
Title: 
Alternative Multiple Imputation Inference for Categorical Structural Equation Modeling 
 
Authors: 
Seungwon Chung 
Li Cai 
 
Journal publication date: 
2019 
 
Published in: 
Multivariate Behavioral Research, 54, 323-337 
 
IES grant information: 
Grant number R305D140046 
Funded by Institute of Education Sciences, National Center for Education Research 
(NCER) 
  



 

1 
 

Alternative Multiple Imputation Inference for  

Categorical Structural Equation Modeling 

 

 

 

 

Seungwon Chung 

PhD Student 

Graduate School of Education and Information Studies, University of California, Los 

Angeles/CRESST 

Address: 

UCLA GSE&IS 

405 Hilgard Avenue 

Los Angeles, CA 90095-1521 

Email: sxc21@ucla.edu 

 

 

Li Cai 

Professor 

Graduate School of Education and Information Studies and Department of Psychology, 

University of California, Los Angeles/CRESST 

Address: 

Moore Hall 2022A 

405 Hilgard Avenue 

Los Angeles, CA 90095-1521 

Email: lcai@ucla.edu 

 

 

 

 

 

mailto:sxc21@ucla.edu
mailto:lcai@ucla.edu


 

2 
 

Alternative Multiple Imputation Inference for  

Categorical Structural Equation Modeling 

 

Abstract 

The use of item responses from questionnaire data is ubiquitous in social science research.  One 

side effect of using such data is that researchers must often account for item level missingness.  

Multiple imputation (Rubin, 1987) is one of the most widely used missing data handling 

techniques.  The traditional multiple imputation approach in structural equation modeling has a 

number of limitations.  Motivated by Lee and Cai’s (2012) approach, we propose an alternative 

method for conducting statistical inference from multiple imputation in categorical structural 

equation modeling.  We examine the performance of our proposed method via a simulation study 

and illustrate it with one empirical data set.   

 

Keywords: categorical variables; multiple imputation; structural equation modeling; goodness-

of-fit test 
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1. Introduction 

The use of item response data is ubiquitous in social science research.  Item responses, 

however, are rarely complete.  Researchers must often account for missingness in their data.  A 

growing body of research provides insight into the comparative performance of missing data 

techniques in structural equation modeling (SEM) (e.g., Allison, 2003; Arbuckle, 1996; Enders 

& Bandalos, 2001; Enders & Peugh, 2004; Olinsky, Chen, & Harlow, 2003; Takahashi & 

Wisenbaker, 1999; Wiggins & Sacker, 2002; Wang, 2007; Shin et al., 2009; Li, 2010).  Three 

methods of dealing with missing data in SEM are featured prominently in the literature: full-

information maximum likelihood (FIML; Anderson, 1957; Arbuckle, 1996), multiple imputation 

(Schafer, 1997), and a “two-stage” procedure based on the Expectation-Maximization algorithm 

(EM2S; Allison, 2001; Cai & Lee, 2009; Enders & Peugh, 2004; Yuan & Bentler, 2000). While 

multiple imputation (Rubin, 1987) is one of the most widely used techniques for handling 

missing data, research on its use in the SEM context is surprisingly limited (e.g., Enders & 

Mansolf, 2016; Lee & Cai, 2012).   

Unlike FIML, which generally requires the normality assumption, multiple imputation is 

considerably less restrictive in terms of distributional assumptions (Rubin, 1976; Little & Rubin, 

1987; Shafer, 1997).  Multiple imputation may be a better choice for researchers who must deal 

with categorical item level data, e.g., in educational testing.  Furthermore, mixtures of 

continuous and categorical variables are encountered frequently in the practice of data analysis 

using SEM.  Fully conditional specification (FCS), also known as multivariate imputation by 

chained equations (MICE), is designed for these types of data.  FCS imputes incomplete 

variables based on a series of conditional models, one for each incomplete variable.  

Accordingly, one advantage of the imputation approach is its flexibility because different 
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distributions can be specified to model each variable (van Buuren et al., 2006; van Buuren, 2007; 

Bouhlila & Sellaouti, 2013).  Our approach can easily accommodate this extension.  Therefore, 

the approach we propose in this paper will be broadly useful.   

Before we introduce our alternative procedure, let us discuss the standard multiple 

imputation approach (see e.g., Schafer & Olsen, 1998) in SEM.  In the standard approach, after 

multiple imputation, researchers must fit their models to all imputations and obtain final 

parameter estimates by averaging parameter estimates across the imputations.  Standard errors 

are obtained by averaging and accounting for cross-imputation variability.  However, this 

procedure has a number of limitations.  First, the standard procedure of multiple imputation is 

computationally burdensome because model-fitting must be performed for each imputed dataset.  

Second, the commonly used fit statistics such as root mean square error of approximation 

(RMSEA; Browne & Cudeck, 1993) or Tucker-Lewis index (TLI; Tucker & Lewis, 1973) are 

not readily available in the standard multiple imputation approach.  In a recent effort to resolve 

this issue, Enders and Mansolf (2016) defined commonly used SEM fit indices from Meng and 

Rubin’s (1992) pooling procedure for likelihood ratio statistics.  We believe an even simpler 

procedure exists in our approach.  Last but not least, the standard multiple imputation inference 

procedure only provides corrected point estimates and standard errors but not intermediate 

results such as the equivalent of the mean vector and covariance/correlation matrix, which are 

useful for replication and meta-analytic studies.   

Motivated by Lee and Cai’s (2012) work on multiple imputation inference, who proposed 

a multiple imputation two stage (MI2S) estimator for continuous and normally distributed 

observed variables, we extend their approach to the case of categorical variables or items.  The 

guiding insight of the MI2S estimator is that the structural equation model is fitted after all 
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multiple imputations have been combined as opposed to the traditional approach wherein 

researchers fit a structural equation model for each imputed data set and average the parameter 

estimate and standard errors at the end. In MI2S, researchers combine the imputations under the 

unrestricted multivariate normal model to obtain a single mean vector and covariance matrix 

(along with their asymptotic covariance matrix) that are corrected for missing data.  The mean 

vector, covariance matrix, and their asymptotic covariance matrix become input into the second 

stage of “business-as-usual” estimation and statistical inference.  Our new estimator follows the 

logic of the MI2S estimator and is applicable to categorical data. 

The purpose of this paper is to introduce the use of the MI2S estimator for situations in 

which data are missing on categorical variables.  We note that this paper is on the (inferential) 

procedure in SEM with the multiply imputed data after multiple imputation have been 

performed, and thus topics on imputation methods are beyond the scope of this paper.  As an 

aside, we wish to address the relevance of the FIML estimator for categorical data1.  It is also 

known as the marginal maximum likelihood (MML) estimator in the Item Response Theory 

(IRT) literature (e.g., Bock & Aitkin, 1981).  Given the increasing availability of the FIML 

estimator for categorical data in software programs, it is tempting to ask why multiple imputation 

is still needed.  We emphasize that multiple imputation is a general approach not dependent on 

particular formulations of the structural modeling framework.  It more easily allows one to 

utilize the multi-stage estimation approach, which is described in the next section.  The multi-

stage approach itself possesses some advantages over FIML (Forero & Maydeu-Olivares, 2009).  

FIML is also computationally more intensive than our approach because it requires high-

dimensional integration over a multivariate distribution with as many dimensions as there are 

                                                           
1 The multi-stage estimator is often referred to as a limited information method as opposed to full information 

maximum likelihood (Forero & Maydeu-Olivares, 2009) that relies on raw data. 
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observed variables.  On the other hand, in the multi-stage approach, estimating the thresholds 

and polychoric correlations only requires one or two-dimensional integration (see Maydeu-

Olivares, 2006; Wirth & Edwards, 2007; Forero & Maydeu-Olivares, 2009).  Furthermore, 

multi-stage estimation can easily incorporate auxiliary variables, while this is not true for FIML.  

2. Multi-Stage Estimation of Structural Equation Models with Categorical Variables 

2.1. The Underlying Variables Formulation 

 In the SEM tradition, categorical observed variables can be viewed as the result of 

discretization of underlying continuous response variables.  Without loss of generality, let us 

consider the case of 𝑛 observed variables each having 𝐾 ordered categories (𝑘 = 0, 1, 2, … , 𝐾 −

1).  Let 𝐲∗ = (𝑦1
∗, 𝑦2

∗, … , 𝑦𝑛
∗)′ be a vector of 𝑛 underlying continuous response variables.  The 

observed categorical response 𝐲 = (𝑦1, 𝑦2, … 𝑦𝑛)′ is formed by the discretization of 𝐲∗ via a set 

of thresholds, 𝝉.  The relation between 𝑦𝑖 and 𝑦𝑖
∗ for item 𝑖 is given by 

 

{
 

 
𝑦𝑖 = 0, if 𝜏𝑖,0 < 𝑦𝑖

∗ ≤ 𝜏𝑖,1
𝑦𝑖 = 1, if 𝜏𝑖,1 < 𝑦𝑖

∗ ≤ 𝜏𝑖,2
⋮

𝑦𝑖 = 𝐾 − 1, if 𝜏𝑖,𝐾−1 < 𝑦𝑖
∗ ≤ 𝜏𝑖,𝐾

, (1) 

where −∞ = 𝜏𝑖,0 < 𝜏𝑖,1 < 𝜏𝑖,2… < 𝜏𝑖,𝐾 = ∞.  When there are 𝐾 categories, there are 𝐾 − 1 

well-defined thresholds. 

 This connection between categorical variables and continuous underlying response 

variables allows us to work with the underlying continuous variables 𝐲∗ in SEM instead of the 

observed categorical variables 𝐲.  Let the covariance matrix of 𝐲∗ be denoted 𝚺.  One may 

impose a covariance structure model on 𝚺 by introducing its dependence on a vector of free 

parameters 𝜽. We consider a LISREL-type linear covariance structure model 

 𝚺(𝜽) = 𝚲𝚨𝚿𝚨′𝚲′ +𝚽, (2) 
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where 𝚲 is an 𝑛 × 𝑝  common factor loading matrix, 𝚿 is a 𝑝 × 𝑝 common factor covariance 

matrix, and 𝚽 is an 𝑛 × 𝑛 covariance matrix of the unique factors.  Matrix 𝐀 is an invertible 

matrix and equals to (𝐈𝑝 − 𝐁)
−1, where 𝐈𝑝 is a 𝑝 × 𝑝 identity matrix and 𝐁 is a matrix of 

regression coefficients describing the linear structural relationship among the common factors.  

Because the underlying variables can have arbitrary scaling, one method to identify the model is 

by setting 𝚽 = 𝐈𝑝 − diag(𝚲𝐀𝚿𝐀
′𝚲′) , such that 𝚺(𝜽) = 𝐏(𝜽), where 𝐏 has unit diagonals (a 

correlation matrix).  Estimating the polychoric correlations among the observed variables is a 

critical aspect of categorical structural equation modeling.   

2.2. Thresholds and Polychoric Correlation Estimation 

The full item-by-item cross-classifications generate a contingency table with 𝐶 = 𝐾𝑛 

cells.  Let 𝝅 be the 𝐶 × 1 vector of true (population) probabilities, with the corresponding 

sample proportions 𝒑.  We know from the standard theory of discrete multivariate analysis that 𝒑 

converges in distribution to 𝝅 

 √𝑁(𝒑 − 𝝅)
𝐷
→𝒩𝐶 (𝟎, 𝚵), (3) 

when the sample size 𝑁 tends to infinity and 𝚵 = 𝑑𝑖𝑎𝑔(𝝅) − 𝝅𝝅′.  We also know from work on 

limited-information goodness-of-fit estimation and testing (e.g., Maydeu-Olivares & Joe, 2005) 

that for each pair of observed variables there exist (𝐾 − 1)2 unique marginal probabilities.  

These marginal probabilities are full-rank linear transformations of the cell probabilities.  

Specifically, let 𝐋𝑖𝑗 be an operator matrix of order 𝐾2 × 𝐶 that combines the cell probabilities 

into the marginal probabilities for item pair (𝑖, 𝑗): 

 𝒑𝑖𝑗 = 𝐋𝑖𝑗𝒑, 𝝅𝑖𝑗 = 𝐋𝑖𝑗𝝅 (4) 

where 𝒑𝑖𝑗 and 𝝅𝑖𝑗 denote the unique marginal moments for the sample and for the population.  

We can see that the asymptotic distribution of 𝒑𝑖𝑗 is 
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 √𝑁(𝒑𝑖𝑗 −𝝅𝑖𝑗)
𝐷
→𝒩𝐾2 (𝟎, 𝚵𝑖𝑗), (5) 

where 𝚵𝑖𝑗 = 𝐋𝑖𝑗𝚵𝐋𝑖𝑗
′ , i.e.,  

 𝚵𝑖𝑗 = 𝐋𝑖𝑗𝑑𝑖𝑎𝑔(𝝅)𝐋𝑖𝑗
′ − 𝝅𝑖𝑗𝝅𝑖𝑗

′ . (6) 

It is important to note that 𝚵𝑖𝑗 can be estimated consistently by plugging in sample proportions. 

We are now ready to discuss thresholds and polychoric correlation estimation.  

Thresholds and polychoric correlations are determined implicitly from the maximized pairwise 

likelihood for each item pair (𝑖, 𝑗).  The following description of estimating thresholds and 

polychoric correlations follows Olsson (1979) and Jöreskog (1994).  Assuming we are given 

observed frequencies, 𝑛𝑘𝑙, in category 𝑘 for item 𝑖 and category 𝑙  on an item 𝑗, where 𝑘 =

0, 1, 2, . .  , 𝐾 − 1 and 𝑙 = 0, 1, 2, . .  , 𝐾 − 1.  The pairwise likelihood is  

 𝐿 ∝∏∏𝜋𝑘𝑙
𝑛𝑘𝑙

𝐾−1

𝑙=1

𝐾−1

𝑘=1

. (7) 

The model-implied probability 𝜋𝑘𝑙 that an observation falls into the category 𝑘 and 𝑙 for an item 

pair (𝑖, 𝑗) is the following double integral 

 𝜋𝑘𝑙 = ∫ ∫ 𝜙(𝑥, 𝑦; 𝜌𝑖𝑗)𝑑𝑥𝑑𝑦

𝜏𝑗,𝑙

𝜏𝑗,𝑙−1

𝜏𝑖,𝑘

𝜏𝑖,𝑘−1

, (8) 

where 

𝜙(𝑥, 𝑦; 𝜌) =
1

2𝜋√1 − 𝜌2
exp(−

𝑥2 − 2𝜌𝑥𝑦 + 𝑦2

2(1 − 𝜌2)
) 

is the standard bivariate normal density with (polychoric) correlation 𝜌.  The maximization of the 

pairwise likelihood leads to estimates of thresholds and the polychoric correlation.   
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In practice, the maximization is often done in two stages.  First, the thresholds are 

considered fixed upon estimation.  They are computed directly from the inverse normal 

cumulative distribution function, �̂�𝑘 = Φ−1(�̇�𝑘), where �̇�𝑘 is the observed cumulative category 

proportion for item 𝑖 up to category 𝑘.  We use Φ to denote the univariate normal cumulative 

distribution function.  In the second stage, the polychoric correlation is estimated by 

differentiating the log-likelihood and finding the zero of the log-likelihood gradient.  While the 

two-step procedure is theoretically not optimal, it is computationally far less burdensome than 

the simultaneous estimation of all parameters. The resulting estimates are usually close to the 

simultaneous solution (Olsson, 1979). 

2.2. Estimation of the Asymptotic Covariance Matrix  

Let 𝝈𝑖𝑗 = (𝝉𝑖, 𝝉𝑗 , 𝜌𝑖𝑗) be the 2(𝐾 − 1) + 1 vector of thresholds and polychoric 

correlation for item pair (𝑖, 𝑗).  Let 𝐆(�̂�𝑖𝑗 , 𝒑𝑖𝑗) = 𝟎 be the nonlinear implicit equations derived 

from the pairwise likelihood for item pair (𝑖, 𝑗), where the pairwise maximum likelihood solution 

is �̂�𝑖𝑗.  One can show (e.g., Christofferson & Gonsjö, 1996, Equation 2) with the help of the 

mean value theorem and implicit differentiation that  

 

√𝑁(�̂�𝑖𝑗 − 𝝈𝑖𝑗) = −(
𝜕𝐆(�̂�𝑖𝑗, 𝒑𝑖𝑗)

𝜕𝝈𝑖𝑗
)

−1

(
𝜕𝐆(�̂�𝑖𝑗, 𝒑𝑖𝑗)

𝜕𝒑𝑖𝑗
)√𝑁(𝒑𝑖𝑗 − 𝝅𝑖𝑗)

= (
𝜕𝝈𝑖𝑗

𝜕𝒑𝑖𝑗
)√𝑁(𝒑𝑖𝑗 − 𝝅𝑖𝑗). 

(9) 

Thus the asymptotic distribution of �̂�𝑖𝑗 is  

 √𝑁(�̂�𝑖𝑗 − 𝝈𝑖𝑗) = (
𝜕𝝈𝑖𝑗

𝜕𝒑𝑖𝑗
)√𝑁(𝒑𝑖𝑗 − 𝝅𝑖𝑗)

𝐷
→𝒩2(𝐾−1)+1 (𝟎, (

𝜕𝝈𝑖𝑗

𝜕𝒑𝑖𝑗
)𝚵𝑖𝑗 (

𝜕𝝈𝑖𝑗

𝜕𝒑𝑖𝑗
)

′

). (10) 
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Because 𝒑𝑖𝑗 and 𝒑𝑘𝑙 are different linear transformations of the same underlying multinomial cell 

probabilities, their asymptotic covariance matrix is equal to 𝚵𝑖𝑗𝑘𝑙 = 𝐋𝑖𝑗𝚵𝐋𝑘𝑙
′ .  This implies that 

the asymptotic covariances between �̂�𝑖𝑗 and �̂�𝑘𝑙 can be approximated as  

 𝚪𝑖𝑗,𝑘𝑙 = (
𝜕𝝈𝑖𝑗

𝜕𝒑𝑖𝑗
)𝚵𝑖𝑗𝑘𝑙 (

𝜕𝝈𝑘𝑙
𝜕𝒑𝑘𝑙

)
′

. (11) 

For technical details of computing (
𝜕𝝈𝑖𝑗

𝜕𝒑𝑖𝑗
) = −(

𝜕𝐆(�̂�𝑖𝑗,𝒑𝑖𝑗)

𝜕𝝈𝑖𝑗
)
−1

(
𝜕𝐆(�̂�𝑖𝑗,𝒑𝑖𝑗)

𝜕𝒑𝑖𝑗
), please refer to Olsson 

(1979).   

2.3. Estimation of Structural Parameters 

Let us denote the estimated polychoric correlation matrix as �̂�, and let the unique 

elements of the matrix be denoted �̂� = vech(�̂�), where vech(⋅) stands for the half vectorization 

operator that returns the lower-half of a correlation matrix.  From the previous section, we see 

that  

 √𝑁(�̂� − 𝝆)
𝐷
→𝒩𝑛(𝑛−1)

2

(𝟎, 𝚪), (12) 

where 𝝆 = vech(𝐏) and the asymptotic covariance matrix of unique polychoric correlations is 𝚪.  

The elements of 𝚪 can be consistently estimated by repeated application of the formula in 

Equation (11). 

Estimation of the structural parameters in 𝜽 is typically accomplished as a final stage of 

estimation by minimizing a quadratic form discrepancy function of the following form (Browne, 

1984, Equation 2.7) over 𝜽 

 𝐹(𝜽) = [�̂� − 𝝆(𝜽)]′𝐕[�̂� − 𝝆(𝜽)],  (13) 

where 𝐕 is a weight matrix.  If one chooses to use weighted least squares (WLS) estimation, then 

𝐕 = 𝚪−1.  If one’s choice is unweighted least squares (ULS), then 𝐕 is an identity matrix.  If 
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diagonally weighted least squares (DWLS) is used, then 𝐕 = [diag(𝚪)]−1.  Except for WLS, 

other estimators are not asymptotically optimal (not minimum variance estimators), but they may 

be more stable for smaller and more realistic sample sizes encountered in empirical research.  

For WLS estimation, (𝑁 − 1) times the minimized discrepancy function value is distributed in 

large samples as a central chi-square variable under correct model specification.  For ULS or 

DWLS, corrections to standard errors and fit statistics are generally needed. 

3. Alternative Multiple Imputation Inferential Procedure 

Up to this point we have discussed the foundational aspects of SEM for categorical 

variables without consideration of the issue of missing data.  Let us now discuss the issue of 

missing data in this context.  We label the incomplete observed data as 𝐎, and the missing data 

as 𝐗.  In multiple imputation, we draw 𝑀 sets of imputations. For imputation 𝑚, the complete 

data set as a result of multiple imputation is 𝐘(𝑚) = (𝐎, 𝐗(𝑚)).  We may estimate the polychoric 

correlations from imputation 𝑚.  Let the polychoric correlations be denoted 𝝆(𝑚), and the 

corresponding asymptotic covariance matrix be 𝚪(𝑚).   

3.1. The Standard Approach 

Let us first introduce the typical approach of estimating a structural equation model under 

multiple imputation.  For each imputation, we obtain parameter estimate �̂�(𝑚) again by 

minimizing the general quadratic form discrepancy function (Browne, 1984, Equation 2.7) 

 𝐹(𝜽) = [𝝆(𝑚) − 𝝆(𝜽)]
′
𝐕(𝑚)[𝝆(𝑚) − 𝝆(𝜽)], (14) 

where 𝐕(𝑚) is the weight matrix associated with imputation 𝑚.  To obtain a single set of 

parameter estimates, the parameter estimates are averaged over the 𝑀 imputations.   
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 �̅� =
1

𝑀
∑  𝜃(𝑚)
𝑀

𝑚=1

, (15) 

where 𝜃(𝑚) is a generic component of �̂�(𝑚).  Standard errors can also be computed in a 

straightforward manner with the standard formula for multiple imputation (Rubin, 1987), 

combining the within-imputation variance and the between-imputation variance.  The within-

imputation variance, 𝑉𝑊, is the average of the squared standard errors over the 𝑀 imputations,  

 𝑉𝑊 =
1

𝑀
∑ (𝑆𝐸(𝜃(𝑚)))

2
𝑀

𝑚=1

, (16) 

where 𝑆𝐸(𝜃(𝑚)) refers to the standard error estimate from imputation 𝑚.  The between-

imputation variance, 𝑉𝐵, is 

 𝑉𝐵 =
1

𝑀 − 1
∑(𝜃(𝑚) − �̅�)

2
𝑀

𝑚=1

, (17) 

which accounts for uncertainty in parameter estimates due to missing data.  The total error 

variance is obtained by combining the within-imputation variance and the between-imputation 

variance as follows:  

 𝑉𝑇 = 𝑉𝑊 + (1 +𝑀
−1)𝑉𝐵. (18) 

3.2. The New Approach 

In the new approach, the structural equation model is fitted after all multiple imputations 

have been combined.  Specifically, researchers combine the imputations to obtain a single matrix 

of polycoric correlations along with its asymptotic covariance matrix that are corrected for 

missing data.  These polycoric correlation matrix and its asymptotic covariance matrix become 

the components of “business-as-usual” estimation in the second stage and statistical inference.   

First, we average the polychoric correlations as  
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 �̅� =
1

𝑀
∑ 𝝆(𝑚)
𝑀

𝑚=1

. (19) 

We now have a single discrepancy function to minimize:  

 𝐹(𝜽) = [�̅� − 𝝆(𝜽)]′𝐕[�̅� − 𝝆(𝜽)]. (20) 

However, simply averaging the asymptotic covariance matrix as 

 �̅� =
1

𝑀
∑ 𝚪(𝑚)
𝑀

𝑚=1

 (21) 

will not lead to the correct weights for either WLS estimation or subsequent corrections to test 

statistics or standard errors if ULS or DWLS are used.  This is because �̅� does not take into 

account the added uncertainty due to the missing data.  Specifically, �̅� only captures uncertainty 

based on complete data, and uncertainty about the averaged polychoric correlations �̅� is not fully 

accounted for under missing data. 

Fortunately, to obtain the corrected weight matrix, one only needs to add to �̅� a 

component that reflects the between-imputation variance in the estimated polychoric correlations 

𝝆(𝑚): 

 �̃� = [
1

𝑀
∑ 𝚪(𝑚)
𝑀

𝑚=1

] +
𝑀 + 1

(𝑀 − 1)𝑀
[∑(𝝆(𝑚) − �̅�)(𝝆(𝑚) − �̅�)

′
𝑀

𝑚=1

]. (22) 

The inverse of �̃� will be the correct weight matrix to use in estimation or inference for the 

structural parameters in 𝜽.  Note that assuming proper imputations and infinite 𝑀, the resulting 

repeated-imputation inference is valid. That is to say, with a large sample size, �̅� is a consistent 

estimate of 𝝆, and √𝑁(�̅� − 𝝆) is normally distributed with zero means and asymptotic 

covariance matrix 𝚪, which is consistently estimated by �̃� (Rubin, 1987).  
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The parameters that minimize the quadratic form discrepancy function in Equation (20) is 

referred to as �̃�.  Under broad conditions, the minimizer �̃� of the quadratic form discrepancy 

function in Equation (20) is consistent and asymptotically normal.  As is typical, we have a 

choice of WLS, ULS or DWLS estimation.  In WLS, the inverse of �̃� is plugged into 𝐕.  In 

DWLS, the diagonal elements from the inverse of �̃� are used as weights.  In ULS, the identity 

matrix serves as the weight.  In ULS and DWLS, a subsequent step of correcting the test statistic 

is required because the weight matrix is not correctly specified.  To obtain the correct test 

statistic, we apply Browne’s (1984) Proposition 4.   

Given model-implied moments, the residual moments are 𝐞 = �̅� − 𝝆(�̃�).  We define a 

residual-based test statistic 

 �̃�𝐵   = 𝑁𝐞′ �̃� 𝐞, (23) 

where �̃� = �̃�−1 − �̃�−1�̃�(�̃�′�̃�−1�̃�)
−1
�̃�′�̃�−1, and  

�̃� = 𝚫(�̃�) =
∂𝝆(𝜽)

𝜕𝜽′
|
𝜽=�̃�

 

is the Jacobian matrix of the structural model evaluated at the parameter estimate �̃�.  Under 

Browne’s (1984) Proposition 4, this residual-based test statistic is asymptotically chi-squared for 

any consistent and asymptotically normal estimator.   

This test statistic can be further extended to yield a statistic that may be better suited for 

smaller sample size, following the logic of 𝑇𝑌𝐵, originally proposed by Yuan and Bentler (1997).  

𝑇𝑌𝐵 is an adjustment of 𝑇𝐵 while retaining the asymptotic chi-square distribution of 𝑇𝐵.  𝑇𝑌𝐵 

tends to perform well for a small sample size (Maydeu-Olivares, Cai, & Hernández, 2011; Yuan 

& Bentler, 1997; Yuan & Bentler, 2000).  Our corrected statistic �̃�𝑌𝐵, can be computed as 
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 �̃�𝑌𝐵 =
�̃�𝐵

1 +  𝑁�̃�𝐵/(𝑁 − 1)
 . (24) 

4. Simulation Study 1: Calibration 

The goal of the first simulation study is to show that the test statistic �̃�𝐵 and �̃�𝑌𝐵 are 

asymptotically chi-square distributed under the null hypothesis that the model fits exactly, with 

the latter exhibiting better finite sample behavior.  The simulation is carried out in four steps: 1) 

generation of complete and missing data, 2) multiple imputation for missing data, 3) combining 

multiple imputation, and 4) model fitting.  The simulation conditions include the following four 

aspects: 1) the missing data mechanism, 2) missing data rate, 3) sample size, and 4) number of 

categories.  In a fully crossed design, 500 replications were attempted for each of the conditions.   

4.1.  Data Generation 

4.1.1. Generation of Complete and Missing data 

The data generating model is a confirmatory factor analysis (CFA) model with 9 items 

and 3 factors.  The covariance structure is 𝚺(𝜽) = 𝚲𝚿𝚲′ +𝚽.  The population factor loading 

matrix is  

𝚲′ = (
0.7 0.8 0.9 0 0 0 0 0 0
0 0 0 0.7 0.8 0.9 0 0 0
0 0 0 0 0 0 0.8 0.8 0.8

), 

and the factor correlation matrix is  

𝚿 = (
1.0
0.4 1.0
0.3 0.5 1.0

). 

For identification we let 𝚽 = 𝐈 − diag(𝚲𝚿𝚲′).  It follows that 𝚽 = diag(0.51, 0.36, 0.19,

0.51, 0.36, 0.19, 0.36, 0.36, 0.36) and 𝚺 is a correlation matrix.  There are 12 free 

parameters, and the model’s degrees of freedom is 24.   
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We generated multivariate normal underlying response variables corresponding to the 

data generating model above.  We examined 4 different sample sizes (𝑁 =

250, 500, 1000, 2500).  The data were generated using R (R Core Team, 2017).  The continuous 

underlying variables were discretized.  We considered 3 cases for the number of categories 𝐾: 2, 

3, and 5.  Table 1 presents those thresholds.  These thresholds were systematically chosen to 

provide coverage of possible ranges of thresholds commonly seen in practical settings. 

Table 1.  Generating Thresholds 

Item 𝐾 = 2  𝐾 = 3  𝐾 = 5 

𝜏𝑖,1 𝜏𝑖,1 𝜏𝑖,2 𝜏𝑖,1 𝜏𝑖,2 𝜏𝑖,3 𝜏𝑖,4 

1 -0.5  -1.0 0.0  -1.5 -0.67 0.17 1.0 

2 0.0  -0.5 0.5  -1.0 -0.33 0.33 1.0 

3 0.5  0.0 1.0  -1.0 -0.17 0.67 1.5 

4 0.5  0.0 1.0  -1.0 -0.17 0.67 1.5 

5 0.0  -0.5 0.5  -1.0 -0.33 0.33 1.0 

6 -0.5  -1.0 0.0  -1.5 -0.67 0.17 1.0 

7 -0.5  -1.0 0.0  -1.5 -0.67 0.17 1.0 

8 0.0  -0.5 0.5  -1.0 -0.33 0.33 1.0 

9 0.5  0.0 1.0  -1.0 -0.17 0.67 1.5 

Note. K: number of categories 

 

We examined 3 missing data conditions (NOMISS, MCAR, and MAR).  Note that we 

included the no missing data case (NOMISS) purely as a benchmark.  Missing data were 

simulated using a variant of the procedures described by Lee and Cai (2012).  We first describe 

the low missing data rate condition.  For MCAR, each row of complete data was tested by a fair 

dice (1/6th chance) to determine whether missing values should be present or not.  Once a row 

was chosen, we set the values of the last three items to missing.  For MAR, the probabilities of 

missingness of the last three items depend on the mean of the first six items (Z).  This was 

accomplished by dividing the distribution of Z into quartiles and setting the missingness 

probabilities of the four quartiles to (.50, .20, .075, .025).  Implementation of this set of 
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procedures in R (R Core Team, 2017) resulted in 17% and 20% of all observations missing, 

respectively for MCAR and MAR conditions.  For the high missing data rate condition, the 

procedure remains the same, but we doubled the missing data probabilities.  For MCAR, instead 

of rolling a fair dice, a “3-sided dice” was tossed.  For MAR, the missingness probabilities of the 

four quartiles were changed to (1.0, .40, .15, .05).  Implementation in R (R Core Team, 2017) 

gave us about 33% and 40% of observations missing, for MCAR and MAR respectively. As we 

doubled the missing data probabilities, the missing rates are about twice those of the low missing 

data condition.   

4.1.2. Multiple Imputation for Missing Data 

For the missing data (MCAR, MAR) conditions, multiple imputation was performed with 

FCS (or MICE) using the software program BLImP (Keller & Enders, 2014).  The details of the 

categorical variable imputation implemented in BLImP can be found in Enders, Keller, and Levy 

(2017).  Burn-in interval and thinning interval were both set to 1,000.   

We imputed 20 times for the low missing data rate condition and 60 for the high missing 

data rate condition.  The decision on the number of imputations was based on the relative 

efficiency (RE) of imputations.  The larger number of imputations is consistent with recent 

research that recommended more imputations than the traditional recommendation of three to 

five (e.g., Bodner, 2008; Graham, Olchowski, & Gilreath, 2007; Von Hippel, 2009; White, 

Royston, & Wood; 2011).  We computed RE as follows. 

First, given within-imputation variance 𝑉𝑤, between-imputation variance 𝑉𝐵, and total 

sample variance 𝑉𝑇, computed after 𝑀 imputations, the fraction of missing information (FMI) 

adjusting the finite number of imputations can be expressed as 
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 FMI =
(1 +𝑀−1)𝑉𝐵 +

2𝑉𝑤
𝑣 + 3

𝑉𝑇
, (25) 

where 𝑣 = (𝑀 − 1)(1 + 𝑉𝑤/(1 + 𝑀
−1)𝑉𝐵)

2 is a degrees of freedom value.  This represents the 

proportion of the total variance due to missing data (Enders, 2010).  Since we consider 

combining the polychoric correlations, the 𝑉𝑤, 𝑉𝐵, and 𝑉𝑇 terms are in matrix forms.  Recall that 

𝑉𝑤 and 𝑉𝐵 correspond to the first term and the second term in Equation (22).  Hence, we need to 

summarize each matrix as a scalar.  This we accomplish with the trace operator, though of course 

other operators may be used (e.g., the log-determinant).  Now that we have FMI, RE is computed 

as  

 RE = (1 +
𝐹𝑀𝐼

𝑀
)
−1

. (26) 

Tables 2 and 3 display the FMI and RE as a function of the number of imputations for the 

low and high missing data conditions.  No noticeable difference was found across sample sizes 

and number of categories.  The higher FMI for MAR compared to MCAR is a result of the 

slightly higher missing rates.  A desirable level of RE may differ depending on the purpose of 

research.  For example, Bodner (2008) pointed out that inferential procedures such as hypothesis 

testing with p-values and confidence intervals require more imputations.  Our interest is on 

statistical inference, so we set the number of imputations to achieve RE close to or higher 

than .990, resulting in 𝑀 of 20 and 60, for the low and high missing data rates. 

4.2. Model Fitting 

For each complete or imputed data set, polychoric correlations and the associated 

asymptotic covariance matrix of polychoric correlations were computed using the lavaan 

package in R (R Core Team, 2017).  The correlations and the asymptotic covariance matrix were 

further combined in R.   
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Table 2.  Fraction of Missing Information (FMI) and Relative Efficiency (RE) for the Low 

Missing Data Rate Condition 
   

𝑀 = 5 𝑀 = 10 𝑀 = 20 𝑀 = 25 
 

K N FMI RE FMI RE FMI RE FMI RE 

MCAR 2 250 0.143 0.972 0.122 0.988 0.116 0.994 0.143 0.994 

500 0.134 0.974 0.120 0.988 0.112 0.994 0.135 0.995 

1000 0.123 0.976 0.117 0.988 0.114 0.994 0.136 0.995 

2500 0.132 0.974 0.120 0.988 0.114 0.994 0.135 0.995 

3 250 0.132 0.974 0.115 0.989 0.110 0.995 0.110 0.996 

500 0.130 0.975 0.114 0.989 0.109 0.995 0.106 0.996 

1000 0.135 0.974 0.115 0.989 0.108 0.995 0.109 0.996 

2500 0.132 0.974 0.118 0.988 0.113 0.994 0.111 0.996 

5 250 0.128 0.975 0.120 0.988 0.110 0.995 0.109 0.996 

500 0.135 0.974 0.124 0.988 0.114 0.994 0.112 0.996 

1000 0.136 0.973 0.118 0.988 0.113 0.994 0.113 0.995 

2500 0.115 0.977 0.108 0.989 0.104 0.995 0.104 0.996 

MAR 2 250 0.160 0.969 0.149 0.985 0.147 0.993 0.144 0.994 
 

500 0.182 0.965 0.167 0.984 0.154 0.992 0.154 0.994 
 

1000 0.193 0.963 0.164 0.984 0.157 0.992 0.155 0.994 
 

2500 0.171 0.967 0.163 0.984 0.158 0.992 0.158 0.994 

3 250 0.217 0.958 0.195 0.981 0.183 0.991 0.181 0.993 
 

500 0.232 0.956 0.199 0.980 0.190 0.991 0.185 0.993 
 

1000 0.205 0.961 0.182 0.982 0.172 0.991 0.172 0.993 
 

2500 0.211 0.959 0.187 0.982 0.178 0.991 0.178 0.993 

5 250 0.262 0.950 0.239 0.977 0.219 0.989 0.221 0.991 
 

500 0.218 0.958 0.193 0.981 0.191 0.991 0.190 0.992 
 

1000 0.244 0.953 0.207 0.980 0.205 0.990 0.202 0.992 
 

2500 0.251 0.952 0.216 0.979 0.202 0.990 0.199 0.992 

Note. M: number of imputations; K: number of categories; N: sample size; FMI: fraction of missing 

information; RE: relative efficiency 

 

The combined correlations matrix and the associated asymptotic covariance matrix were 

used as the inputs for fitting the CFA model.  We used ULS estimation for each replication.  The 

reason that we opted for ULS over WLS or DWLS is that ULS provides “more accurate and less 

variable parameter estimates as well as more precise standard errors” (Forero, Maydeu-Olivares, 

& Gallardo-Pujol, 2009).  The corrected test statistics, �̃�𝐵  and �̃�𝑌𝐵, were computed at the end.   
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Table 3.  Fraction of Missing Information (FMI) and Relative Efficiency (RE) for the High 

Missing Data Rate Condition 
   

𝑀 = 5 𝑀 = 10 𝑀 = 20 𝑀 = 40 𝑀 = 60 
 

K N FMI RE FMI RE FMI RE FMI RE FMI RE 

MCAR 2 250 0.308 0.942 0.274 0.973 0.256 0.987 0.245 0.994 0.244 0.996 

500 0.294 0.944 0.279 0.973 0.269 0.987 0.256 0.994 0.256 0.996 

1000 0.318 0.940 0.285 0.972 0.273 0.987 0.263 0.993 0.260 0.996 

2500 0.297 0.943 0.271 0.974 0.260 0.987 0.248 0.994 0.249 0.996 

3 250 0.278 0.947 0.250 0.976 0.245 0.988 0.238 0.994 0.233 0.996 

500 0.297 0.944 0.261 0.975 0.240 0.988 0.238 0.994 0.239 0.996 

1000 0.297 0.944 0.251 0.976 0.246 0.988 0.244 0.994 0.238 0.996 

2500 0.299 0.944 0.262 0.974 0.245 0.988 0.244 0.994 0.241 0.996 

5 250 0.276 0.948 0.258 0.975 0.258 0.987 0.248 0.994 0.245 0.996 

500 0.281 0.947 0.249 0.976 0.243 0.988 0.237 0.994 0.236 0.996 

1000 0.286 0.946 0.258 0.975 0.251 0.988 0.238 0.994 0.237 0.996 

2500 0.279 0.947 0.243 0.976 0.237 0.988 0.229 0.994 0.227 0.996 

MAR 2 250 0.459 0.916 0.424 0.959 0.410 0.980 0.401 0.990 0.397 0.993 

500 0.437 0.920 0.418 0.960 0.388 0.981 0.382 0.991 0.379 0.994 

1000 0.416 0.923 0.419 0.960 0.392 0.981 0.388 0.990 0.384 0.994 

2500 0.461 0.916 0.434 0.958 0.420 0.979 0.407 0.990 0.405 0.993 

3 250 0.568 0.898 0.521 0.951 0.489 0.976 0.480 0.988 0.478 0.992 

500 0.577 0.897 0.529 0.950 0.498 0.976 0.486 0.988 0.481 0.992 

1000 0.546 0.902 0.485 0.954 0.480 0.977 0.468 0.988 0.463 0.992 

2500 0.500 0.909 0.468 0.955 0.466 0.978 0.471 0.988 0.464 0.992 

5 250 0.526 0.905 0.510 0.951 0.502 0.976 0.497 0.988 0.495 0.992 

500 0.586 0.895 0.535 0.949 0.507 0.975 0.497 0.988 0.492 0.992 

1000 0.562 0.899 0.520 0.951 0.498 0.976 0.496 0.988 0.496 0.992 

2500 0.551 0.901 0.523 0.950 0.501 0.976 0.508 0.987 0.500 0.992 

Note. M: number of imputations; K: number of categories; N: sample size; FMI: fraction of missing 

information; RE: relative efficiency 

 

4.3. Simulation Results 

Tables 4 - 6 show the Type I error rates at the .01, .05, and .10 𝛼-levels for �̃�𝐵 when 𝐾 = 

2, 3, and 5, respectively.  We removed invalid replications having zero or negative unique 

variances.2  Tables 7 - 9 present the same information for �̃�𝑌𝐵 when 𝐾 = 2, 3, and 5,  

                                                           
2 We also calculated rejection rates on all converged replications for 𝑁 = 250, 𝐾 = 2, having the largest portion of 

Heywood cases. We note that the results do not make a big difference. The largest differences in means, variances, 

and p-values are .178, 4.661, and .012, respectively.  
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Table 4.  Type I Error Rates for �̃�𝐵 (𝐾 = 2) 

       Significance Level 

 N Reps Mean Var Min Max 0.01 0.05 0.10 

NOMISS 250 0.80 26.828 67.753 8.766 55.738 0.047 0.127 0.184 

500 0.92 25.343 52.326 8.456 53.900 0.013 0.078 0.155 

1000 0.98 24.641 54.884 7.637 56.359 0.024 0.057 0.128 

2500 1.00 24.636 49.209 10.039 50.045 0.008 0.062 0.124 

MCAR 

 

 

Low missing rates (%) 

250 0.79 26.492 68.812 10.727 59.096 0.050 0.116 0.176 

500 0.92 25.446 51.713 10.077 55.554 0.011 0.072 0.158 

1000 0.98 24.611 56.456 8.649 54.345 0.020 0.061 0.129 

2500 1.00 24.777 52.333 10.045 53.884 0.008 0.070 0.130 

High missing rates (%) 

250 0.76 26.117 66.645 9.179 58.383 0.042 0.103 0.177 

500 0.90 25.690 48.531 8.270 52.612 0.020 0.058 0.125 

1000 0.98 24.848 53.980 9.431 55.190 0.025 0.065 0.125 

2500 1.00 25.467 55.961 8.342 50.906 0.020 0.082 0.150 

MAR 

 

 

Low missing rates (%) 

250 0.78 26.556 72.634 7.770 59.750 0.054 0.121 0.175 

500 0.92 25.397 55.152 8.069 51.749 0.020 0.092 0.159 

1000 0.98 24.961 59.349 9.473 56.269 0.029 0.070 0.125 

2500 1.00 24.988 49.992 8.756 48.961 0.006 0.054 0.124 

High missing rates (%) 

250 0.67 26.953 82.179 8.299 73.923 0.063 0.123 0.183 

500 0.89 25.646 58.018 11.057 60.946 0.038 0.074 0.132 

1000 0.98 25.218 55.682 8.631 55.324 0.025 0.072 0.133 

2500 1.00 25.049 54.689 9.190 51.514 0.016 0.084 0.140 

Note. N: sample size; Reps: proportion of valid replications; Var: variance of test statistic; Min: 

minimum value of test statistic; Max: maximum value of test statistic   

 

respectively.  We expect that the statistic would be chi-square distributed, and that the observed 

means calculated across the valid replications would be close to 24, the degrees of freedom of 

the model, and that the variances would be twice the degrees of freedom.  Furthermore, the 

empirical rejection rates of �̃�𝐵 and �̃�𝑌𝐵 should be close to the nominal 𝛼-level.   

Examining �̃�𝐵 for the NOMISS condition, the statistics are better calibrated as the sample 

size increases.  For 𝑁 = 250 and 𝑁 = 500, the empirical rejection rates are much higher than 

the nominal levels.  From 𝑁 = 1,000, the chi-square approximation begins to improve.  This is 

consistent with prior research (Maydeu-Olivares et al., 2011).  �̃�𝑌𝐵, on the other hand, does  
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perform better for smaller sample sizes, though it tends to be more conservative than liberal (see 

Table 7 - 9).  This mirrors the results from Yuan and Bentler (1999).  Also, it is unsurprising that 

the number of valid replications (Reps) also increases as the sample size increases. 

Turning to the MCAR and MAR conditions, it appears that the results are comparable to 

those for the NOMISS condition.  Very little difference is found across missing data mechanisms 

(MCAR or MAR) and number of categories (𝐾 = 2, 3, 5).  In addition, the statistic is well 

calibrated regardless of missing data rates (low or high).   

 

Table 5.  Type I Error Rates for �̃�𝐵 (𝐾 = 3) 

       Significance Level 

 N Reps* M Var Min Max 0.01 0.05 0.10 

NOMISS 250 0.93 26.174 57.853 9.305 52.754 0.026 0.094 0.176 

500 0.99 25.274 55.903 6.643 55.377 0.020 0.083 0.137 

1000 1.00 24.107 48.548 9.928 45.496 0.016 0.056 0.094 

2500 1.00 24.130 43.010 9.200 45.084 0.008 0.050 0.092 

MCAR 

 

 

Low missing rates (%) 

250 0.92 25.939 62.743 8.727 56.380 0.024 0.098 0.172 

500 0.98 25.202 55.592 9.190 52.287 0.026 0.086 0.126 

1000 1.00 24.329 50.226 9.108 51.622 0.010 0.064 0.114 

2500 1.00 24.439 45.262 8.683 45.551 0.008 0.042 0.122 

High missing rates (%) 

250 0.91 24.905 51.421 8.123 48.818 0.024 0.066 0.126 

500 0.99 24.766 56.061 8.978 57.520 0.026 0.081 0.124 

1000 1.00 24.320 48.035 10.410 51.181 0.014 0.056 0.108 

2500 1.00 24.060 48.738 10.238 49.666 0.014 0.054 0.096 

MAR 

 

 

Low missing rates (%) 

250 0.91 25.924 59.342 9.682 49.198 0.015 0.096 0.173 

500 0.99 25.268 50.114 6.154 53.016 0.018 0.063 0.125 

1000 1.00 24.372 51.035 6.863 51.785 0.012 0.054 0.110 

2500 1.00 24.634 48.075 9.176 50.984 0.010 0.066 0.130 

High missing rates (%) 

250 0.84 24.478 50.967 8.580 51.083 0.014 0.062 0.115 

500 0.98 24.506 51.234 8.649 51.461 0.012 0.070 0.131 

1000 1.00 24.381 49.342 10.241 50.949 0.016 0.054 0.126 

2500 1.00 24.213 45.850 8.867 51.593 0.008 0.054 0.108 

Note. N: sample size; Reps: proportion of valid replications; Var: variance of test statistic; Min: 

minimum value of test statistic; Max: maximum value of test statistic   
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5. Simulation Study 2: Power 

We conducted a second, smaller simulation to investigate the power of the proposed 

statistics, �̃�𝐵 and �̃�𝑌𝐵 to detect model misspecification.  To generate model misspecification, we 

utilized Tucker, Koopman, and Linn’s (1969) procedure.  Specifically, we introduced 50 minor 

common factors that account for 10% of unique variance.  This is a very mild degree of 

misspecification that cannot be easily accounted for with the confirmatory factor model.     

 

 

Table 6.  Type I Error Rates for �̃�𝐵 (𝐾 = 5) 

       Significance Level 

 N Reps M Var Min Max 0.01 0.05 0.10 

NOMISS 250 0.99 26.814 68.066 5.873 54.964 0.045 0.123 0.194 

500 1.00 25.301 61.149 8.767 61.707 0.024 0.098 0.142 

1000 1.00 24.765 56.563 10.094 54.608 0.020 0.068 0.120 

2500 1.00 24.148 48.057 9.698 48.026 0.016 0.064 0.102 

MCAR 

 

 

Low missing rates (%) 

250 0.98 26.101 61.195 7.372 54.561 0.026 0.098 0.169 

500 1.00 25.005 61.914 8.362 61.195 0.022 0.092 0.146 

1000 1.00 24.736 51.309 9.138 51.220 0.020 0.068 0.114 

2500 1.00 24.397 46.283 10.257 52.780 0.008 0.050 0.110 

High missing rates (%) 

250 0.98 25.464 60.419 8.987 51.461 0.024 0.102 0.161 

500 1.00 24.552 55.988 10.089 53.845 0.020 0.056 0.116 

1000 1.00 24.730 53.993 10.197 53.590 0.016 0.070 0.132 

2500 1.00 24.399 52.262 10.256 62.217 0.014 0.058 0.108 

MAR 

 

 

Low missing rates (%) 

250 0.99 25.670 57.918 8.509 55.030 0.024 0.079 0.162 

500 1.00 25.060 62.603 8.713 65.138 0.030 0.080 0.128 

1000 1.00 24.953 53.460 10.203 49.920 0.026 0.080 0.116 

2500 1.00 24.573 52.308 9.266 58.615 0.018 0.066 0.120 

High missing rates (%) 

250 0.95 24.582 51.662 10.005 47.970 0.019 0.063 0.122 

500 1.00 24.291 53.335 8.000 53.566 0.016 0.068 0.120 

1000 1.00 24.567 56.180 7.433 51.216 0.020 0.074 0.130 

2500 1.00 24.817 51.686 8.281 52.476 0.020 0.070 0.120 

Note. N: sample size; Reps: proportion of valid replications; Var: variance of test statistic; Min: 

minimum value of test statistic; Max: maximum value of test statistic   
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Table 10 presents the results of the empirical rejection rates at the .05 nominal 𝛼-level3.  The 

results from the null conditions were added for comparison.  Consistent with the simulation 

results of Type I error rate calibration, the powers of �̃�𝐵 and �̃�𝑌𝐵 under MCAR and MAR are 

comparable to those under NOMISS.  Note that it is not a surprise to see that �̃�𝐵 is more 

powerful than �̃�𝑌𝐵, and the difference in power is reduced as 𝐾 and 𝑁 increase.    

 

                                                           
3 Since results from the high missing rate condition show a similar pattern as those of the low missing rate condition, 

we provide only the results of the low missing rate condition. We will provide the full results upon request.  

Table 7.  Type I Error Rates for �̃�𝑌𝐵 (𝐾 = 2) 

       Significance Level 

 N Reps M Var Min Max 0.01 0.05 0.10 

NOMISS 250 0.80 24.013 43.167 8.467 45.510 0.010 0.047 0.100 

500 0.92 24.026 42.332 8.315 48.636 0.007 0.041 0.083 

1000 0.98 23.996 49.196 7.579 53.346 0.016 0.047 0.102 

2500 1.00 24.376 47.191 9.998 49.062 0.006 0.054 0.104 

MCAR 

 

 

Low missing rates (%) 

250 0.79 23.736 43.873 10.282 47.724 0.008 0.050 0.088 

500 0.92 24.120 41.871 9.878 49.979 0.004 0.028 0.095 

1000 0.98 23.966 50.678 8.575 51.538 0.014 0.047 0.111 

2500 1.00 24.514 50.151 10.004 52.747 0.008 0.064 0.122 

High missing rates (%) 

250 0.76 23.434 42.979 8.851 47.258 0.005 0.045 0.074 

500 0.90 24.347 39.211 8.135 47.584 0.004 0.040 0.071 

1000 0.98 24.194 48.388 9.343 52.298 0.016 0.047 0.098 

2500 1.00 25.188 53.565 8.314 49.890 0.016 0.076 0.134 

MAR 

 

 

Low missing rates (%) 

250 0.78 23.778 45.970 7.534 48.150 0.010 0.054 0.100 

500 0.92 24.070 44.575 7.941 46.878 0.004 0.046 0.102 

1000 0.98 24.297 53.007 9.384 53.266 0.029 0.055 0.107 

2500 1.00 24.721 47.953 8.725 48.020 0.006 0.052 0.122 

High missing rates (%) 

250 0.67 24.076 51.113 8.030 56.949 0.015 0.063 0.102 

500 0.89 24.291 46.242 10.817 54.301 0.018 0.049 0.090 

1000 0.98 24.546 49.742 8.557 52.419 0.018 0.059 0.098 

2500 1.00 24.780 52.386 9.156 50.474 0.016 0.072 0.132 

Note. N: sample size; Reps: proportion of valid replications; Var: variance of test statistic; Min: 

minimum value of test statistic; Max: maximum value of test statistic   
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Table 8.  Type I Error Rates for �̃�𝑌𝐵 (𝐾 = 3) 

       Significance Level 

 N Reps M Var Min Max 0.01 0.05 0.10 

NOMISS 250 0.93 23.504 38.079 8.969 43.501 0.002 0.028 0.062 

500 0.99 23.957 45.121 6.555 49.835 0.014 0.048 0.095 

1000 1.00 23.493 43.791 9.830 43.513 0.002 0.044 0.080 

2500 1.00 23.882 41.294 9.167 44.285 0.006 0.042 0.086 

MCAR 

 

 

Low missing rates (%) 

250 0.92 23.298 41.216 8.431 45.937 0.004 0.028 0.072 

500 0.98 23.893 44.803 9.024 47.319 0.008 0.053 0.096 

1000 1.00 23.704 45.233 9.025 49.083 0.004 0.050 0.096 

2500 1.00 24.185 43.446 8.653 44.735 0.008 0.036 0.106 

High missing rates (%) 

250 0.91 22.479 34.187 7.866 40.789 0.000 0.026 0.049 

500 0.99 23.496 45.265 8.819 51.564 0.008 0.047 0.091 

1000 1.00 23.697 43.260 10.302 48.685 0.008 0.042 0.080 

2500 1.00 23.811 46.740 10.196 48.698 0.010 0.044 0.086 

MAR 

 

 

Low missing rates (%) 

250 0.91 23.295 39.412 9.318 41.054 0.000 0.018 0.074 

500 0.99 23.962 40.605 6.078 47.915 0.008 0.028 0.071 

1000 1.00 23.743 46.027 6.816 49.231 0.004 0.042 0.090 

2500 1.00 24.375 46.095 9.142 49.964 0.006 0.056 0.122 

High missing rates (%) 

250 0.84 22.127 34.105 8.293 42.358 0.000 0.014 0.038 

500 0.98 23.269 41.637 8.501 46.641 0.004 0.033 0.080 

1000 1.00 23.754 44.427 10.137 48.475 0.006 0.040 0.092 

2500 1.00 23.963 43.986 8.835 50.549 0.006 0.042 0.104 

Note. N: sample size; Reps: proportion of valid replications; Var: variance of test statistic; Min: 

minimum value of test statistic; Max: maximum value of test statistic   

 

6. Empirical Application 

 We utilize a data set to demonstrate how the proposed procedure works in practice.  In 

the example, the data set had no missing observations originally, but we artificially created 

missingness, as in the simulation.  For the empirical analysis, we used LISREL (Jöreskog, K.  G.  

& Sörbom, D., 2006).  The procedure described in this paper can be implemented using LISREL 

or other commercial packages as long as one could combine polychoric correlations and the 

asymptotic covariance matrix after multiple imputation.   
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Table 9.  Type I Error Rates for �̃�𝑌𝐵 (𝐾 = 5) 

       Significance Level 

 N Reps M Var Min Max 0.01 0.05 0.10 

NOMISS 250 0.99 23.999 43.859 5.738 44.993 0.002 0.045 0.095 

500 1.00 23.974 49.231 9.616 54.904 0.010 0.054 0.106 

1000 1.00 24.113 50.673 9.993 51.775 0.018 0.060 0.100 

2500 1.00 23.898 46.087 9.660 47.120 0.006 0.048 0.096 

MCAR 

 

 

Low missing rates (%) 

250 0.98 23.436 39.941 7.159 44.722 0.002 0.026 0.073 

500 1.00 23.704 50.004 8.224 54.498 0.008 0.048 0.104 

1000 1.00 24.090 46.049 9.055 48.719 0.014 0.046 0.094 

2500 1.00 24.143 44.373 10.215 51.688 0.008 0.040 0.096 

High missing rates (%) 

250 0.98 22.914 39.796 8.673 42.618 0.000 0.024 0.073 

500 1.00 23.303 45.322 9.888 48.591 0.012 0.032 0.068 

1000 1.00 24.082 48.452 10.094 50.859 0.012 0.048 0.108 

2500 1.00 24.143 50.005 10.214 60.705 0.014 0.048 0.094 

MAR 

 

 

Low missing rates (%) 

250 0.99 23.092 37.823 8.227 45.037 0.002 0.026 0.055 

500 1.00 23.753 50.044 8.564 57.604 0.020 0.040 0.098 

1000 1.00 24.295 47.981 10.100 47.542 0.014 0.062 0.100 

2500 1.00 24.314 50.074 9.232 57.271 0.014 0.066 0.106 

High missing rates (%) 

250 0.95 22.211 34.501 9.617 40.195 0.000 0.019 0.044 

500 1.00 23.070 43.306 7.874 48.364 0.006 0.036 0.072 

1000 1.00 23.925 50.475 7.378 48.716 0.014 0.062 0.106 

2500 1.00 24.553 49.503 8.253 51.397 0.012 0.066 0.116 

Note. N: sample size; Reps: proportion of valid replications; Var: variance of test statistic; Min: 

minimum value of test statistic; Max: maximum value of test statistic   

 

After multiple imputation, we ran PRELIS to obtain polychoric correlations and the 

associated asymptotic covariance matrix.  As a side note, PRELIS produces the asymptotic 

covariance matrix in binary format.  We use the BIN2ASC utility4 to convert the binary file into 

ASCII format.  Then we combine the correlations and the asymptotic covariance matrix using R 

or any software that can manipulate ASCII input data.  Finally, we run WLS, ULS, or DWLS  

 

                                                           
4The “BIN2ASC” is an independent exe file from PRELIS/LISREL, written in Fortran, available upon request from 

Scientific Software International – PRELIS/LISREL’s distributor. 
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estimation in LISREL and collect the residual-based statistic directly from the output, which 

corresponds to �̃�𝐵.   

6.1. Data and Method  

 The source of the first data set is from the Korea Youth Panel Survey (KYPS), conducted 

by the National Youth Policy Institute (NYPI).  Specifically, we used 4th grade elementary school 

students of the first wave in 2003 as our sample.  The panel survey originally contains a variety 

of items on career choice, career plan, academic performance and career preparation, leisure, 

daily life, etc.  We chose a subset from a section on ‘Attachment’ and used 12 items: 6 items 

measuring ‘Parental attachment’, 3 items on ‘Teacher attachment’, and 3 items on ‘Friend 

attachment’.  The ratings were on a 5-point ordinal scale, from ‘very untrue’ to ‘very true’.  Thus, 

the model under consideration is a CFA model with the following factor loading matrix,   

𝚲′ = (

𝜆11 𝜆21 𝜆31 𝜆41 𝜆51 𝜆61 0 0 0 0 0 0
0 0 0 0 0 0 𝜆72 𝜆82 𝜆92 0 0 0
0 0 0 0 0 0 0 0 0 𝜆10,3 𝜆11,3 𝜆12,3

), 

and the following factor correlation matrix, 

Table 10. Power at 𝛼 = .05 level     

�̃�𝐵   �̃�𝑌𝐵  

K N NOMISS MCAR MAR   K N NOMISS MCAR MAR 

2 250 0.148 0.134 0.144  2 250 0.042 0.038 0.054 

 500 0.126 0.136 0.148   500 0.066 0.072 0.094 

 1000 0.144 0.156 0.164   1000 0.106 0.116 0.134 

 2500 0.388 0.348 0.362   2500 0.358 0.330 0.336 

3 250 0.190 0.170 0.144  3 250 0.082 0.062 0.066 

 500 0.212 0.202 0.202   500 0.144 0.136 0.126 

 1000 0.346 0.292 0.312   1000 0.306 0.246 0.266 

 2500 0.728 0.690 0.684   2500 0.716 0.676 0.668 

5 250 0.252 0.250 0.198  5 250 0.112 0.126 0.084 

 500 0.364 0.356 0.300   500 0.272 0.280 0.216 

 1000 0.630 0.590 0.556   1000 0.586 0.536 0.516 

  2500 0.958 0.946 0.922     2500 0.954 0.940 0.902 

Note. K: number of categories; N: sample size 
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𝚿 = (
1.0
𝜓21 1.0
𝜓31 𝜓32 1.0

). 

Also, we specified 𝚽 = 𝐈 − diag(𝚲𝚿𝚲′) for the identification.  

For illustrative purposes, we used 𝑁 = 2,800 complete cases and created MAR using a 

similar method by Yuan, Lambert, and Fouladi (2004).  Specifically, in this research, we set the 

last three variables to missing if the sum of the first nine variables is greater than its sample 

median.  This yields the data having about 44% of all observations missing.  The next steps 

follow the same procedures as in the simulation study: multiple imputation for missing data, 

combining multiple imputation, and model fitting.  Using BLImP (Keller & Enders, 2014), we 

generated 𝑀 = 100 imputations.  For analysis, the imputations were combined in a summary of 

one polychoric correlation and one correct weight matrix.  Then, we first fitted the three-factor 

model with ULS estimation.   

As a comparison, the statistic from complete cases and the statistic from MAR data but 

with the incorrect weight matrix (�̅�), ignoring the between-imputation variability, was obtained 

as well.  Let us denote the latter statistic, �̅�𝐵, because we simply average the polychoric 

correlations and the associated asymptotic covariance matrix, which does not lead to the correct 

weight matrix.  With this additional analysis and comparison of �̃�𝐵 with �̅�𝐵, we wish to stress the 

fact that the statistic without the correction should not be used.  This is because it does not 

account for the between-imputation variance in the estimated polychoric correlations and thus 

may lead to erroneous conclusions.  We present it here only to illustrate its biasing effect.   

6.2. Results  

 �̃�𝐵 for the MAR data is 357.93 (𝑑𝑓 = 51, 𝑝 < .001).  The RMSEA based on �̃�𝐵 can also 

be calculated, which is 0.052 with 90% confidence interval (CI) [0.047, 0.056].  From complete 
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data analysis, 𝑇𝐵 is 398.14 (𝑑𝑓 = 51, 𝑝 < .001), and the RMSEA is 0.053 with 90% CI [0.049, 

0.058].  The corrected statistic (�̃�𝐵) value is close to the statistic (𝑇𝐵) computed from the 

complete cases.  The RMSEA estimates are also close, indicating acceptably close fit.  However, 

�̅�𝐵, the model fit statistic without proper correction for missing data is much larger at 493.87 

(𝑑𝑓 = 51, 𝑝 < .001), and the RMSEA is 0.061 with 90% [0.057, 0,066].  In consequence, the 

RMSEA and its CI give qualitatively different conclusions about model fit.   

7. Discussion 

In this research, we propose an alternative inferential multiple imputation procedure for 

CSEM by extending the work by Lee and Cai (2012) on multiple imputation for continuous 

variables.  As they previously addressed, one benefit of this alternative approach is that it lessens 

the burden of fitting the model as many times as the number of imputations, thereby making the 

inferential procedure more efficient.  Moreover, common fit statistics in SEM as well as 

intermediate results become available.  This study introduces test statistics, �̃�𝐵 and �̃�𝑌𝐵, that 

researchers may obtain using the new inferential multiple imputation procedure in CSEM.   

The guiding insight is to average polychoric correlations computed from 𝑀 imputed data 

sets before fitting the structural model.  We can easily average the polychoric correlations. The 

weight matrix for least squares based parameter estimation, however, requires proper accounting 

of the between-imputation variance due to missing data.  Thresholds can be averaged in the same 

manner as the correlations if they are of interest to the data analyst.  Finally, applying Browne’s 

(1984) Proposition 4 leads us to obtain a new and corrected test statistic.  Yuan and Bentler’s 

(1997) adjustment can also be used to improve the small sample performance of the new test 

statistic. 
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In our simulation studies, we demonstrate that the new test statistics, particularly Yuan 

and Bentler’s (1997) adjustment, are well calibrated under MCAR and MAR conditions.  In 

addition, both tests show reasonable statistical power under mild model misspecification.  

Furthermore, an empirical example illustrates our findings in the simulation studies.  Additional 

fit indices such as RMSEA can be computed based on the proposed test statistics.   

This work, of course, has limitations.  The limitations of our research partly stem from 

the assumptions inherent in our approach.  When these assumptions are violated, our new 

estimator may no longer be applicable.  We discuss the assumptions more clearly here, and 

compare our estimator to the standard multiple imputation approach.  First, an approach based on 

multiple imputation in general is restricted to certain missing data mechanisms, namely MCAR 

and MAR.  Model-based imputation imputes missing data values from the posterior predictive 

distribution of the missing data given the observed data.  If data are not missing at random 

(NMAR), our approach is only as good as the attempt to multiply impute from an inadequate 

imputation model.  Second, our new approach assumes underlying multivariate normality.  We 

generated data to be consistent with this assumption, and they were discretized to obtain 

categorical observed variables. The probit model in FCS imputation also views discrete 

responses as arising from latent variables that are normally distributed.  Violation of this 

assumption could adversely influence the results.  In addition, our new approach is derived from 

asymptotic (in sample size) results, with a number of simplifying assumptions (e.g., regularity of 

the structural model) and ensuing linearization arguments that lead to asymptotic normality.  

Finally, our estimator also relies on having a larger than usual number of imputations in order to 

obtain improved estimates of the average polychoric correlations and weight matrices.   
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Our new estimator can be more practical than FIML in certain respects.  FIML is 

advocated by many due to ease of use through implementations in software programs, though it 

is by no means infallible.  For instance, it is not easy to accommodate auxiliary variables in the 

FIML approach. In contrast, multi-stage estimation incorporates auxiliary variables easily.  

FIML is also more computationally demanding, especially for categorical variables.  For detailed 

discussions of FIML with categorical data, we refer the reader to the literature on IRT parameter 

estimation.  Forero and Maydeu-Olivares (2009) provides an overview and extensive simulation 

studies on the estimation of IRT models by comparing full information and limited information 

methods.  They essentially conclude that there is no clear benefit of using FIML over the limited 

information multi-stage approach.  The limited information methods (WLS/DWLS/ULS) are 

substantially faster than FIML.  And FIML does not provide clear advantages in terms of 

parameter estimation accuracy or standard error accuracy.   

Overall, the contribution of this paper is to two research areas: CSEM and multiple 

imputation in SEM.  First, while a number of researchers have focused mainly on estimation and 

test statistic for CSEM (e.g., Forero et al., 2009; Maydeu-Olivares & Joe, 2014; Monroe & Cai, 

2015), issues regarding missing data have not been explored solely for ordinal indicators in the 

SEM literature.  Second, as Lee and Cai (2012) and Enders and Mansolf (2016) have pointed 

out, multiple imputation inference in SEM is an area that has rarely received attention despite the 

prevalent usage of multiple imputation in practice.  Given that the necessity of multiple 

imputation is much greater and its advantage much more valuable for categorical data, we 

believe that this research not only contributes to the literature but also will meet practical needs. 

Before we end our discussion, we suggest some potential directions for future studies.  

First, we adapted Lee and Cai’s (2012) MI2S approach to the case of dichotomous and ordered 
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polytomous data.  Though this study is limited to the discussion of ordered categorical data, one 

can apply the same logic further to data having mixtures of categorical and continuous variables.  

An example is the use of plausible values from institutionally-generated imputation procedures 

such as those in large-scale educational surveys.  Second, the simulation study needs to be 

extended.  Other models beyond the simple CFA model should be examined.  The distributions 

of the observed variables could be more varied.  Third, the corrected statistics, �̃�𝐵 and �̃�𝑌𝐵, could 

be compared with other test statistics and the traditional multiple imputation inferential approach 

in terms of performance.  In addition, now that Meng & Rubin’s (1992) likelihood ratio statistic 

has been examined by Enders and Mansolf (2016), their statistic once applied to CSEM may 

serve as a comparison to �̃�𝐵 and �̃�𝑌𝐵.  Finally, Wu, Jia, and Enders (2015) showed that the FCS 

multiple imputation approach did not perform better than multiple imputation with the normality 

assumption, even when data were binary.  It would be interesting to compare different multiple 

imputation approaches in our context. 
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Appendix A 

We provide a simple example of the alternative multiple imputation procedure using 

LISREL. We use the LSAT6 data set, which is built in R.  It consists of responses to 5 

dichotomous items for 1,000 examinees.  Let us assume researchers are equipped with 𝑀 

imputed data files after creating missing values in the LSAT6 data set.  

First, 𝑀 number of polychoric correlations and the asymptotic covariance matrices are 

obtained using PRELIS. The following is an example PRELIS code for 𝑚 = 1. 

PRELIS CODE FOR TETRACHORIC CORRELATIONS 

LSAT6 DATA, 5 VARIABLES, 1000 CASES 

DA NI=5 NO=1000 

RA FI=LSAT6_1.DAT 

OR ALL 
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OU PM SM=LSAT6_1.PCM AC=LSAT6_1.ACM 

 
Next, we combine those polychoric correlations and the asymptotic covariance matrices 

using R.  

# read the PCM file 

readPCM <- function(n,PCMF) { 

  q <- n*(n+1)/2 # number of elements in PCMF 

  fortran.PCM <- readLines(PCMF)  

  PCM <- "" 

for (i in 1:length(fortran.PCM)) {  

    PCM <- paste(PCM,fortran.PCM[i],sep="") 

  } 

  PCM <- gsub("D","E",PCM) 

  v <- rep(0,q) 

 

  # read and convert to float 

  for (i in 1:q) { 

    startpos <- (i-1)*13+1 

    endpos <- i*13 

    v[i] <- as.numeric(substr(PCM,startpos,endpos))  

  } 

  # returns the full correlation matrix 

  V <- diag(n) 

  V[upper.tri(V,diag=TRUE)] <- v 

  V <- V + t(V) - diag(diag(V)) 

  return(V) 

} 

 

# read the ASCII ACM file 

readACM <- function(n,ACMF) { 

  q <- n*(n-1)/2 # number of unique correlations 

  s <- q*(q+1)/2 # number of unique elements in the asymptotic 

covariance matrix 

  fortran.ACM <- readLines(ACMF) 

  fortran.ACM <- fortran.ACM[2:length(fortran.ACM)] 

  ACM <- "" 

for (i in 1:length(fortran.ACM)) {  

    ACM <- paste(ACM,fortran.ACM[i],sep="") 

  } 

  ACM <- gsub("D","E",ACM) 

  v <- rep(0,s) 

  # read and convert to float 

  for (i in 1:s) { 

    startpos <- (i-1)*23+1 

    endpos <- i*23 

    v[i] <- as.numeric(substr(ACM,startpos,endpos))  

    v[i] <- v[i]/N  

  } 

  # returns the full covariance matrix 
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  V <- diag(q) 

  V[upper.tri(V,diag=TRUE)] <- v 

  V <- V + t(V) - diag(diag(V)) 

  return(V) 

} 

 

# initialize 

Pcorr.sum <- 0 

AC.sum <- 0 

between.sum <- 0 

 

for (m in 1:M){  

 

PCMF <- paste("LSAT6_m=",m,".PCM",sep="")  

 

  # read the PCM file 

  Pcorr <- readPCM(n,PCMF) 

 

  # combine the polychoric correlations 

Pcorr.vechs <- Pcorr[upper.tri(Pcorr,diag=FALSE)] 

Pcorr.sum <- Pcorr.sum + Pcorr.vechs  

 

}  

 

Pcorr.mean = Pcorr.sum/M  

 

# save the correlation matrix in the form LISREL can read 

V <- diag(n) 

V[upper.tri(V,diag=FALSE)] <- Pcorr.mean 

V <- V + t(V) - diag(diag(V)) 

PCMF.combined <- paste("LSAT6.PCM",sep="")   

write.table(V[upper.tri(V,diag=TRUE)],PCMF.combined,col.names=F,row.na

mes=F)  

 

 

for (m in 1:M){  

 

  fromF <- paste("LSAT6_m=",m,".ACM",sep="") 

  toF <- paste("LSAT6_m=",m,".ACM.TXT",sep="")  

 

  # call BIN2ASC utility to convert ACM binary file to ASCII ACM file 

writeLines(c(fromF,toF),paste("BIN2ASCcontrol.txt"))      

shell("BIN2ASC < BIN2ASCcontrol.txt")  

 

  # read the ASCII ACM file  

  AC <- readACM(n,toF)  

  AC.sum <- AC.sum + AC 

 

  # between-imputation variance   

PCMF <- paste("LSAT6_m=",m,".PCM",sep="")  

  Pcorr <- readPCM(n,PCMF) 

  Pcorr.vechs <- Pcorr[upper.tri(Pcorr,diag=FALSE)]  
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  between.sum <- between.sum + (Pcorr.vechs -

Pcorr.mean)%*%t(Pcorr.vechs - Pcorr.mean) 

       

}  

 

AC.mean <- AC.sum/M 

between.mean <- between.sum*(M+1)/(M-1)/M 

ACM.correct <- AC.mean + between.mean 

ACM.correct <- N*ACM.correct  

W.correct <- solve(ACM.correct) # the inverse of the asymptotic 

covariance matrix 

w.correct <- W.correct[upper.tri(W.correct,diag=TRUE)] # the unique 

elements from W in the order LISREL wants 

WMF <- “correct_LSAT6.WM” 

write.table(format(w.correct,digits=9),WMF,col.names=F,row.names=F,quo

te=F)  

WMFlines <- readLines(WMF)  

WMFlines <- c("(F15.9)",WMFlines) 

writeLines(WMFlines,WMF)  

 

 
Last, we fit a one-factor model with WLS estimation using LISREL to obtain the 

parameter estimates and fit indices.  

ULS ITEM FACTOR ANALYSIS OF LSAT6 DATA 

USING TETRACHORIC CORRELATIONS AND THE ACM 

DA NI=5 NO=1000 MA=PM 

PM FI=LSAT6.PCM 

WM FI=correct_LSAT6.WM 

MO NX=5 NK=1 LX=FR 

OU ME=WLS PV=LSAT6.PV SV=LSAT6.SV 

 

If one uses ULS or DWLS estimation, the input file (the asymptotic covariance matrix) in 

LISREL should be in binary format. Upon request, the authors can provide the ASC2BIN utility 

and the relevant code for reformatting the corrected weight matrix to be plugged into the 

ASCII2BIN. 

 

 

 

 


