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The purpose of this study is to develop design principles for crafting tasks that will 
encourage conjecturing and proving in the context of elementary number theory at the 
undergraduate level. From the analyses of the written work of 46 prospective 
mathematics teachers on a task designed according to these principles, we think that 
there is potential to build on and refine from these principles for other undergraduate 
mathematics courses. 

INTRODUCTION 

Paul Erdös, one of the greatest mathematicians of the twentieth century, and certainly the 
most eccentric … believed that the meaning of life was to prove and conjecture. 
(Schechter, 2000) 

Most mathematicians would agree that making conjectures and then proving them is an 
indispensable component of practicing mathematics. The acts of conjecturing and 
proving also have immense educational value. The NCTM Principles and Standards 
for School Mathematics states that school programs at all levels should enable students 
to “recognize reasoning and proof as fundamental aspects of mathematics; make and 
investigate mathematical conjectures; develop and evaluate mathematical arguments 
and proofs.” (NCTM, 2000, p. 56). This is echoed by Lin et al. (2012, p. 308) who 
argued that “tasks of conjecturing and proving should be designed to be embedded into 
any level of mathematics classes in order to enhance students’ conceptual 
understanding, procedural fluency, or problem solving.” In addition, it would seem 
that for these acts of conjecturing and proving to be actualised in schools, it is even 
more imperative that prospective mathematics teachers should learn them in their 
mathematics training. This paper describes an attempt to develop design principles for 
crafting tasks that will encourage conjecturing and proving in an elementary number 
theory course for undergraduate prospective teachers.   

BACKGROUND 

It is widely accepted that the act of proving enhances students’ mathematical concepts 
and reasoning (Hanna, 2000), however the enactment in the curriculum sometimes 
result in students possessing a distorted view of what constitutes a mathematical proof. 
Selden (2012) suggests that the requirement to construct two-column geometry proofs 
may be partially responsible for some students’ perception that proofs are always 
constructed in a linear fashion. Hoyles (1997) argues that students see little meaning 
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and purpose in the act of proving mathematical statements, especially those which they 
already assumed to be true. Schoenfeld, after a series of studies exploring students’ 
understanding of geometry, formulated these erroneous students’ beliefs: (1) The 
processes of formal mathematics (e.g. “proof”) have little or nothing to do with 
discovery or invention. (2) Students who understand the subject matter can solve 
assigned mathematics problems in five minutes or less. (3) Only geniuses are capable 
of discovering, creating, or really understanding mathematics (1988, p. 151).  

One possible remedy to address these wrong perceptions is to provide students with 
opportunities to formulate and prove their own conjectures (Lin et al., 2012). As 
teacher educators, we recognize that correcting these perceptions in prospective 
teachers is a crucial step in arresting the propagation of these erroneous beliefs. The 
design of suitable tasks to elicit these dispositions from the prospective teachers is an 
important step towards this end. 

This study arose from the efforts of the first author – henceforth referred to in the first 
person singular pronoun – to design tasks to promote conjecturing and proving in an 
undergraduate elementary number theory course for prospective teachers. It is widely 
accepted that elementary number theory provides an appropriate context for 
undergraduates to learn proofs and engage in conjecturing (Ferrari, 2002; Selden & 
Selden 2002; Zazkis & Campbell, 2006). Thus I incorporated into the course problem 
solving tasks that explicitly required the prospective teachers to engage in conjecturing 
and proving. The tasks were designed according to these principles: (1) In line with the 
content emphasis of the course, the problem should require the content and techniques 
typical to undergraduate number theory courses; (2) The problem should lend itself to 
the motivation for prospective teachers to actively propose conjectures that is part of 
the process of solving the problem; in other words, we avoid problems that are too 
closed-ended – such as the conventional proof problems where the statement to be 
proven is given and thus there is no room for conjecturing; (3) the problem should be 
set at the right ‘level’; it should not be deemed too inaccessible for most of the students 
to the point that they do not feel encouraged to even try conjecturing; on the other hand, 
there should be sufficient cognitive demand in the problem to render the task of solving 
meaningful; (4) the problem should be unfamiliar to the prospective teachers and not 
easily found in public media. This is to reduce the likelihood of prospective teachers 
resorting to duplicating solutions found elsewhere and as such blunt their motivation to 
attack the problem through conjecturing and proving for themselves.  

In crafting these design principles, I relied on prior experiences teaching this course. It 
is heartening to note that these principles were in line with the characterisation of open 
problems as described by Furinghetti and Paola (2003), as well as several of the 
principles proposed by Lin et al. (2012). While the principles they stated were generic 
in nature, my motivation in deriving the design principles were for their specific 
relevance in the teaching of undergraduate-level number theory.  
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DATA SOURCE AND THE PROBLEM SOLVING TASK 

The aim of our study is to find out whether a problem crafted based on the design 
principles stated in the previous section will be efficacious, that is, whether it will bring 
about productive conjectures and motivation for proving these conjectures in the 
prospective teachers’ attempts at the problem.  
This study took place in a first year undergraduate number theory course for 46 
prospective teachers. The undergraduate programme for these prospective teachers is 
structured in such a way that they first learn mathematics content before they learn the 
pedagogical aspects concerning the teaching of the subject. Thus, during their first 
year, the academic profiles of these prospective teachers are typical to that of an 
undergraduate mathematics major.  Prior to this course, these prospective teachers had 
already read introductory calculus and introductory linear algebra. In addition, the first 
two weeks of this 13 week number theory course were devoted to methods of proof.  

Our data is taken from the following problem solving task assigned to the prospective 
teachers near the end of the course:  

Problem: An L-Shaped number is one that can be written as a difference of two squares. 
For example, 3 = 22-12 and 21 = 52-22 are L-Shaped numbers but 1 and 2 are not. Note that 
we do not consider 0 as a square. Can you describe as completely as possible, which 
natural numbers are L-Shaped numbers? (You should include proofs as necessary.)  

A diagram illustrating the geometric interpretation of L-shaped numbers (Figure 1) 
accompanied the description of the task.   

 
Figure 1: Geometric interpretation of L-Shaped numbers. 

The prospective teachers were given two weeks to complete the task on a practical 
worksheet, an instructional scaffold designed to develop problem solving disposition 
based on Pólya’s problem solving model (Pólya, 1945) and Schoenfeld’s problem 
solving framework (Schoenfeld, 1985). It contains sections that explicitly guide 
students to use the Pólya stages. The practical worksheet was used as part of the 
prospective teachers’ task as it provided a useful aid for their conjecturing and proving 
in the process of solving the problem. An account of how the practical worksheet was 
used to develop problem solving disposition in a previous iteration of the same number 
theory course can be found in Toh et al. (in press).  

It is clear that the task coheres with the design principles mentioned in the previous 
section: (1) an essential step in the complete solution require parity arguments which is 
a typical technique in number theory courses – and this point will be elaborated in the 
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context of discussion of solutions later; (2) the open nature of the problem requires the 
subjects’ active proposal of conjectures; (3) there are multiple entry levels into the 
problems – such as proceeding geometrically first, or just listing examples to observe a 
pattern – and thus encourage the prospective teachers to make good attempts at 
conjecturing and proving; (4) To the best of my knowledge, this problem is not found 
in the open media. In fact, this problem is a substantial adaptation from another 
problem I came across in the Singapore Mathematical Olympiads.     

ANALYSIS OF PROSPECTIVE TEACHERS’ WORKSHEETS 

All except one prospective teacher submitted their solution attempts. Their worksheets 
were analysed and coded according to whether they made one or more of three 
conjectures that are productive towards the complete solution of the problem, and 
whether they were able to provide a valid proof of their conjectures. 

Possible Conjectures Made the 
conjecture 

Provided valid 
proof 

All odd numbers, with the exception of 1, are 
L-shaped numbers 

43 34 

All even numbers which are multiples of 4, with 
the exception of 4, are L-shaped numbers 

39 22 

All even numbers which are not multiples of 4 are 
not L-shaped numbers 

15 3 

Table 1: Conjectures made and proved by prospective teachers. 

About conjecturing 

Most of the prospective teachers began by listing examples of L-shaped numbers and 
attempted to seek patterns from the list. All but two of the prospective teachers 
managed to observe that all odd numbers that are greater than 1, are L-shaped. A total 
of 39 prospective teachers also made the second conjecture that every even multiple of 
4, with the exception of 4, are L-shaped. 1  Figure 2 provides an example of a 
prospective teacher who wrote the two conjectures clearly. It is noteworthy that – as we 
anticipated under Design Principle (3) – entries made into the problem include the 
technique of listing and geometrical approaches. 

                                           
1 A mathematical point: Both 1 and 4 are not considered L-shaped numbers because of the explicit 
requirement that 0 is not a square. This additional constraint caused some difficulties for a small 
number of student teachers. However, since we were interested in the broad conjectures made by the 
student teachers, we did not make any distinction between students who included or ignored these 
two exceptional cases. 
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Figure 2: Prospective teacher formulating two conjectures. 

About proofs 

Almost 80% of the 43 prospective teachers managed to prove their conjecture that all 
odd numbers are L-shaped. For the second conjecture, a smaller albeit still significant 
56% of those who made the conjecture provided valid proofs. Examples of correct 
proofs of the two conjectures are given in Figure 3.  

Among the prospective teachers who failed to produce a valid proof of their 
conjectures, more than 75% chose to tackle the problem from the algebraic definition 
of an L-shaped number as n = a2 – b2. They then proceeded to consider all the possible 
parities of a and b which lead to the conclusion that L-shaped numbers are either odd or 
multiples of 4. These are actually the converses of the first two conjectures shown in 
Table 1; in other words, instead of proving that every odd number and every multiple of 
4 is an L-shaped number, they showed that an L-shaped number must be some odd 
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number or some multiple of 4. It is possible that some prospective teachers were not 
aware of the differences. Another explanation for this discrepancy between proof and 
conjecture is perhaps the lack of sufficient resources to prove their conjectures.  They 
focused on the definition of L-shaped numbers and attempted to deduce whatever 
implications they could, and stopped once they arrived at some plausible conclusions, 
without checking whether their conclusions were aligned to their conjectures. This is in 
line with the observations of Selden et al. (2010) of some students’ preference for 
immediately examining the hypothesis without considering the conclusion to be 
proved.   

 

 
Figure 3: Examples of correct proofs of the two conjectures. 

Only 15 out of 45 prospective teachers explicitly stated, in some form or other, the 
third conjecture that even numbers which are not multiples of 4 are not L-shaped. 
Proving this conjecture – together with the previous two – would have completed the 
solution to the problem. We believe there are two plausible reasons for the relatively 
small number of students who stated this conjecture: the first is related to the problem 
of distinguishing a statement and its converse, as discussed earlier; the second was the 
given instruction to “… describe as completely as possible, which natural numbers are 
L-Shaped numbers?” Prospective teachers may interpret it literally that they need not 
consider those numbers which are not L-shaped. 
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DISCUSSION 

We set out to study how prospective teachers would respond to a problem that was 
meant to encourage conjecturing and proving. We crafted the problem based on the 
design principles as stated in an earlier section of this paper. As seen from Table 1, we 
note that most of the prospective teachers were able to formulate correctly the first two 
conjectures and a majority managed to provide a valid proof. We derive 
encouragement from this result. We interpret this finding to mean that there is potential 
in these design principles in developing problems that will be helpful for prospective 
teachers to practise conjecturing and proving. In future research, we intend to replicate 
these principles and perhaps refine them to elicit better responses from the prospective 
teachers. 

We also notice that the reason a significant proportion of prospective teachers failed to 
provide a correct proof was due to their attempts at proving the converse instead. This 
finding reveals a gap in prospective teachers’ ability to make a distinction between 
necessary and sufficient conditions of a mathematical statement. From the perspective 
of teacher educators, there is a need to respond to this phenomenon. The responses can 
be in these forms: (1) In the regular teaching of mathematics courses, there should be 
more opportunities for prospective teachers to make judgments of statements and their 
converses; (2) in the design of the problems, we should be cognisant of these gaps in 
their knowledge. The errors made in confusing the necessary and sufficient conditions 
are opportunities for us to address these deficiencies. In general, we can include this in 
the list of design principles for problems: We should take into account prospective 
teachers’ errors in the choice of problems so that their solution attempts would reveal 
the errors and thus provide a motivation for us to address them accordingly. 
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