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The goal of the study was to reconstruct and dismantle a sequence of events that 
preceded an insight solution to a challenging problem by a ninth-grade student. A 
three-week long solution process was analysed by means of the theory of shifts of 
attention. We argue that concurrent focusing on what, how and why the student attends 
to when working on the problem can adequately explain his insight.  

INTRODUCTION 

The goal of the case study presented in this paper was to reconstruct a sequence of 
events that preceded an insight solution to a challenging problem by a 9th grade student, 
Ron, who worked on it with his classmate, Arik. Solving the problem required from the 
students to re-invent the Gauss’ formula of the sum of the first n integers. The case of 
interest occurred in the framework of an on-going study that explores the affordances 
of a particular project-based learning instructional approach (Palatnik, in progress). 
The study aims at contributing to research concerned with demystification of insight in 
mathematical problem solving. Cognitive psychologists frequently refer to an insight 
problem as one, which solution includes restructuring the initial representation of the 
problem followed by a sudden realization of the solution – so called aha-experience 
(e.g., Knoblich, Ohlsson & Raney, 2001). Cognitive mechanisms involved in 
restructuring the initial representation are still relatively uncertain (e.g., Cushen & 
Wiley, 2012). Furthermore, research on insight problem solving usually explores 
processes that last for minutes rather than weeks, as it happened in the case presented 
in this paper. In our study, the three-week-long solution process is analysed through the 
lenses provided by the Mason’s (1989, 2008, 2010) theory of shifts of attention, which, 
as we argue below, can (partially) explain how the insight occurred.  

THEORETICAL FRAMEWORK AND RESEARCH QUESTIONS 

Mason (2010) defines learning as a transformation of attention that involves both 
“shifts in the form as well as in the focus of attention” (p. 24). To characterize 
attention, Mason considers not only what is attended to by an individual (i.e., what 
objects are in one’s focus of attention), but also how the objects of attention are 
attended to. To address the how-question, Mason (2008) distinguishes five different 
structures of attention. Four of them have shown up in our data analysis.  
According to Mason (2008), discerning details is a structure of attention, in which 
one’s attention is caught by a particular detail that becomes distinguished from the rest 
of the elements of the attended object. Mason (2008) asserts that “discerning details is 
neither algorithmic nor logically sequential” (p. 37). Recognizing relationships 
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between the discerned elements is a development from discerned details that often 
occurs automatically; it refers to specific connection between specific elements. For 
instance, when attending to the string of numbers 6, 2 and 3 one can effortlessly 
recognize that they are connected by the relationship 6 2 3y  . Recognizing the same 
relationship, however, is more effortful when one looks at the string of numbers 1, 2, 3, 
4, 5 and 6. Perceiving properties structure of attention is different from recognizing 
relationships structure in a subtle, but essential way. In words of Mason (2008), 
“When you are aware of a possible relationship and you are looking for elements to fit 
it, you are perceiving a property” (p. 38). To stretch the above example, when one 
searches the string 1, 2, 3, 4, 5 and 6 for the numbers that can fit a division relationship, 
one can effortlessly discern the numbers 6, 3 and 2. Finally, reasoning on the basis of 
perceived properties is a structure of attention, in which selected properties are 
attended as the only basis for further reasoning. 
Since our study concerns the phenomena of insight problem solving, we choose to 
consider not only what is attended and how, but also why the solver’s attention shifts. 
We found it useful to address a why-question by identifying obstacles embedded for 
the solver in attending to a particular object and discerning the possible “gains and 
losses” of the shift to a subsequent object. Three research questions guided the study: 

1. What were some of the objects of attention for the pair of middle-school students 
in due course of re-inventing the Gauss formula in the context of coping, for three 
week, with an insight problem related to numerical sequences?  

2. For each identified object of attention, what was the structure of attention? 
3. Why did the students move from one object of attention to another? 

METHOD 

Context 

The case of interest occurred in the framework of a project "Open-ended mathematical 
problems", which is conducted by the authors of this paper in 9th grade classes of one of 
schools in Israel. At the beginning of a yearly cycle of the project, a class is exposed to 
a set of about 10 challenging problems. The students choose a problem to pursue and 
then work on it in teams of two or three. The students work on the problem practically 
daily at home and during their enrichment classes. Weekly 20-minute meetings of each 
team with the instructor (the first author) take place during the enrichment classes. At 
the end of the project, the teams present their work at the workshop. 
One of the mathematical problems proposed to the students was Pizza Problem (Figure 
1). It is a variation of a problem of partitioning the plane by n lines (e.g., Pólya, 1954; 
Wetzel, 1978). When introduced to the problem, the students are briefly explained 
mathematical notation as well as the meaning of terms “recursive formula” and 
“explicit formula”. It is of note that 9th graders in Israel, as a rule, do not possess any 
systematic knowledge on sequences; this topic is taught in 10th grade. 
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Every straight cut divides pizza into two separate pieces. What is the largest number of pieces 
that can be obtained by n straight cuts? 
A. Solve for n = 1, 2, 3, 4, 5, 6. 
B. Find a recursive formula for the case of n.  
C. Find an explicit formula. 
D. Find and investigate other interesting sequences.  

Figure 1: Pizza Problem 
The choice of the case, data sources and analysis 

During the three years of the project, five groups of students choose to work on Pizza 
problem. One group out of five did not produce any explicit formula. Four groups did 
so, and in three of them the students were able to explain us how. In this paper, we 
focus on the remaining group, the team of Ron and Arik. This is for two reasons. First, 
it is a particularly illustrative case of successful learning (cf. Simon et al., 2010, for the 
rationale of focusing on successful learning cases). Second, Ron and Arik could hardly 
explain us, at least not straightforwardly, how they invented the formula. Moreover, 
the process of invention looked serendipitous to us. Thus, we found particularly 
interesting and important to attempt to dismantle this serendipity.   
The data included the audiotaped and transcribed protocols of the weekly meetings, 
intermediate written reports that the students prepared for and updated during the 
meetings, and authentic drafts produced between the meetings. These data were 
juxtaposed to initially reconstruct the whole story. Pencil marks on the students’ drafts 
were particularly informative for making suggestions about the occurrences of the 
shifts of attention. The initial reconstruction was shown to Ron, who took the leading 
role in the project, during a follow-up interview. (The interview was conducted six 
mounts after the events described.) In the interview, Ron provided us with additional 
information that supported most of our interpretations and rejected some of them. This 
information helped us to refine the initial reconstruction. 

RECONSTRUCTION 

At the beginning, the students produced about 30 drawings of circles representing a 
pizza, which were cut by straight lines. They counted the number of pieces on the 
drawings and observed that the maximum number of pieces is obtained if exactly two 
lines intersect within the circle. The answers for 1, 2, 3, and 4 cuts were found: 2, 4, 7 
and 11 pieces, respectively. It was difficult for the students to find a number of pieces 
for 5 cuts from the drawings as they became overcrowded.  
To overcome this difficulty, Ron created a GeoGebra sketch and found that the 
maximum number of pieces for 5 cuts is 16. The students recorded their results as a 
horizontal string of numbers. They noticed that the differences between the subsequent 
numbers in the string form a sequence 2, 3, 4, 5 and used this observation to solve the 
problem for 6 cuts. The next goal for the students was to find a recursive formula. After 
several unsuccessful attempts to think of the strings of numbers, the students organized 
their findings vertically and eventually drew a table (see Figure 2). 



Palatnik, Koichu 

4 - 380 PME 2014 

Figure 2: The drafts produced during the first week 
From this point, the students shifted their attention to exploring the tables. The 
students’ way for so doing can be described as looking for the arithmetic relationships 
between the numbers in the tables and marking them. One of the first relationships that 
they attended to was a zigzag pattern (see Figure 2d). At this stage they introduced the 
notation: P for the number of pieces, n for place of P in the table (only later they 
noticed that n represents also the number of cuts) and, eventually, Pn. A formula 

nPP nn � �1  was written as a symbolic representation of zigzag pattern.  

Then the students began looking for an explicit formula, which would enable them, in 
words of Arik, “to find P100 without finding P99”1. The students tried to find it on the 
Internet and did not succeed. They also considered finding the explicit formula in 
Excel since “there are a lot of formulas in Excel.” When this plan did not work, they 
asked the instructor for help. The instructor only helped the students to build a 
spreadsheet based on their recursive formula and encouraged them to keep looking. 
In a week, the students brought to the meeting five tables with marked patterns: a 
diagonal pattern corresponding to the previously obtained formula nPP nn � �1  
(Figure 3b), a horizontal pattern summarized by the formula � � 111 ��� � nPP nn  
(Figure 3c), a mixed pattern accompanied by (incorrect) formula 11 ��� � nPnP nn , 
and a vertical pattern corresponding to the formula 1� ¦nP .  

The instructor noted that the first three formulas were algebraically identical; the 
students had not noticed it and were surprised. Surprisingly to the instructor, the 
students presented a vertical pattern and formula 1� ¦nP  just as one of their 
results, and not as a milestone on the way to the explicit formula. He said:  

Instructor: [Let’s] focus on this way [vertical pattern]…Tell me, how do I get, for 
example, 22? 

Ron: Twenty two without 16?  It goes ... I make one plus zero and one and two 
and three and four and five and six.  

                                           
1 All the excerpts are our translations from Hebrew. 
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Instructor: One and two and three and four and five… There is some formula for 
calculating it. 
… 

Arik: So, [you ask] how to calculate it? Without summing the numbers? 
Instructor: Yes, without summing the numbers. You know, there is a formula that can 

give you an answer [instantly]. Do you understand why this is important? 
Arik:  Because it takes time to calculate [by the formula 1� ¦nP ]. 

     

3a 3b 3c 3d 3e 

Figure 3: The drafts produced during the second week 

At the next meeting, the students introduced the desired formula: 11
2

)+(n+n=Pn . The 

instructor was astonished by the students’ success and asked them to explain their 
invention in as much detail as possible. Ron took the lead. In his words: "I was stuck in 
one to six. And I just thought…six divided by two gives three. I just thought there's 
three here, but I could not find the exact connection [to 22]. I do not know why, but I 
multiplied it by seven, and voila – I got the result." This explanation along with the data 
from the follow-up interview enables us to offer, with some certainty, the following 
reconstruction of the events immediately preceding Ron’s “voila”. 
Ron focused on the left column of a table similar to Table 3e. He experimented with the 
vertical string of numbers attempting to somehow, mostly by using the operations of 
addition and subtraction, create an arithmetic expression that would return a number 
from the right column. He asked his parents and the older sister for help; they tried and 
did not succeed. Then he came back to exploring the table, and this time he also tried to 
multiply and divide. One of these attempts began from computations 326  y and 

2173  u . Ron realized that 7 in the second computation is not just a factor that turns  
3 into 21, but also a number following 6 in the vertical pattern. He noticed (not exactly 
in these words) the following regularity: when a number from the left column is 
divided by 2 and the result of division is multiplied by the number following the initial 
number, the result differs from the number in the right column by one. He observed this 
regularity when trying to convert 6 into 22, and almost immediately saw that the 
procedure works also for converting 4 into 11 and 5 into 16. He observed that even 
when division by 2 returns a fractional result (5:2=2.5), the entire procedure still 
works. The aha-experience occurred at this moment. To verify the invention, he 
calculated P100 by the discerned procedure and compared the result with the 
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corresponding number in his Excel spreadsheet. The last step was to convert the 
invented procedure into the formula. From the follow-up interview: 

Instructor: How did you convert it [the observed regularity] into the formula? 
Ron: It was a difficult part…I did it really in line with the arithmetic operations 

that I’ve used. I divided n by 2, and then I like multiplied by n+1, which is 
the next n, and then plus one. 

SUMMARY OF FINDINGS 

The answer the first research question straightforwardly steams from the above 
reconstruction. Namely, the students attended, among others2, to the following objects: 
handmade sketches of a pizza, a GeoGebra sketch, strings of numbers, two-column 
tables, and a left column of a table similar to that in Figure 3e. For each of these 
objects, we now answer the second and third research questions. The answers for the 
first four objects are summarized in Table 1. 
The last object of attention was identified as “The left column of the table similar to 
that in Figure 3e.” The structures of attention for this object can be described as 
follows. Ron discerned sub-sets of the set of numbers 1, 2, 3, 4, 5 and 6, recognized 
various relationships in the sub-sets, perceived the division property and discerned a 
sub-set “2, 3, 6” that fits it. He recognized the relationship 6 2 3y  , discerned a subset 
“3, 22”, recognized the relationship 3 7 1 22u �   and perceived numbers 6 and 7, which 
have been discerned in the above relationships, as numbers that belong to the vertical 
pattern. Ron then perceived the relationship “ 3 7 1 22u �  ” for additional triples of 
numbers, namely, (4 2) 5 1 11y u �   and (5 2) 6 1 16y u �  . (This was his aha-experience). 
Solution to the problem was concluded by means of symbolic reasoning with the 

perceived property, that is, converting “3 7 1 22u �  ” into the formula 1 1
2n
nP = (n+ )+ . 

Objects of 
attention 

Structures of attention:  
How is the object attended to?  

Why did the students move to 
the next object?  

Handmade 
sketches  

Discerning the bounded areas in order to count 
the pieces. Perceiving that the maximum 
number of pieces is obtained if exactly two 
lines intersect within the circle.    

When there are more than four 
cuts, some areas become small 
and it is difficult to count 
them.  

A GeoGebra 
sketch 

Discerning the areas bounded by the circle and 
five cuts in order to count the pieces. Counting 
is supported by the easiness of moving the cuts 
so that small areas can be enlarged.  

The drawings, even dynamic, 
are not convenient for the 
larger numbers of cuts; results 
of counting are not ordered.    

Strings of 
numbers 

Discerning the neighboring numbers of the 
string and recognizing the relationships 
between them: the differences of the 
neighboring numbers form a sequence 1, 2, 3, 

The number of pieces (Pn) is 
visible in the string, but the 
number of cuts (n) is not; 
realization that producing an 

                                           
2 Additional objects of attention include an Excel spreadsheet and more. These objects were attended 
to, but turned to be secondary rather than primary objects of attention in due course of solving the 
problem. 
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4, 5 etc.  explicit formula requires both 
n and Pn to be visible.    

Two-column 
tables  

Recognizing various numerical relationships 
between the numbers (including diagonal, 
horizontal, mixed and vertical patterns). 
Symbolic reasoning on the basis of the 
perceived properties: 

nPP nn � �1 , � � 111 ��� � nPP nn , 1� ¦nP  

Realization, partially based on 
the instructor’s prompt, that 
an explicit formula can be 
produced by looking at the 
vertical pattern, which is 
visually situated in the left 
column of the table.  

Table 1: Structures of attention for the first four objects 
DISCUSSION 

Pizza Problem appeared to be extremely difficult for Ron and Arik, and one can 
wonder: why so? The research literature on algebraic reasoning provides us with some 
initial answers. In line with Radford (2000), we observe that the problem was difficult 
because it required from the students to shift from pattern recognition to algebraic 
generalization. In terms of Duval (2006), the problem required from the students to 
shift the representational registers for many times. In line with Zazkis and Liljedahl 
(2002), we conclude that the problem was difficult because in the course of its solution 
the recursive approach was dominant, and this approach is known to prevent the 
students from seeing more general regularities. Furthermore, Ron’s aha-moment could 
usefully be analysed in terms of the representation theory of insight (e.g. Knoblich, 
Ohlsson & Raney, 2001): the insight occurred when a particular representation was put 
forward among many other representations.  
However, considering the problem’s difficulty due to the students’ under-developed 
algebraic reasoning and explaining the insight by identification of shifts in 
representations is compatible only with one venue of the presented analysis, the one 
concerned with Mason’s what-question (i.e., what objects are in the focus of 
attention?) An added value of our analysis is in putting forward also a how-question – 
this is in line with the Mason’s theory – and a why-question. We argue that concurrent 
focus on these three questions is pivotal for explaining the observed phenomena. 
Specifically, focusing on the how-question enabled us to better understand the 
interplay of the structures of attention that lead Ron to his main insight. Focusing on 
the why-question enabled us to identify a pivotal sub-sequence of shifts of attention in 
a (seemingly) serendipitous chain of attempts. 
Our last point is about possible pedagogical implications of the presented case study. 
Liljedahl (2005) found that aha-experiences have positive impact on students’ attitude 
towards mathematics. He then raised a question of how to organize learning 
environments, in which such experiences might occur. An instructional format 
outlined in this paper can serve as an example of such an environment3. Let us point out 
                                           
3 We claim so based not only on the case of Ron and Arik, but on the fact that four out of five teams, 
who worked on the same problem, also experienced aha-moment when inventing the explicit 
formula. 
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its central characteristic. On one hand, the students had enough room for autonomous 
learning. On the other hand, the chosen format included opportunities for the instructor 
to focus the students’ attention on the most promising idea from the pool of their ideas.  
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