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This study is part of a larger research program aimed at studying mental mathematics 
with objects other than numbers. It concerns operations on functions in a graphical 
environment with Grade-11 students. Grounded in the enactivist theory of cognition, 
particularly in problem-posing, the study aims to characterize students’ mathematical 
activity in this mental mathematics environment. The data analysis offers 
understandings of strategies that students brought forth: algebraic/parametric, 
graphical/geometric, numerical/graphical. These are discussed in relation to 
implications for research on solving processes and potential for studying functions.  
To highlight the relevance and importance of teaching mental calculations, Thompson 
(1999) raises the following points: (1) most calculations in adult life are done mentally; 
(2) mental work develops insights into number system/number sense; (3) mental work 
develops problem-solving skills; (4) mental work promotes success in later written 
calculations. These aspects stress the non-local character of doing mental mathematics 
with numbers where the skills being developed extend to wider mathematical abilities 
and understandings. Indeed, diverse studies show the significant effect of mental 
mathematics practices with numbers on students’ problem solving skills (Butlen & 
Peizard, 1992; Schoen & Zweng, 1986), on the development of their number sense 
(Murphy, 2004; Heirdsfield & Cooper, 2004), on their paper-and-pencil skills (Butlen 
& Peizard, ibid.) and on their estimation strategies (Schoen & Zweng, ibid.). For 
Butlen and Peizard (ibid.), the practice of mental calculations can enable students to 
develop new ways of doing mathematics and solving arithmetic problems that the 
traditional paper-and-pencil context rarely affords, because it is often focused on 
techniques that are in themselves efficient and do not require other actions. Overall and 
across contexts, it is thus generally agreed that practicing mental mathematics with 
numbers enriches students’ learning and mathematical written work about calculations 
and numbers. This being so, as Rezat (2011) explains, most if not all studies on mental 
mathematics focus exclusively on numbers/arithmetic. However, mathematics taught 
in schools involves more than numbers, which rouses interest in knowing what mental 
mathematics with objects other than numbers might contribute to students’ 
mathematical activity. In this study, issues of functions, mainly operations on 
functions in graphs, are investigated. This paper reports on the strategies brought forth 
by Grade-11 students. 

THEORETICAL GROUNDING OF THE STUDY: AN ENACTIVIST FRAME 

Recent work on mental mathematics points to the need for better understanding and 
conceptualizing of how students develop mental strategies. Researchers have begun to 
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critique the notion that students choose from a toolbox of predetermined strategies to 
solve mental mathematics problems. E.g. Threlfall (2002) insists on the organic 
emergence and contingency of strategies in relation to the tasks and the solver (what he 
or she understands, prefers, knows, has experienced with these tasks, is confident with; 
see also Butlen & Peizard, 1992). This view on emergence is also discussed by Murphy 
(2004), who outlines perspectives that conceptualize mental strategies as flexible 
emergent responses adapted and linked to specific contexts and situations. Because the 
enactivist theory of cognition (c.f. Maturana & Varela, 1992; Varela, Thompson & 
Rosch, 1991) has been concerned in mathematics education with issues of emergence, 
adaptation, and contingency of learners’ mathematical activity, it offers a way to 
contribute to conceptualizations about students’ meaning-making and mathematical 
strategies. In particular, the distinction made between problem-posing and 
problem-solving offers ways to address questions about the emergence and 
characterization of strategies. 

For Varela (1996), problem-solving implies that problems are already in the world, 
independent of us, waiting to be solved. Varela explains, on the contrary, that we 
specify the problems that we encounter through the meanings we make of the world in 
which we live, leading us to recognize things in specific ways. We do not choose 
problems that are out there in the world independent of our actions. Rather, we bring 
problems forth: “The most important ability of all living cognition is precisely, to a 
large extent, to pose the relevant questions that emerge at each moment of our life. 
They are not predefined but enacted, we bring them forth against a background.” (p. 
91). The problems that we encounter, the questions that we ask, are as much a part of us 
as they are a part of our environment: they emerge from our interaction with/in it. The 
problems we solve are relevant for us as we allow them to be problems.  

If one adheres to this perspective, one cannot assume, as René de Cotret (1999) 
explains, that instructional properties are present in the tasks presented and that these 
causally determine solvers’ reactions. As Simmt (2000) explains, it is not tasks that are 
given to students, but mainly prompts that are taken up by students who themselves 
create tasks with. Prompts become tasks when students engage with them, when, as 
Varela would say, they pose problems. Students make the “wording” or the “prompt” a 
multiplication task, a ratio task, a function task, an algebra task, and so forth. 
Nonetheless, each prompt is designed following specific intentions in specific ways, 
which can play a role in how solvers pose problems (e.g. one does not react to two 
square-root functions in the same way as one does with two linear functions). In sum, 
each prompt can be seen to have what Gibson (1979) refers to as affordances: 

The affordances of the environment are what it offers the animal, what it provides or 
furnishes […] I mean by it something that refers to both the environment and the animal in 
a way that no existing term does. It implies the complementarity of the animal and the 
environment […]. If a terrestrial surface is nearly horizontal (instead of slanted), nearly flat 
(instead of convex or concave), and sufficiently extended (relative to the size of the 
animal) and if its substance is rigid (relative to the weight of the animal), then the surface 
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affords support […]. Note that the four properties listed – horizontal, flat, extended, and 
rigid – would be physical properties of a surface if they were measured with the scales and 
standard units used in physics. As an affordance of support for a species of animal, 
however, they have to be measured relative to the animal. They are unique for that animal. 
They are not just abstract physical properties. (p. 127, emphasis added) 

These affordances for Maturana and Varela (1992) play the role of triggers in relation 
to the solver’s posing. Hence reactions to a prompt do not reside in either the solver or 
the prompt: they emerge from the solver’s interaction with the prompt, through posing 
the task. Strategies are thus triggered by the prompt’s affordances, but determined by 
the solver’s experiences, where issues explored in a prompt are those that resonate with 
and emerge from the student, as Threlfall (2002) explains: 

As a result of this interaction between noticing and knowledge each solution ‘method’ is in 
a sense unique to that case, and is invented in the context of the particular calculation – 
although clearly influenced by experience. It is not learned as a general approach and then 
applied to particular cases. […] The ‘strategy’ […] is not decided, it emerges. (p. 42) 

This emergent/adapted perspective offers a specific way of talking about solving 
problems, avoiding ideas of possession (acquisition of, choice of, of having things, 
etc.) in favor of issues about emergence, flux, movement, interactions, relations, 
actions, and so forth. It is this perspective that orients this research. 

METHODOLOGICAL ISSUES, DATA COLLECTION AND ANALYSIS 

One intention of the research program is to study the nature of the mathematical 
activity that students brought forth when working on mental mathematics. This is 
probed through (multiple) case studies conducted in educational contexts designed for 
the study (classroom settings/activities). This reported study is one of these case 
studies, taking place in two Grade-11 classrooms. Classroom activities/tasks were 
designed with the teacher (covering two 75-minutes sessions for each group), in which 
students had to operate mentally on functions in a graphical environment, that is, they 
had to solve without paper-and-pencil or any other computational/material aids. For 
example, using a whiteboard, a typical prompt consisted of showing two functions in 
the same graph and ask students to add or subtract them (see Figure 1). 

 
Figure 1: Example of a graphical prompt on operations on functions [f(x) ± g(x)]. 

The activities were conducted by the regular teacher and had the following structure: 
(1) a graph is shown on the board and instructions are given orally; (2) students have 20 
seconds to think about their solutions; (3) at the teacher’s signal, students have 10 
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seconds to write their answer (on a sheet of paper showing a blank Cartesian graph) 
and then hold it up to show the teacher; (4) the teacher asks various students to 
show/explain their answers to others. Six thematic blocks, each composed of 6-10 
prompts, were organized. The 1st block introduced students to the ideas, where both the 
graphs and the algebraic expressions of the functions were offered (prompts consisted 
of a combination of linear and constant functions). For the 2nd block, graphs of two 
functions (sometimes three) were given without their algebraic representation, and 
students had to add them mentally (functions varied from a combination of constant 
with linear, quadratic, square root, constant, rational, and step functions). In the 3rd 
block, still on the same graph, students were given the representation of one function 
and the result of an operation and were instructed to find the function that had been 
added to or subtracted from the first to obtain the resulting function (functions varied 
from a combination of two linear, two square-root, or a combination of a constant with 
a linear or square root functions, see Figure 3). The 4th block was similar to the second, 
but focused on subtractions. The 5th block differed in that only algebraic expressions of 
functions were given. These algebraic expressions could not be “directly” computed, 
like f(x)=|x| or f(x)=[x] with g(x)=x or g(x)=x2. The 6th block focused on symmetry, 
where students had to add two (linear, quadratic, by parts) functions that looked 
symmetrical in the graph (see e.g. Figure 2 and 4).  

Data collection focused on students’ strategies recorded in note form by the PI and a 
research-assistant, for each of the four sessions. To analyze the data, repeated 
interpretative readings of the field notes about the various strategies that emerged were 
conducted, and combined with the existing literature on functions to enrich the 
analysis. These repeated interpretative readings underlined three strategies, which are 
reported below: algebraic/parametric, graphical/geometric, graphical/numerical.  

FINDINGS – ON STRATEGIES BROUGHT FORTH 

Strategy 1. Algebraic/Parametric 

Even when prompts were proposed in a graphical context without algebraic 
expressions, many students engaged in algebraic-related solving. Students referred to 
what Duval (1988) calls significant units for “reading” the graphical representation of 
a linear function and offered an interpretation in relation to the algebraic expression. 
That is, students brought forth parameters from the algebraic expression (the a and b of 
the linear function f(x)=ax+b) to make sense of the graphs and add them. However, 
because the resulting function had to be expressed graphically, they explained their 
answer and strategy algebraically by blending aspects of graphical information. For 
example, in the following addition prompt (see Figure 2), where neither function had 
an algebraic expression attached, many students explained that “BOTH FUNCTIONS 
LOOKED SYMMETRICAL, SO THE ‘a’ PARAMETER OF EACH LINE WOULD CANCEL 
OUT, AS WELL AS THE ‘b’ AND THUS GIVE x=0” (quotations in are taken from 
students’ words and translated from French to English).  
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Figure 2: Addition of function graphical prompt. 

In prompts where e.g. a linear function f would be added to a constant function, even if 
no algebraic expression was attached to the functions, students would say that the “a” 
parameter of the function f does not change when added with a constant function that 
“DOES NOT HAVE AN ‘a’ PARAMETER, SO THE FUNCTION’S STEEPNESS STAYS THE 
SAME AND ONLY THE ‘b’ CHANGES” giving a function parallel to f with a y-intercept 
at “b” instead of at 0. Thus students generated algebraic information from the graphs of 
the functions in order to operate and develop their solutions. They were able to draw 
out an algebraic context, to pose it as an algebraic task, and to solve with/in that 
context. Even if no algebraic expression was attached to the functions, students 
illustrated affordances of the prompt for them, showing that there were potential 
algebraic pathways in them and for them (of course, students’ algebraic prominence or 
preference when working with functions is not new, see e.g. Vinner’s, 1989, “algebraic 
bias”). They thus posed the prompt as an algebraic problem, solving it in relation to 
algebraic aspects generated for the functions. 

Strategy 2. Graphical/Geometric 

When facing a function that was not linear (e.g. quadratic, square root, rational, 
hyperbolic), students generated particular ways of working with slope and parallelism. 
They assigned a constantly changing rate of change/slope to some nonlinear functions 
with which they were dealing (students used the expressions slope and rate of change 
interchangeably, hence the “/”). E.g. with the addition of a quadratic and a constant 
function (see Figure 1), students explained that the rate of change of the quadratic 
function was not affected by the addition of a constant function, because a constant 
function “DID NOT HAVE A VARIATION” and thus the slope of the quadratic function: 
“WILL CONTINUE TO VARY IN A CONSTANT WAY”. When students said constant, they 
meant that its appearance was not affected. Thus the resulting function of their addition 
would have the “SAME RATE OF CHANGE AS THE QUADRATIC FUNCTION” but would 
simply be “TRANSLATED DOWN” in the graph because the constant function was 
“NEGATIVE”. Although it is not clear what exactly students meant by this 
“CONSTANTLY CHANGING” rate of change/slope for nonlinear functions (especially 
e.g. when they were dealing with f(x)=1/x), many of them brought forth a language that 
enabled them to solve their problem (and talk about it) and not worry about the 
variation in the function. As one student said about the square-root function, “ITS RATE 
OF CHANGE IS LEFT UNTOUCHED WHEN I ADD THE CONSTANT FUNCTION, SINCE IT 
HAS NO VARIATION”. 
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In cases where students faced more than one nonlinear function, the above constantly 
changing rate of change strategy appeared insufficient, as they began analyzing 
functions in terms of “parallelism”. For example, in Figure 3 where the function g is to 
be found, some students expressed that “EACH FUNCTION WAS PARALLEL TO THE 

OTHER” and that g had to be a constant function “FOR THE CURVE TO BE TRANSLATED 

DOWN” and that it was “NEGATIVE FOR BRINGING THE CURVE LOWER”.  

 
Figure 3: A prompt for which the parallelism strategy was used. 

Again, this vocabulary and idea of parallelism (which can be mathematically 
questioned) emerged as a way of making sense without going into details about the 
fluctuation in image for each function. Somehow students defined these meanings 
through their use, in their emergent use for solving their problems. Theirs was a 
strategy well tailored/generated for their problem, which in turn made their problem 
about that strategy. To some extent, students offered a geometrical interpretation of 
rate of change/slope as a property not of the function, but of the curve present on the 
graph. They were talking about a geometric rate of change/slope, something 
reminiscent of Zaslavsky, Hagit and Leron’s (2002) concept of slope seen as a 
geometric concept rather than slope seen through the lens of analytical geometry. 
Through their geometrical rate of change, students brought forth the nonlinearity of 
nonlinear functions and developed ways of engaging with/in it. By posing the prompt 
in geometrical terms, they generated a graphical/geometric strategy to solve it. 

Strategy 3. Graphical/Numerical  

Students brought forth specific points in the graphs of functions (related to Even’s 
(1998) pointwise approach). In sum, the prompts were posed as numerical or pointwise 
tasks by students. Through those points, they generated exact and approximate answers 
(Kahane, 2003), which they combined to find the resulting function. In Figure 4 e.g. 
students had to find the function resulting from the addition of f and g. In this case, they 
would bring forth specific points: (1) where f cross the x-axis (x-intercept); (2) where 
both f and g intersect; (3) where f and g cross the y-axis (y-intercept); (4) where g cross 
the x-axis (x-intercept). For case (1), the operation is an exact calculation as the 
addition of the image for f (which is of length 0) with the one for g results in an image 
for f+g that is the same as that for g (it has the same image for g to which 0 was added). 
For case (2), the operation is an approximate calculation, as both images at f and g are 
the same, so the resulting image is double the value of the intersection point; but a 
precise location is impossible without knowing the exact location of the intersecting 
point in terms of precise length. For case (3), the same approximate calculation applies, 
as both images are added. For case (4), an exact answer is obtained, as in case (1). In 
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doing this, students mingle both exact and approximate calculations to find points for 
the resulting function. 

 
Figure 4: An addition of function prompt for which points were outlined 

Students generated precise and approximate points to determine the resulting function. 
In so doing, they were no longer in an algebraic context, but in a blend of numerical 
and graphical contexts, generating numbers/coordinates that had meaning for them in 
the graph. E.g. when they referred to the x-intercept, they did not attempt to find its 
meaning in the algebraic expression (see Moschkovich, 1999), but worked in the 
graphical context to gain information for computing the resulting function. The same is 
true for the y-intercept, not treated as parameter b, but as a point in the graph. Their 
posing was numerical or pointwise, making the task about points. 

DISCUSSION OF FINDINGS AND FINAL REMARKS 

These strategies enacted on the spot as emergent reactions tailored to their problems 
offer illustrations of students’ mathematical activity in this mental mathematics 
environment. Through their entry into the prompts, students posed their problems, 
making emerge affordances of the problems, that is algebraic, geometric, procedural, 
and so forth. Thus an algebraic posing of the functions produced an algebraic strategy; 
a graphical posing produced a graphical strategy; a numerical/pointwise posing 
produced a numerical pointwise strategy. These affordances are to be seen relative to 
students and the prompts, as affordances for those students interacting with these 
prompts: they do not exist in themselves, but are brought forth in the interaction with 
the prompt when posing the task and making them emerge.  

Three main lessons can be learned from this analysis. First, it shows how students 
illustrated significant meaning-making capacities, as they were fluent in linking 
algebraic (symbolic expression), numerical (coordinate values in x or y) and graphical 
aspects of functions. This seems to contrast with what we know from other studies, as 
students are frequently reported as experiencing difficulties of many kinds when 
linking graphs of functions with other representations (see e.g. Even, 1998; Hitt, 1998; 
Moschkovich, 1999). Second, even if more research is obviously needed, this fluency 
underlines the potential of these mental mathematics activities for studying functions, 
as it occasioned numerous (and even alternative) ways of conceiving and operating on 
functions, e.g. algebraic, graphic, and numerical. Third, and possibly most important, 
the creative and adapted nature of these approaches, seen through problem-posing, 
underlines the importance of being attentive to students’ mathematical activity when 
they are solving (their) problems. It shows how sensitive we ought to be, following 
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Threlfall (e.g. 2002), not to constrain students’ mathematical doings into specific 
frames of expected solutions or reducing them to already known categories of solving: 
it offers a window onto students’ mathematical activity that allows us to embrace its 
creative character and adaptive nature when students are solving (their) problems. 
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