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Recent semantic space models learn vector representations for word meanings by observing statistical
redundancies across a text corpus. A word's meaning is represented as a point in a high-dimensional
semantic space, and semantic similarity between words is quantified by a function of their spatial
proximity (typically the cosine of the angle between their corresponding vector representations).
Recently, Griffiths, Steyvers, and Tenenbaum (2007) demonstrated that spatial models are unable to
simulate human free association data due to the constraints placed upon them by metric axioms which
appear to be violated in association norms. However, it is important to note that free association data is
the product of a retrieval process operating on a semantic representation, and the failures of spatial
models are likely be due to mistaking the similarity metric (cosine) for an appropriate process model of
the association taskdcosine is not what people do with a memory representation. Here, we test the
ability of spatial semantic models to simulate association data when they are fused with a simple Luce
choice rule to simulate the process of selecting a response in free association. The results provide an
existence proof that spatial models can produce the patterns of data in free association previously
thought to be problematic for this class of models.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

A longstanding belief in theories of lexical semantics, dating
back at least to Osgood (1952) is that words can be represented as
points in a multidimensional semantic space. Similarity between
wordmeanings is then defined as some function of their distance in
space. This classic notion of mental space has had an obvious
impact on modern computational semantic space models, such as
Latent Semantic Analysis (LSA; Landauer & Dumais, 1997). Models
such as LSA borrow techniques from linear algebra to infer the
semantic representation for words from their contextual co-
occurrences in linguistic corpora. In the resulting space, a word's
meaning is represented by a vector over latent dimensions. Inter-
word similarity is based on Euclidean geometry: Words that are
more similar are more proximal in the learned space. Virtually all
distributional models of semantic memory adhere to the spatial
notion of semantics (for a review, see Jones, Willits, & Dennis,
2015), including recent popular neural embedding models
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(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013).
In contrast to spatial models, the popularity of probabilistic

models of cognition has led to the development of Bayesian models
of semantic representation, such as the LDA-based Topic models
explored by Griffiths et al. (2007). In a Topic model, a word's rep-
resentation is a probability distribution over latent semantic
“topics.” When a word is processed, its semantic representation is
the predicted probability across latent topics. Hence while LSA
represents a word as a point in high-dimensional space and re-
quires a spatial metric of similarity between two words, a Topic
model represents a word as a probability distribution and com-
putes the association betweenwords as the probability of oneword
given the other. This allows Topic models to make very different
predictions depending on which word is being conditioned upon,
in contrast to LSA in which similarity is identical regardless of
which word is “first.” In addition, the issue of whether humans
represent meaning as a coordinate in space or as a conditional
probability is a fundamental question in cognitive science, and has
implications for downstream models that make use of these
representations.

Tversky (1977) has noted that spatial models must respect
several metric axioms. Firstly, in a metric space the distance be-
tween a point and itself must be zero by any Euclidean metric,
models of semantic representation, New Ideas in Psychology (2017),
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dðx; xÞ ¼ 0 (non-negativity). Secondly, distance must respect sym-
metry: dðx; yÞ ¼ dðy; xÞ: Thirdly, distance must respect the triangle
inequality: If x and y are proximal and y and z are proximal, then x
and z are likely to be proximal points as well (specifically,
dðx; zÞ � dðx; yÞ þ dðy; zÞ). As Tversky and Gati (1982) have
demonstrated, human judgments of similarity routinely violate
these axiomsdspecifically, symmetry and the triangle inequality.
Tversky used human violations of the metric axioms to argue
against spatial models of similarity, and instead proposed an ad-
ditive feature comparisonmodel. The spatial debate, however, has a
long history in cognitive science, with Tversky's work being fol-
lowed by explanations of how metric spaces could produce viola-
tions of metric axioms (e.g., Krumhansl's (1978) notion of density or
Holman's (1979) similarity and bias model).

Griffiths et al. (2007) note that human free association norms
also violate metric axioms, making them problematic for semantic
space models such as LSA. In a free association task, the participant
is asked to respond to a cuewordwith the first associatedword that
comes to mind (Nelson, McEvoy, & Schreiber, 2004). Word associ-
ation norms contain a significant number of asymmetric associa-
tions: For example, the probability of generating baby as a response
to stork as a cue is much greater than the reverse. Part of this effect
is due to a bias to respond with a high frequency target indepen-
dent of the cue, but part appears to be due to some sort of asym-
metry in the computation of similarity. In addition, word
association norms contain apparent violations of the triangle
inequality axiom: To use the example fromGriffiths et al., asteroid is
strongly associated with belt, and belt is strongly associated with
buckle, but asteroid and buckle have no association. Finally, Griffiths
et al (see also Steyvers & Tenenbaum, 2005). have demonstrated
that association norms contain neighborhood structure that is
incompatible with spatial models. If one constructs an associative
network with nodes representing words and connecting edges
based on nonzero association probabilities, the resulting networks
are scale-free: they have power law degree distributions and high
clustering coefficients.1

Griffiths et al. (2007) note, however, that probabilistic repre-
sentations are not subject to the same metric restrictions as spatial
representations, and they provide an elegant demonstration of how
Topic models can naturally account for the qualitative nature of
violations in asymmetry and the triangle inequality that LSA
cannot. Griffiths et al. further demonstrate that while LSA (based on
a thresholded cosine) cannot reproduce the scale-free and small-
world network structure seen in word association norms, this
structure naturally emerges in a Topic model.

However, it is important to note that an observable behavior
such as free association is the product of a cognitive process
operating on a memorial representation (Anderson, 1978; Estes,
1975). This notion is ubiquitous in cognitive science. For example,
Nosofsky (1986) uses a spatial representation of stimuli, but the
complex classification behavior of his model is the result of
applying a simple choice rule to this spatial representation, not
spatial distance itself. Similarly, semantic space models are models
of memory structure; the structural model should not be expected
to simulate a complex behavior like memory retrieval without the
benefit of a process account to explain how thememory structure is
used in a particular task. While the cosine between two word
vectors is often used as a measure of their semantic similarity, it is a
measure of the similarity of memory structures rather than an
1 Utsumi (2015) has revisited the Steyvers and Tenenbaum (2005) work and
demonstrated that while scale-free and small-word structure is unobtainable by
LSA, several other variants of the model, all spatial models, naturally produce the
correct structure from association norms.
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appropriate process model of the taskda cosine is not what people
do in a task, and should not be used as an estimate of behavioral
data (see Jones, Hills, & Todd, 2015). A cosine, or similar metric,
should be the input to a process model if one is interested in
simulating behavioral data. This also enhances the models’ gener-
alizability across different tasks that tap semantic structure, and is
particularly appealing given the low correlation in responses be-
tween different tasks thought to utilize the same semantic struc-
ture (Maki & Buchanan, 2008), and the fact that different semantic
space models give the best fit to different behavioral tasks even
though all tasks are thought to tap the same semantic memory
structure (Mandera, Keuleers, & Brysbaert, 2017).

Griffiths et al. (2007, p. 224) imply that a “more complex” spatial
metric based on LSA (similar to Nosofsky's 1986, 1991 use of a
similarity-choice function) could potentially account for the metric
axiom violations in association norms. We return to the issue of
complexity with regard to spatial and probabilistic models in the
discussion. The bulk of this paper will be focused on evaluating this
suggestion by fusing spatial semanticmodels with a parameter-free
version of Luce’s (1959) similarity-choice model to evaluate their
ability to account for the problematic data identified by Griffiths
et al. In doing so, we provide an existence proof that semantic space
models can indeed produce asymmetries, violations of the triangle
inequality, and scale-free network structure with an appropriate
process rule. It is premature to reject spatial models of semantic
representation based on violations of metric axioms in association
data.

2. A generic spatial choice model

In this paper, we evaluate the application of Luce's (1959) classic
choice rule to simulate the cognitive process involved in the task of
free association when applied to three (metric) semantic space
models, gradually increasing in complexity. Although similarity and
distance in the semantic spaces respect the metric axioms, the
behavior of the choice rule applied to these spaces need not (cf.
Nosofsky, 1991). The Luce choice rule was selected as our generic
output model here due to its ubiquity in models of cognitive phe-
nomenadit has been successfully applied to choice behavior
ranging from low-level neural networks to high-level economic
models of group choice behavior.

The Luce choice rule simulates how humans select from possible
choice alternatives given a stimulus similarity space, governed by
probabilities conditioned on the choice set. Hence, its input is
metric space, but its output is a probability of a given response.
Given a set of stimulus similarities (where similarity is defined as
an inverse monotonic function of psychological distance) the Luce
choice rule states that the probability of responding to stimulus Si
with response Rj is defined as:

p
�
Rj
��Si� ¼ bjhi;jP

kεMbkhi;k
(1)

where bj is the response bias for item j, and hi,j is the similarity
between stimuli i and j. Given the restrictions of metric spaces, the
total probability over all responses sums to one. Most applications
of the choice rule include exponential scaling of similarity based on
Shepard's (1987) universal law of distance and perceived similarity.
Hence, this general formula is often referred to as the Shepard-Luce
choice axiom:

p
�
Rj
��Si� ¼ bje

�ldðSi;RjÞP
kεMbke�ldðSi;RkÞ (2)
models of semantic representation, New Ideas in Psychology (2017),
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where d is a psychological distance function, and l is a free
parameter for the slope of the exponential (indicating a subject's
sensitivity to stimulus differences).

Due to computational complexity that would be required to fit
free parameters in the choice rule for our simulations, we evaluate a
very simple parameter-free version of the choice rule here. Firstly
we fix l¼ 1, and ignore exponential scaling. Secondly, although it is
reasonable to fix b to normative log word frequency for each word
in the lexicon, we also ignore bias in our application here to make
the similarities easily comparable to previous work. Hence, given a
semantic similarity matrix for all words in the lexicon (for example,
using LSA cosines) we simulate the probability of producing a target
word in response to a cue word in free association as:

pðtargetjcueÞ ¼ cosðcue; targetÞPt
i¼1cosðcue; word½i�Þ (3)

where t is aminimum similarity threshold parameter. Hence, this is
a very simple version of the Luce choice rule, and performance
should only be seen as a baselinedthe model could obviously
produce better predictions with parameter optimization.

3. Testing the semantic choice model

In this section, we test the ability of the simple Luce choice rule
(free of parameters except for a minimum similarity threshold in
the denominator) to account for violations of the metric axioms.
Each of the metric spaces conform to the metric axioms, but the
simple behavior of making a choice in this space does not.

3.1. Training corpus

We trained each semantic space model on the standard TASA
corpus (Landauer & Dumais, 1997), and duplicated the modifica-
tions to the corpus made by Griffiths et al. (2007) for easy com-
parison to their results. The models were restricted to words that
occurred with a frequency of at least 10, and were not contained on
the standard LSA stoplist of functionwords. This reduced themodel
vocabularies to 26,240 words with ~4.2 million tokens in the
modified TASA, consistent with the version used by Griffiths et al.

3.2. Semantic space models

We tested three semantic space models, ranging in assumptions
and complexity: the Jaccard Index, LSA, and BEAGLE. The semantic
spaces produced by each of the models conform to the three metric
axioms (non-negativity, symmetry, and the triangle inequality).

Jaccard Index: The simplest mechanism we tested to create a
semantic space was a basic and direct co-occurrence metric based
on mutual information (intersection over union), as recent work
has demonstrated superior performance on some semantic tasks
using simple models based only on the surface form of language
(e.g., Louwerse, 2008; Recchia & Jones, 2009), suggesting that
“deep” models like LSA may be over-thinking the problem of hu-
man semantic learning. Here we use the classic Jaccard Index
(Jaccard, 1901, 1912) from information retrieval, a variant of mutual
information metrics:

Ji;j ¼
��wordi∩wordj

����wordi∪wordj
�� ¼

��wordi∩wordj
��

jwordij þ
��wordj

��� ��wordi∩wordj
��

¼ fij
fi þ fj � fij

(4)

where fi and fj are the marginal frequencies of words i and j,
Please cite this article in press as: Jones, M. N., et al., In defense of spatial
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respectively, and fij is the co-occurrence frequency of i and j
together in the same document. The Jaccard Index is essentially the
intersection of the Venn, and can be applied efficiently to the same
W x D matrix LSA learns from, but without the complexity of
inferring latent semantic dimensions. The index is also referred to
simply as “Proportion of Co-occurrence” in the psychological
literature (Gruenenfelder, Recchia, Rubin, & Jones, 2015).

Latent Semantic Analysis (LSA): LSA spaces were constructed
based on a word-by-document (W x D) co-occurrence matrix, in
which each word is initially represented as a frequency distribution
over documents. Entries were then weighted inversely propor-
tionate to the word's frequency and entropy (�P

p log p ) over
documents. Singular value decomposition was applied to this ma-
trix, and only the components with the largest eigenvalues were
retained. The resulting word vectors are thought to represent the
latent semantic dimensions which best explain the co-occurrence
pattern of words over contexts.

We constructed LSA spaces using both 300 and 700 dimensions.
Similar to Griffiths et al. (2007), we found little difference in per-
formance on the association task as a function of dimensionality.
Our 300-dimensional version matched the version on the LSA
website. However, we use the 700-dimensional version here so our
results are directly comparable to Griffiths et al.

BEAGLE: In addition to LSA and the Jaccard Index, we use a
model intermediate to the two in complexitydthe context learning
mechanism from the BEAGLE model of Jones and Mewhort (2007),
which is similar in spirit to other random accumulation models
(Kanerva, 2009). BEAGLE begins by assigning initial randomvectors
to all words in the corpus, with elements sampled randomly from
N
�
0; 1ffiffiffi

D
p

�
, where D is an arbitrary vector dimensionality. As BEAGLE

experiences sentences, the model updates the memory vectors for
each word in the sentence as the sum of the random initial vectors
representing each other word in the sentence. Across learning,
semantically similar words naturally develop similar distributed
vector patterns because they have had common random vectors
summed into their memory representations. This has the effect that
words which frequently co-occur develop similar vectors (a pattern
reflected by the Jaccard Index), but also that words which occur in
similar sentences develop similar vectors (a pattern learned by
LSA), even if they never directly co-occurred. Note that the original
BEAGLE model of Jones and Mewhort (2007) also uses holographic
binding to learn grammatical information about word usa-
gedhowever, here we just use the very simple random vector
summation to learn semantic structure in TASA (the convolution-
based holographic learning mechanism would introduce unnec-
essary complexity, as grammatical similarity is unlikely to play a
large role in free association). Here, we use BEAGLE trained with
1024 dimensions trained on TASA using context learning only.

3.3. Simulating asymmetric associations

We do not bother with simulations based on the raw semantic
spaces here, as they are obviously unable to simulate asymmetries
in free association (i.e., cos [A,B]¼ cos [B,A]). However, a choice rule
applied to these spaces to simulate the process of free association
need not respect symmetry. The reason for this is very similar to
Krumhansl's (1978) notion of similarity density. The density
asymmetry in semantic space models has been previously identi-
fied and discussed elsewhere (Burgess & Lund, 2000; Hare, Jones,
Thomson, Kelley, & McRae, 2009; Jones & Kintsch, 2006).

Although the distance between baby and stork is equal in either
direction, the density of the landscape is not. If one computes and
ranks the similarity of every word in the lexicon to baby and stork,
baby is the 22nd most similar word to stork, but stork is the 9,279th

most similar word to baby (cosines from BEAGLE). Hence, while the
models of semantic representation, New Ideas in Psychology (2017),
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numerator of the choice rule is the same for both baby-stork and
stork-baby, the denominator changes dramatically depending on
the ratio of similarity to other competitors. When a simple choice
rule is applied to a metric space, baby comes to mind easily when
cued with stork, but it is extremely unlikely to respond with stork
when cued with baby due to strong competition from the many
other words that come tomindmore easilydthe same pattern seen
in human free association.

We reproduced Griffiths et al.'s (2007) method of selecting
asymmetric pairs from Nelson's association norms. Two words
were asymmetrically associated in the norms if 1) one word was
produced as a response to the other with greater than zero
probability, and 2) the forward-backward ratio of cue-response
probability was greater than an order of magnitude. This pro-
cedure produced 38,740 asymmetric associations.

We then tested the ability of the choice rule to correctly predict
the direction of the asymmetry in these pairs. Note that the raw
semantic space models would produce baseline chance of ~50%.
For each model we varied the threshold parameter t in the de-
nominator of the choice rule. This represents the t most similar
words to the cue considered as competitors to the targetdt was
fixed across pairs within a given simulation (so all had the same
threshold). Rather than using a threshold, the same effect could be
obtained with an exponential similarity gradient (Shephard's
Law), but it would be much more computationally expensive.
Performance did not vary widely depending on t regardless, so we
present only performance with the best t per model here (with t
hand fit).

Fig. 1 shows the percentage of asymmetric pairs for which the
choice model predicted the correct direction, varying semantic
space. For comparison, the horizontal line is chance performance
without a choice model, and we have inserted Griffiths et al.’s
(2007) Topics model performance for the same pairs, and raw
frequency of the target word.

The first pattern to notice in Fig. 1 is that LSA did not perform
much better with a choice rule than it could without. We found
this puzzling, but consistent across a wide range of t (and the
model often did worse than chance). While this could be taken as
evidence against spatial models in isolation, notice that both the
Jaccard Index and BEAGLE improve considerably with the choice
rule; both perform as well as word frequency and the Topic model.
This is particularly intriguing given that the Jaccard Index is not a
“deep” inductive model, but is more reflective of simple Rescorla-
Wagner discrimination learning. When fused with an appropriate
process model to simulate the task of free association, however, it
easily predicts the correct pattern of asymmetry in the association
norms.
Fig. 1. Percentage of asymmetries in association norms predicted by each choice
model (horizontal line is chance).
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3.4. The triangle inequality

The triangle inequality is more difficult to test because there is
disagreement about what constraints it places on a semantic sim-
ilarity space, and how these constraints should manifest in a free
association task. The triangle inequality comes from Euclidean ge-
ometry, in which the shortest path between two points is a line.
Given this observation, the inequality states that the length of any
side of a triangle must be less than the sum of the other two sides.
Hence, when translated to proximities among three words in a
metric semantic space, the distance between any pair of words in a
triple may be no greater than the sum of the distances of the other
two pairs, d(x,z) � d(x,y) þ d(y,z).

Tversky has demonstrated violations of the triangle inequality
with similarity judgments of low-dimensional stimuli, in which
humans weight feature matches more heavily than geometry
suggests they should. However, it is difficult to determine what
hard constraints the triangle inequality places on semantic simi-
larity spaces. Griffiths et al. (2007) interpret the triangle inequality
as implying that if x is similar to y and y is similar to z, then x must
be similar to z. In word association, this leads to the expectation
that if P (w2jw1) is high and P (w3jw2) is high, then P (w3jw1) must
be high. However, they note that this constraint is violated in free
association normsdas P (w2jw1) and P (w3jw2) are selected to
exceed an increasing threshold, P (w3jw1) remains unaffected. To
use their example, although asteroid is highly associated with belt,
and belt is highly associatedwith buckle, asteroid and buckle have no
association.

It is important to note, however, that the triangle inequality is
difficult to explore (and impossible to test) with association data.
The inequality does not state that if x and y are close points and y
and z are close points, then x and z must also be close points; it
simply states that x and z may be no further apart than the sum of
the distances between x-y and y-z. Hence, the triple asteroid-belt-
buckle in free association may conform to the triangle inequality
(rather than being a violation). Asteroid and buckle need not be
similar under the inequality, just not dissimilar.

It is difficult to determine from free association data whether
the triangle inequality has been violated because association is a
coarse indicator of similarityda word is produced in response to a
cue word or not. But the fact that a target is not produced in
response to a cue is not evidence that they have no similarity, nor is
it evidence of violating the triangle inequality. Griffiths et al. (2007)
demonstrate that even as P (w2jw1) and P (w3jw2) increase in the
norms, there are still many cases inwhich P (w3jw1)¼ 0.While they
are careful to note that this only suggests a violation of the triangle
inequality, we worry about the reliance on zero probabilities in this
type of analysis. A zero probability association simply means that
the event did not occur. It can be problematic to make inferences
based largely on events that were unobserved. In addition, the
practice assumes that all word pairs with zero probability (unob-
served) have equal similarity, an assumption that is certain to be
wrong.

We duplicated the thresholding analysis conducted by Griffiths
et al. (2007). However, to avoid interpretation issues with unob-
served data, we instead used only triples for which all three pairs
exist in the association norms. Hence, all probabilities in our
analysis are nonzero, and we can examine whether P (w3jw1) is
related to systematic increases in P (w2jw1) and P (w3jw2), relying
on variance of observed events only. Our selection resulted in
80,212 triples. We systematically increased the threshold t above
which P (w2jw1) and P (w3jw2) were required to lie, and examined
the distribution of P (w3jw1) values. In the analysis by Griffiths et al.
(2007) which included zero probabilities, they essentially found
that P (w3jw1) was uncorrelated with t. However, in our data
models of semantic representation, New Ideas in Psychology (2017),



Table 1
Network structure statistics for word association norms, raw LSA, and
spatial þ choice models (LC).

Network Power R2 Exp R2 CC CC/CCer

Association 0.877 0.571 0.187 42.59

LSA-Raw 0.882 0.872 0.449 85.41
LSA-LC 0.830 0.909 0.352 72.58
Jaccard-LC 0.952 0.939 0.092 18.81
BEAG-LC 0.882 0.550 0.290 59.03

Fig. 2. The triangle inequality (Tversky, 1977) states simply that the distance between
two points on a triangle in metric space can be no greater than the sum of the dis-
tances between the other two points, dðx; zÞ � dðx; yÞ þ dðy; zÞ. Although a strong as-
sociation may exist between two sets of pairs (e.g., asteroid-belt, and belt-buckle), this
does not imply that the remaining pair (asteroid-buckle) should be expected to show
an association in behavioral data. Such a pattern would be true only in the case of an
equilateral triangle. The left panel shows the more likely pattern in human semantic
memory, and the right panel shows an arrangement in a spatial model that would be
closer to the extreme, but still consistent with the triangle inequality. In the extreme,
the points would all lie along a single line, and dðx; zÞ ¼ dðx; yÞ þ dðy; zÞ.
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(which excluded zero probabilities), we observed a significant
correlation between the median of the P (w3jw1) distribution and t,
r ¼ 0.42. This indicates that the triangle inequality may indeed
apply to association data when missing values (zero probabilities)
are removed.

With the Luce choice rule applied to simulate the process of
selecting a response in a free association task given a spatial se-
mantic similarity space, metric models can produce violations of
the triangle inequality, regardless of whether missing values are
included. However, given that it is unclear whether humans violate
this axiom in free association, it is important to note that metric
models also can conform to the inequality. This is particularly
important given that we are still uncertain as to whether or not
human free associations actually contain evidence of a mental
space that violates the inequality. In addition, it would seem from
other types of semantic data that the triangle inequality is alive and
well in the head. For example, mediated priming is a well-
established semantic phenomenon that relies on triangulation:
priming with lion facilitates recognition of stripes due to their
mediated relationship through tiger (McNamara & Altarriba, 1988).

3.5. Semantic network structure

In addition to constraints frommetric axioms, the neighborhood
structure of semantic spaces (specifically LSA) has been shown to
be inconsistent with what is suggested from word association. To
create the mental connectivity structure necessary to produce as-
sociation norms, LSA would need more words with extremely
dense semantic neighborhoods than it appears to have. For
example, Steyvers and Tenenbaum (2005) created network graphs
based on free association norms and then investigated the ability of
different growth models to produce this structure, as well as the
network graphs of WordNet and various thesauri.

Steyvers and Tenenbaum (2005) created graphs based on as-
sociation norms in which each word is a node and nodes are con-
nected if they have nonzero probability of association. The resulting
graphs are scale-free, a common property of connectivity in nature.
If a word's degree k is defined as the number of other words con-
nected to it, a scale-free network is one in which the distribution of
degrees over all nodes follows a power law, PðkÞ � k�g where g is
the constant rate of the power function. If both PðkÞ and k are
plotted on a log scale, the result is a straight line with a slope ofe g.
More recently, Utsumi (2015) has reanalyzed the association norms
and found that networks are better described by a truncated power
law with initially exponential decay (cf. Heathcote, Brown, &
Mewhort, 2000).

In addition, Steyvers and Tenenbaum (2005) found that asso-
ciation networks had much higher clustering of interconnected
nodes than would be expected in a randomly constructed network.
LSA was unable to reproduce this scale-free small-world structure
for a variety of generation methods attempted by Steyvers and
Tenenbaum: LSA produces degree distributions that fall off too
slowly for small values of k and then too steeply as k increases, and
LSA's clustering properties are both too high and are qualitatively
distinct from association networks. This pattern for LSA was
replicated by Utsumi (2015).

In contrast, Griffiths et al. (2007) found that networks created
from the Topic model produced power law degree distributions and
clustering properties that closely matched association networks. It is
unclear, however, whether LSA's failure to reproduce the structure of
the association network is common to all spatial models, or whether
LSAwould fail to produce the correct structure if it had the benefit of
the Luce choice rule to simulate the process of free association.

We constructed semantic networks in the same way as Griffiths
et al. (2007) both for LSA based on raw cosines as they did, but also
Please cite this article in press as: Jones, M. N., et al., In defense of spatial
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for LSA, Jaccard Index, and BEAGLE with the addition of the Luce
choice rule to simulate free association. Here, we discuss only un-
directed networks. Only normed words were used to create the
networks. For each model, a threshold was set to determine
whether to connect two nodes in the network (based either on
cosine for raw LSA, or cue-target probability predictions from the
Luce rule for the others). For each network, we fit the degree dis-
tribution to both a power and exponential function, and computed
the clustering coefficient (Watts & Strogatz, 1998). The results are
displayed in Table 1 (LC ¼ Luce choice rule applied to a similarity
space). For comparison, we have also added the network properties
from the free association norms in the first row of Table 1.

Although the degree distribution for raw LSAwas slightly better
fit by a power function than an exponential, it shows little prefer-
ence between the two, and the clustering properties of LSA are
several orders of magnitude greater than the association network.
The final column in Table 1 gives the ratio of the clustering coeffi-
cient in the model's network to the clustering coefficient expected
in a random Erdos-R�enyi graph constructed with the same density
(Barab�asi & Albert, 1999). The CC/CCer ratio for raw LSA is much
greater than that observed in the association network. As with the
asymmetry simulation, the Luce choice rule integrated with LSA
actually produces network structure more incompatible with the
association network than did the raw LSA space, producing an
exponentially distributed degree distribution. In contrast, JI-LC
produces relatively weak clustering.

When fused with the Luce choice rule, BEAGLE produces
network structure that is remarkably similar to the structure
observed in the association network. The degree distributions show
a strong preference for a power function over an exponential, and
the slope of the power function for BEAGLE (g ¼ 2.22) is very close
to that of the association network (g ¼ 2.25). For comparison, the
slope of the power fit for LSA-LC was g ¼ 3.96. Fig. 2 plots the log-
log degree distributions for the Luce choice version of LSA (left
models of semantic representation, New Ideas in Psychology (2017),



Fig. 3. Log-log degree distribution for Luce-LSA (left panel) and Luce-BEAGLE (right panel).
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panel) and BEAGLE (right panel). Recall that the log-log degree
distribution of the association network is linear with a slope of
g ¼ 2.25. Hence, while network connectivity structure is a more
difficult test for these models, BEAGLE demonstrates that it is
certainly possible for a spatial model to produce the connectivity
structure observed in association norms with the benefit of a pro-
cess model to simulate the task of free association (see Fig. 3).

4. Discussion

The purpose of this paper is to provide an existence proof that
spatial models can produce the structure observed in free associ-
ation data provided that they have a plausible process model to
simulate the association task. It is premature to reject spatial
models of lexical semantic representation simply because the raw
spaces must respect metric axioms but human behavior does not
(e.g., Griffiths et al., 2007; See also; Ji, Lemaire, & Choo, H., Ploux,
2008). Human semantic memory may also respect metric axioms,
but the behavior produced when a choice mechanism is applied to
this memorial representation can produce violations of asymmetry,
the triangle inequality, and can produce association networks that
are small-world and scale-free (cf. Utsumi, 2015).

As an existence proof, these results should not be taken as evi-
dence against any particular model. Evenwith the Luce choice rule,
LSA had difficulties with network structure and the violations of
metric axioms. However, this may be due to our assumptions when
fixing parameters of the choice model. Fitting the sensitivity and
bias parameters to the data may well have produced a model that
performed very well when applied to LSA. Nonetheless, the per-
formance of the simpler BEAGLE-LC and Jaccard-LC models make it
clear that spatial representations of semantics are still viable
models.
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