Equation (3). For ηij,

the manifest variables are Y1, Y2, Y3, Y4, and Y5. For ξij, which is the sum the level-2 latent

group mean and the deviation terms (ξ.j + δij), the manifest variables are X1, X2, X3, X4,

and X5. The item parameters were the same across levels, representing cross-level mea-

surement invariance.

We attempted 100 Monte Carlo replications. The first 10 data sets were analyzed

using two methods: an MH-RM algorithm implemented in R (R Core Team, 2012) and

an adaptive quadrature based EM approach implemented in Mplus (Muthén & Muthén,

2010). The MH-RM algorithm’s convergence criterion was 5.0× 10−5, and the maximum

number of iterations for the first two stages of MH-RM with constant gains were M1 =

100 and M2 = 500. To calculated post-convergence approximated standard errors, 100

to 500 additional random samples were used. All replications converged within 600

MH-RM iterations with decreasing gains.
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4.1.2 Results

The generating values and the corresponding estimates for the compositional effect

from different algorithms are summarized in Table 1. The first column contains the true

parameters for the measurement and structural parameters. The second set of columns

and the third set of columns include the estimates and SEs from EM with different num-

bers of adaptive quadrature points (qp=5 and qp=14). The default number of quadrature

points is 15 in Mplus, but the computer cannot handle 15 quadrature points for this four-

dimensional model. The maximum possible number of quadrature points was 14 for a

compositional effect model. A smaller number of quadrature points (5) was tested to

compare point estimates and standard errors. The fourth set of columns includes the

corresponding point estimates and standard errors using the MH-RM algorithm.

The means of point estimates from different algorithms are generally very close to

one another. For structural parameter estimates, the number of quadrature points does

not appear to make a large difference, though 14-quadrature-point estimates are slightly

closer to the MH-RM estimates and the generating values in terms of τ00 and ψ. Standard

errors are also very similar.

For measurement parameter estimates, both the means of point estimates and the

standard errors were the same up to the second decimal place across different numbers

of quadrature points. The largest difference in average point estimates between EM and

MH-RM was 0.02, indicating that the two approaches yield highly similar estimates.

However, mean standard error estimates are slightly different between MH-RM and EM

results in that the standard error estimates from MH-RM algorithm for intercepts are

smaller than those from the EM algorithm. The biggest difference in standard error

estimates for measurement parameters between two algorithms was 0.13.

The natural logarithm of standard error estimates from EM algorithm, MH-RM algo-

rithm (post-convergence approximated standard errors) are plotted against the natural

logarithm of empirical standard deviations of point estimates across the Monte Carlo
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replications in Figure 1. The estimates are clustered along the diagonal reference line,

indicating that the estimated standard errors are generally close to the Monte Carlo

standard deviations of the point estimates, except for the intercept parameter standard

errors, which appear to be underestimated when the post-convergence approximation is

used for the MH-RM algorithm.

With regards to computing time, when one processor was used for estimation, EM

with 5 quadrature points generally required a small amount of time, while EM with

14 quadrature points generally required over an hour. The MH-RM algorithm required

about 40 minutes. Note that MH-RM is implemented in R (an interpreted language)

with explicit looping, while Mplus is written in FORTRAN (a compiled language). As

an interpreted language is expected to be several orders of magnitude slower compared

to a compiled language in terms of looping, a direct comparison is inappropriate. What

we can safely conclude is that when ported into a compiled language, MH-RM is poised

to be substantially more efficient.

To examine the performance of the MH-RM algorithm further, all 100 generated data

sets were analyzed, and the results are summarized in Table 2. The means of point esti-

mates are reasonably close to generating values in general, with slight underestimation

of variance components. The Monte Carlo standard deviations of parameter estimates

(column 5) are also similar to standard error estimates from both EM and MH-RM (col-

umn 4 and 6); the largest difference is 0.02. With respect to measurement parameters,

the average item parameter estimates are very close to generating values.

However, we see that recursively approximated standard errors are generally closer

to the Monte Carlo standard deviations of item parameter estimates than the post-

convergence approximated standard errors. More specifically, the most prominent differ-

ences are found in the standard errors of intercept parameters, where post-convergence

approximated standard errors for item intercept parameters are underestimated. There-

fore, we find that recursively approximated standard errors perform better than post-
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convergence approximated standard errors. With that said, a drawback of using recur-

sively approximated standard errors is the requirement of a relatively larger number

of main MH-RM iterations (at least 1000 in our experience) to reach a positive definite

approximate observed information matrix. For this reason, post-convergence approx-

imated standard errors are adopted for the remaining simulations in this study since

this approach gives proper standard error estimates for structural parameters and can

be faster.

Finally, 95% confidence intervals for each parameter were calculated. The post-

convergence approximated standard errors were used to form these two-sided Wald-

type confidence intervals. The percentages of intervals that cover the generating values

are reported in the last column of Table 2. Based on the 100 replications performed,

coverage of structural parameters appears well calibrated in general. For measurement

parameters, the coverage rates tend to decrease as the magnitude of parameters becomes

larger. Coverage rates are at the lowest for the more extreme intercept parameters due

to their underestimated standard errors.

4.2 Simulation Study 2: Comparison of Models

The second simulation study was conducted to examine how measurement error and

sampling error may influence compositional effect estimation across different conditions

with both a traditional HLM and a multilevel latent variable model.

4.2.1 Simulation Conditions

A total of 30 data generating conditions were examined: 2 compositional effect sizes,

× 3 sampling conditions × 2 ICC sizes × 2 measurement condition + 6 conditions for a

model with no compositional effect.

First, two different sizes of compositional effect were considered in this study. The

generating value of γ01 was 1.0. The generating value of γ10 was either 0.5 or 0.8, giv-

ing a compositional effect of 0.5 or 0.2, respectively. Second, the combination of large

(ng=100, np=20) and small (ng=25, np=5) numbers of groups and individuals makes a
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total of 4 different sampling conditions. However, the combination of 25 groups and

group size of 5 leads to too small a total sample size (125), which is not entirely appro-

priate for the stable estimation of a high-dimensional latent variable model. Therefore,

only three different sampling conditions were used for this simulation study. For latent

predictor ICC levels, 0.1 and 0.3 were used to generate small- and a large-ICC conditions

by manipulating ψ – the variance of ξ.j. Finally, two different measurement structures

were considered. The observed variables in the first condition were dichotomous and

in the second condition, they were 5-category ordinal responses. The true item param-

eters are given in in Table 3. Additionally, data were generated from a model with no

compositional effect (γ01 = γ10) with the first measurement condition and analyzed to

examine empirical Type I error rates for the compositional effect estimates with both

the traditional model and the latent variable model. In each condition, 100 Monte Carlo

replications were attempted.

4.2.2 Analysis

Because all simulated data sets have the true generating values of ηij and ξij, these

values (true scores) can be analyzed using a traditional model. The resulting param-

eter estimates can be considered gold standard estimates that are influenced only by

sampling fluctuations but not by measurement conditions. Therefore, each data set has

three sets of parameter estimates: 1) estimates from analyzing the generating values of

ηij and ξij with a traditional HLM, which is treated as the gold standard, 2) estimates

obtained by applying latent variable model, and 3) the estimates from analyzing the

observed summed scores of outcomes and predictors with the standard approach us-

ing manifest variables. All of the traditional HLM analyses were conducted using an R

package nlme (Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2012).

4.2.3 Evaluation Statistics

To compare these three sets of estimates, three statistics are calculated: 1) the percent-

age bias of the estimate relative to the magnitude of its generating value, 2) the observed
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coverage rate of the 95% confident interval, and 3) the observed power to detect the

compositional effect of interest as significant.

It should be noted that the regression coefficient estimates from the observed sum

score analysis using a traditional multilevel model are not on the same scales as those

obtained using the latent variable approach, which yields naturally standardized fixed

effects coefficients due to the identification conditions discussed earlier. To make the co-

efficient estimates more comparable, the estimates from the traditional HLM approach

were standardized by multiplying the parameter estimates by the ratio of standard de-

viation of the predictor to the standard deviation of the outcome.

4.2.4 Results

Convergence rates and mean computing time across generating data conditions are

reported in Table 4. Only converged replications were used to calculate evaluation statis-

tics. The worst cases of non-convergence occur when the number of level-2 units is low

and the ICC is small. This is particularly true for the second measurement condition

when a substantially larger number of item parameters for the multiple-categorical items

must be estimated from the data.

Let us examine the first measurement condition where all items are dichotomously

scored. Because a compositional effect estimate is defined as the difference between γ̂01

and γ̂10, those two parameter estimates are examined together, along with the compo-

sitional effect estimate (the difference) itself. Relative percentage biases in γ̂01 and γ̂10

are summarized in Figure 2. When the generating values of ηij and ξij were analyzed,

the bias of γ̂01 ranged from 1% to 15% across the sampling conditions. Latent variable

modeling resulted in a similar magnitude of bias. But traditional HLM resulted in more

substantial bias in both γ̂01 and γ̂10 (from 30% to 70%) (see the gray bars in Figure 2).

The biases in the traditional HLM estimates of the regression coefficients lead to an

interesting pattern of biases in the compositional effect estimate. The bias can be as

small as 8% when the predictor ICC is large and the sampling condition favorable (more
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individuals in each group), but the bias can be as large as 80% when the ICC is small

and the group size is small (see Figure 3). It is also noteworthy that the bias in the

compositional effect estimate from the traditional HLM model can also be positive when

the ICC is large and the contextual effect size is small (see the last plot of Figure 3).

On the other hand, comparing the two plots in Figure 4 with the first two plots in

Figure 3 reveals that the performance of the traditional HLM and the latent variable

model in terms of estimating γ̂01, γ̂10, as well as the compositional effect, is highly

similar across the two measurement conditions. This indicates the measurement model

is a less influential source of bias in this study.

To examine the standard error estimates, the coverage rates of the 95% confidence

intervals for the true compositional effect were calculated. Results from the condition

with large true compositional effect and the first measurement condition are summarized

in Figure 5. When generating values are analyzed, the coverage rates across sampling

conditions are generally close to 95%, except for the case where ICC is small and the

number of groups is also small. In this case the coverage rate can be as low as 85%. The

coverage rates based on the latent variable model parameter estimates were similar or

slightly worse than those from generating value analysis. Coverage rates with traditional

HLM estimates can be problematic when the number of individuals per group and the

ICC are both low.

To examine how researchers can make different inferential decisions when they apply

a traditional model and a latent variable model, the empirical Type I error rates are cal-

culated for the conditions where the true data generating model has zero compositional

effect. Figure 6 shows empirical Type I error rates across ICC and sampling conditions

for the first measurement condition.

Generating value analysis yields Type I error rates of .05 to .07 across sampling con-

ditions. The latent variable model maintains similar Type I error rate calibration, except

for the cases when the number of individuals per group is small. For traditional HLM
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analysis, Type I error rate inflation is dramatic. Only under the conditions when a small

predictor ICC is coupled with a small number of group or a small number of individuals

per group, does the traditional method maintains proper Type I error rate.

Turning to statistical power, when a compositional effect is large (see Figure 7), gen-

erating value analysis yields power of about .85 when ICC is large and the number of

groups is also large. When ICC is small, power decreases to .35 even with favorable

sampling conditions. The lowest statistical power (.15) is found when predictor ICC is

small and the number of groups is also small.

The patterns are similar for the latent variable analysis. But when ICC is small, and

the number of individuals per group or the number of groups is small, latent variable

modeling actually yields a slightly higher percentage of significant compositional ef-

fects. While the traditional HLM analysis yields a very high percentage of significant

compositional effects when the ICC is large and the number of individuals per group is

also large, the power decreases remarkably when ICC is small and when the sampling

condition deteriorates (i.e., when the number of individuals per group or the number of

groups is small). Also, the relatively high statistical power associated with the traditional

HLM analysis is partially attributable to the inflated Type I error rates observed earlier -

the test is liberal overall.

In summary, relative bias of γ̂01 are γ̂10 are large when the traditional HLM is applied.

This is consistent with findings from previous research. However, the relative bias in the

difference between the two coefficients (the compositional effect estimate) can sometimes

be kept at bay, since both coefficients can be biased in the same direction. We note that

the true compositional effect can be estimated with traditional methods when ICC is

large and the sampling condition is favorable. However, Type I error rates are severely

inflated under this very condition, when the true compositional effect is zero. Thus this

model can frequently make the false claim that there is a significant compositional effect

even when there is none.
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On the other hand, biases in point estimates seems rather unavoidable when the

sampling condition is not favorable (small group sizes and low sample size in general),

and especially when ICC is also low. Even with generating true scores the estimates show

some biases. However, the latent variable model tends to yield less biased estimates in

general. When ICC is small and the number of individuals per group is small, the Type

I error rate associated with the latent variable compositional effect estimate increases

slightly, but the magnitude of the elevation is still much more preferable compared to

the traditional HLM analysis. We also find that the main issue with the latent variable

model approach in terms of sampling conditions is related more to small number of

groups rather than to the number of individuals per group. As long as the number of

groups sampled is sufficiently large, the performance of the latent variable modeling

approach can be satisfactory.

Finally, we find that the measurement structure to be less influential in this study. It

certainly may be due to the particularly set of item parameters chosen. The results from

the second measurement condition, however, indicate that the estimation of too many

item parameters with limited sample size can possibly undermine the performance of

the latent variable modeling approach.

5 Empirical Application: ”Big-fish-little-pond” Effect

5.1 Data

For this compositional effect demonstration, a subset of publicly available data from

The Programme for International Student Assessment (PISA 2000; OECD, 2000) were ex-

tracted and analyzed. PISA is a large international comparative survey. A large amount

of student and school level information that covering cognitive and affective domains

was collected with a complex sampling scheme.

Though 42 countries participated in the data collection, a sample of students from

the US was analyzed in this study for the purpose of illustration only. Originally, a total

of 129 reading items were administered to estimate country level reading literacy using
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a balanced incomplete block design. However, for simplicity, only booklets 8 and 9 were

used for this analysis. These two booklets included 33 reading items, but 1 item was

dropped prior to our analysis because all item responses to this item were scored as

incorrect, which meant that the item contributes no information. Therefore, the analysis

data set contained responses to 32 reading items (3 ordinal items with 3 categories each

and 29 dichotomous items) from 667 students nested within 141 schools in the US. The

number of students within a school ranged from 1 to 8 in this analysis data set. The

outcome variable is the students’ self concept in reading. It was measured by three items

(CC02Q05, CC02Q09, and CC02Q23). Each item has a Likert-type scale, ranging from 1

(disagree) to 4 (agree).

5.2 Results

The structural parameter estimates from the multilevel latent variable analysis (EM

algorithm and the MH-RM algorithm) and traditional HLM analysis are summarized

in Table 5. In general, a positive and significant within-school coefficient γ̂10 is found

across different models and algorithms. The between-school coefficient estimate (γ̂01)

was not statistically significantly different from 0 when the multilevel latent model was

applied (with EM or MH-RM algorithm), while the estimate was significantly different

from 0 when the traditional HLM was applied.

The compositional “big-fish-little-pond” effect is calculated by subtracting γ̂10 from

γ̂01. The direction of the compositional was negative. This is consistent with reports

from previous research (Marsh et al., 2009). It indicates that two students who have the

same levels of reading achievement can have different level of academic self-concept,

depending on school-level academic achievement. As the compositional effect is nega-

tive, the students who attends a higher achieving school tend to have lower academic

self-concept when compared with a student who attends a lower achieving school. On

the other hand, a student who belongs to a lower achieving school is expected to have

higher academic self-concept when compared with a student who belongs to a higher
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achieving school – just like a fish that feels big if the pond in which it lives is small.

However, in terms of the statistical significance of the compositional effect, the effect

is not significantly different from 0 if we use the estimates and standard errors from the

traditional HLM; but if we use the latent variable estimates, the compositional effect is

significant. This result is consistent with what we found via the simulation study in that

the power of the latent variable model to detect a compositional effect is higher than

that of the traditional method, when the data set is associated with a sufficiently large

number of schools and a small number of students per school.

Finally, the item parameter estimates from the MH-RM algorithm are plotted against

those from the EM algorithm in Figure 8. As can be seen, the estimates are very

close. Standard errors of the item parameters exhibited a similar pattern as found previ-

ously (see Figure 9), confirming that the post-convergence approximation method yields

slightly smaller standard errors, while the recursive approximation tends to yield larger

standard errors.

6 Conclusion

This study is situated in a current stream of research (e.g., Goldstein & Browne,

2004; Goldstein, Bonnet, & Rocher, 2007; Kamata, Bauer, & Miyazaki, 2008) that tries

to develop a comprehensive, unified model that benefits from both multilevel modeling

and latent variable modeling by combining multidimensional IRT, factor analytic mea-

surement modeling, and the flexibility of nonlinear structural equation modeling in a

multilevel setting. Considering that one of the pressing needs in developing a unified

model is an efficient estimation method, the current study contributes to nonlinear mul-

tilevel latent variable modeling by extending an alternative estimation algorithm. The

principles of MH-RM algorithm and previous applications (Cai, 2008) suggest that the

algorithm can be more efficient than the existing algorithms when a model contains a

large number of latent variables or random effects.

The primary purpose of this study was to improve estimation efficiency in obtaining
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maximum likelihood estimates of contextual effects by adopting the MH-RM algorithm

(Cai, 2008, 2010a, 2010b). R programs implementing the MH-RM algorithm were pro-

duced to fit nonlinear multilevel latent variable models. Computation efficiency and

parameter recovery were assessed by comparing results with an EM algorithm that uses

adaptive Gauss-Hermite quadrature. Results indicate that the MH-RM algorithm can ob-

tain maximum likelihood estimates and their standard errors efficiently. Considering the

difference between an interpreted language (R) and a compiled language (FORTRAN)

in which EM is implemented, substantial improvement in efficiency is expected if the

MH-RM estimation code is ported to a compiled language in the future.

The second purpose of this study was to provide information about the performance

of the nonlinear multilevel latent variable model in comparison to traditional HLM

through a simulation study that covers various sampling and measurement conditions.

Results suggest that nonlinear multilevel latent variable modeling can more properly

estimate and detect a contextual effect than the traditional approach in most conditions.

Type I error rates of the compositional effect estimate from the traditional model can also

be substantially elevated whereas latent variable modeling leads to more proper Type I

error rate calibration.

The third purpose of this study was to provide an empirical illustration using a

subset of data extracted from PISA (Adams & Wu, 2002). A negative compositional

effect was found for the relationship between reading literacy and academic self-concept,

supporting the results from previous studies, on the “Big-fish-little-pond” effect (e.g.

Marsh et al., 2009). The compositional effect was statistically significant at the .05 level

when the nonlinear multilevel latent variable model was applied. On the other hand,

the traditional HLM approach could not detect a statistically significant effect.

This study is limited several important ways. The latent variable model itself contains

a series of strong specification and distributional assumptions. These assumptions re-

quire careful checking in empirical settings because the violations of these assumptions
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can lead to substantial unknown estimation biases. The simulation study only exam-

ined a limited set of conditions with fixed item and structural parameters. The data

generating and fitted models in the simulation study also do not contain any model

specification error. More complex structural models should also be considered. In fu-

ture research, an obvious extension of the model discussed here is one that includes

cross-level interactions in latent variables.
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Figure 1: Comparisons of standard errors for item parameters.
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Figure 2: Relative percentage bias in γ̂01 (first two plots) and γ̂10 (last two plots), large

true compositional effect, measurement condition 1, by the sampling conditions (number

of individuals in each group, and number of groups).
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Figure 3: Relative percentage bias in compositional effect estimate γ̂01 − γ̂10, large true

compositional effect (first two plots) and small true compositional effect (last two plots),

first measurement condition, by the sampling conditions (number of individuals in each

group, and number of groups).
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Figure 4: Relative percentage bias in compositional effect estimate γ̂01 − γ̂10, large true

compositional effect, second measurement condition, by the sampling conditions (num-

ber of individuals in each group, and number of groups).
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Figure 5: 95% compositional effect estimate confidence interval coverage rate, large true

compositional effect, first measurement condition, by the sampling conditions (number

of individuals in each group, and number of groups).
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Figure 6: Empirical Type I error rates for the compositional effect estimate, first mea-

surement condition.
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Figure 7: Percentage of significant compositional effect (estimated power), small true

compositional effect (first two plots) and large true compositional effect (last two plots),

first measurement condition.
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Figure 8: Item parameter estimates based on the EM and MH-RM algorithms for the

PISA 2000 USA data analysis.
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Figure 9: Standard errors of item parameters based on the EM and MH-RM algorithms

for PISA 2000 USA data analysis. Method 1 uses recursively approximated standard

errors. Method 2 uses post-convergence approximated standard errors.
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Table 1: Generating values, EM estimates, and MH-RM estimates for a compositional
effect model

Structural Parameters
EM (5qp) EM (14qp) MH-RM

θ E(θ̂) E{se(θ̂)} E(θ̂) E{se(θ̂)} E(θ̂) E{se(θ̂)}
γ01 1.00 1.02 0.19 1.01 0.19 1.00 0.18
γ10 0.50 0.52 0.05 0.51 0.05 0.52 0.09
τ00 1.00 0.90 0.16 0.91 0.17 0.93 0.16

ψ 0.43 0.40 0.07 0.42 0.07 0.42 0.07
Measurement Parameters

ax1 0.80 0.79 0.07 0.79 0.07 0.79 0.08
ax2 1.00 1.01 0.08 1.01 0.08 1.00 0.09
ax3 1.20 1.24 0.09 1.24 0.09 1.24 0.11
ax4 1.40 1.39 0.10 1.39 0.10 1.39 0.12
ax5 1.60 1.67 0.14 1.67 0.14 1.69 0.15
ay1 0.80 0.78 0.06 0.78 0.06 0.78 0.06
ay2 1.00 1.00 0.07 1.00 0.07 1.00 0.07
ay3 1.20 1.23 0.09 1.23 0.09 1.23 0.08
ay4 1.40 1.40 0.11 1.40 0.11 1.40 0.10
ay5 1.60 1.61 0.13 1.61 0.13 1.60 0.12
cx1 -0.80 -0.75 0.08 -0.75 0.08 -0.75 0.06
cx2 0.00 0.02 0.08 0.02 0.08 0.02 0.05
cx3 1.20 1.30 0.11 1.30 0.11 1.29 0.08
cx4 -0.70 -0.61 0.11 -0.61 0.11 -0.62 0.07
cx5 0.80 0.92 0.14 0.92 0.14 0.92 0.08
cy1 -0.80 -0.80 0.11 -0.80 0.11 -0.81 0.06
cy2 0.00 0.01 0.13 0.01 0.13 0.00 0.05
cy3 1.20 1.19 0.16 1.19 0.16 1.18 0.08
cy4 -0.70 -0.74 0.18 -0.74 0.18 -0.75 0.07
cy5 0.80 0.79 0.21 0.79 0.21 0.78 0.08

Computational Efficiency
one processor 5∼7 min 60∼100min 35∼40min

Note. θ = Generating values; E(θ̂) = mean of point estimates; E{se(θ̂)}
= mean of estimated SEs (post-convergence approximated SEs); a =
item slope parameters; c = item threshold parameters.
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Table 2: Generating values and MH-RM estimates for a compositional effect model

Structural Parameters
θ E(θ̂) E{se1(θ̂)} SD(θ̂) E{se2(θ̂)} 95% CI Coverage Using se1

γ01 1.00 0.99 0.17 0.19 0.18 95.0
γ10 0.50 0.50 0.06 0.07 0.09 95.0
τ00 1.00 0.97 0.20 0.18 0.16 89.0
ψ 0.43 0.43 0.08 0.09 0.07 89.0

Measurement Parameters
ax1 0.80 0.80 0.07 0.06 0.07 98.0
ax2 1.00 1.01 0.10 0.09 0.09 91.0
ax3 1.20 1.22 0.12 0.10 0.11 92.0
ax4 1.40 1.40 0.12 0.10 0.13 84.0
ax5 1.60 1.60 0.15 0.13 0.15 73.0
ay1 0.80 0.80 0.07 0.07 0.06 95.0
ay2 1.00 1.01 0.07 0.07 0.07 94.0
ay3 1.20 1.21 0.10 0.09 0.09 86.0
ay4 1.40 1.39 0.10 0.09 0.10 89.0
ay5 1.60 1.61 0.10 0.13 0.13 74.0
cx1 0.80 0.80 0.14 0.08 0.06 94.0
cx2 0.00 0.00 0.07 0.09 0.05 95.0
cx3 -1.20 -1.22 0.09 0.12 0.08 91.0
cx4 0.70 0.69 0.12 0.11 0.07 89.0
cx5 -0.80 -0.80 0.12 0.15 0.08 89.0
cy1 0.80 0.81 0.08 0.09 0.06 87.0
cy2 0.00 0.01 0.11 0.11 0.06 78.0
cy3 -1.20 -1.20 0.13 0.13 0.08 75.0
cy4 0.70 0.71 0.15 0.15 0.07 62.0
cy5 -0.80 -0.79 0.14 0.18 0.08 59.0

Computational Efficiency
35∼40min 90∼120min

Note. θ = Generating values; E(θ̂) = mean of point estimates; E{se1(θ̂)} = mean
of recursively approximated standard error estimates; E{se2(θ̂)} = mean of post-
convergence approximated standard errors; SD(θ̂) = Monte Carlo standard de-
viation of point estimates; 95% confidence interval coverage rate using post-
convergence approximated standard errors; a = item slope parameters; c = item
threshold parameters.
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Table 3: Conditions of measurement models and generating values for item parameters
Measurement Model 1 (MM 1)

Condition ξij indicators ηij indicators
X1∼X5 (Kl = 2) Y1∼Y5 (Kl = 2)

slope (al) intercept (cl)
X1, Y1 0.8 -1.0
X2, Y2 1.0 0.0
X3, Y3 1.2 1.0
X4, Y4 1.4 -0.5
X5, Y5 1.6 0.5

Measurement Model 2 (MM 2)
Condition ξij indicators ηij indicators

X1∼X5 (Kl = 5) Y1∼Y5 (Kl = 5)
slope (a) intercepts (c1,l, c2,l, c3,l, c4,l)

X1, Y1 0.8 -1.0, 0.0, 1.0, 2.0
X2, Y2 1.0 -1.0, 0.0, 1.0, 2.0
X3, Y3 1.2 -1.0, 0.0, 1.0, 2.0
X4, Y4 1.4 -1.0, 0.0, 1.0, 2.0
X5, Y5 1.6 -1.0, 0.0, 1.0, 2.0

Table 4: Percentage of converged solution and average time per replication (in seconds)

Large Compositional Effect = 0.5
np=20 np=5

ng=100 MM1 MM2 MM1 MM2
ICC=0.1 100(2781) 89(4911) 97(972) 81(1593)
ICC=0.3 100(2657) 95(5301) 100(955) 95(1613)
ng=25 MM1 MM2 MM1 MM2

ICC=0.1 98(1046) 92(1522) N/A
ICC=0.3 99(865) 93(1524)

Small Compositional Effect = 0.2
np=20 np=5

ng=100 MM1 MM2 MM1 MM2
ICC=0.1 97(2937) 91(5165) 95(1021) 92(1588)
ICC=0.3 98(1785) 92(4910) 100(1046) 91(1593)
ng=25 MM1 MM2 MM1 MM2

ICC=0.1 95(919) 78(1521) N/A
ICC=0.3 93(915) 95(1519)

Note. MM1 = Measurement model 1; MM2 = Measure-
ment model 2; ng = number of groups; np = number
of individuals per group.
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Table 5: Structural parameter estimates from PISA 2000 USA data analysis

Multilevel latent variable model Manifest variable HLM
MH-RM EM EM

Parameter θ θ̂ se(θ̂) t-value θ̂ se(θ̂) t-value θ̂ se(θ̂) t-value
γ10 0.42 0.06 7.17 0.42 0.05 7.92 0.11 0.01 7.75
γ01 0.16 0.11 1.43 0.18 0.11 1.68 0.07 0.02 3.60
τ00 0.47 0.11 0.39 0.47 0.11 4.28 0.37 – 190.31∗
ψ 0.12 0.07 2.30 0.11 0.06 1.86 N/A N/A N/A

BFLPE -0.27 0.13 -2.12 -0.24 0.12 -1.98 -0.04 0.02 -1.76

Note. Reported standard errors for MH-RM algorithm are from recursively approxi-
mated observed data information matrix. ∗ The HLM software program produces a
χ2 test for the variance component τ00.


