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The purpose of this study is to clarify for what students do generalize something in 
learning mathematics. In this study, we make a distinction between generalization and 
extension, and focus on the function of generalization in terms of its meaning, purpose, 
and usefulness. Through reviewing literature on generalization and philosophical 
considerations, six functions with their examples are identified; variablization, 
purification, unification, discovery, association, and socialization. We propose a new 
theoretical framework for the function of generalization in learning mathematics, 
suggesting that the framework has possibility of a principle of didactics for teachers 
and a guideline in forming mental habit for students. 

INTRODUCTION 

In mathematics classrooms, we evaluate more students’ mathematics activities based 
on mathematical knowledge than their static mathematical knowledge. Students are 
expected to be improved as the result of their activity. We call such improvement by 
the term of learning. In learning mathematics, generalization is one of most important 
mathematics activities. Generalization is to extending the range of reasoning and/or 
communication from the particular (concrete something) to the general (abstract 
something). In that sense, generalization is essential to mathematics. In our daily life, 
however, knowledge about the particular is enough for most of our purpose, and such 
knowledge sometimes may be more useful than knowledge about the general. Thus, 
students may have a question; “For what do we generalize it?”. It’s a natural question 
from the viewpoint of students. In fact, students do not always make any endeavors to 
generalize in learning mathematics (cf. Tatsis & Tatsis, 2012), though our human mind 
has an ability of generalize something and a tendency to generalization since very 
young age (cf. Vinner, 2011). 
However, in mathematics education, the authors of this paper believe in the value of 
that students find its meaning, purpose, and usefulness of generalization by themselves 
through mathematics activities. Therefore, we will investigate and clarify an 
epistemological motivation of generalization for students. In this paper we use the term 
“function of generalization” as the meaning, purpose, and usefulness of generalization 
for students in learning mathematics, and discuss the following two research questions: 

RQ1: What are specific and characteristic functions of generalization for students in 
learning mathematics? 
RQ2: How do the functions of generalization improve students’ mathematics learning? 
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For RQ1, previous studies pointed out mainly two suggestions. First, for example 
according to Davydov (2008), generalization means that one investigate invariant(s) 
and associate the invariants with a label. As a result, generalization yields useful 
structures or systematization (pp.74-75). It’s no doubt a function of generalization, and 
the view is commonly shared among some researchers (cf. Radford, 1996). However, 
this function is not specific to mathematics but common in all scientific disciplines. 
Furthermore, as Davydov (2008) pointed out, this function is that generalization 
functioned as a result identified when one observer makes an analysis of a completed 
and static mathematical (and scientific) knowledge. Hence, a student as a learner may 
not think “I associate the invariants with the label for systematization!” The interest for 
us is the function of generalization in students’ activities of learning mathematics. The 
function of generalization must be identified from the students’ viewpoint, though it is 
not contradicted with the Davydov (2008). Second, previous studies on generalization 
in mathematics education pointed out the function of variablization that is to extending 
a range of reasoning and/or communication (Ursini, 1990; Dörfler, 1991; Iwasaki & 
Yamaguchi, 1997; Radford, 2001). This function is an important function of 
generalization. However, variablization is one of functions of generalization, because 
some researchers pointed out other functions of generalization. 

DISTINCTION BETWEEN GENERALIZATION AND EXTENSION 

In this study, we use the term of generalization as “recognition that has epistemological 
direction from the particular to the general”. The necessity of this definition is derived 
from the fact that similar recognition called extension does not have this direction. The 
authors (Hayata & Koyama, 2012) make a distinction between generalization and 
extension, and formalize them as following in Figures 1 and 2 respectively: 
D is a field. D’ is a wider field than D. M is a meaning in the field D. M’ is an 
established meaning in the field D’. 
Generalization: Recognition establishing M in D, and extending D to D’ without 

changing M 
Extension: Recognition incorporating D into D’ such that if D’ is limited to D, M’ is 

equivalent to established M 

  

Figure 1: Model of generalization Figure 2: Model of extension (Tomosada, 
Himeda, & Mizoguchi, 2006, p. 9) 

For example, when students noticed that the sum of interior angles is straight angle (M) 
in concrete triangles (D), thereby they suppose that it is case of all triangles (D’). This 
recognition is generalization because M is not changed. On the other hand, for 
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example, when students work on multiplication of decimal numbers (D’) for the first 
time, they cannot solve the multiplication by using the meaning of multiplication as 
repeated addition (M) in natural numbers (D). The decimal number multiplication can 
be solved with the meaning of proportion (M’), and this meaning is equivalent to 
repeated addition in natural numbers. So, by its definition, this recognition is 
extension. 
In this study, we make the above distinction between generalization and extension, and 
focus on the function of generalization in terms of its meaning, purpose, and usefulness 
of generalization for students in learning mathematics. On the other hand, we do not 
distinguish between algebraic generalization and geometrical generalization for the 
purpose of this study in spite of that there are important cognitive differences between 
them (Iwasaki & Yamaguchi, 1997), because in both generalizations one must 
consciously see algebraic/geometrical symbols as general symbols (e.g. n is general 
natural number, and triangle ABC is general triangle). 

METHODOLOGY 

As mentioned above, previous studies mainly discussed the function of generalization 
identified in the static and completed mathematics knowledge. Thus, their method is, 
for example, to analyse the history of mathematics (cf. Radford, 1996). However, there 
is no whole picture/framework for the function of generalization in mathematics 
activities. Without a framework, we cannot see and analyse any students’ actual 
learning activities of mathematics in school classroom practices. For this reason, in this 
study the authors adopt the methodology of analyzing previous studies on 
generalization in terms of its meaning, purpose, and usefulness in order to extract 
implicit functions of generalization from the studies, carefully consider them, and 
organize them in a framework. In this paper, we analyze Polya (1954), Dörfler (1991), 
Ito (1993), and Tatsis and Tatsis (2012), because all of them epistemologically 
consider generalization in mathematics from the learner’s viewpoint, and reveal the 
nature of generalization without restricting generalization to any specific mathematical 
context. In the following, as a result of the analysis, six identified functions of 
generalization (variablization, purification, unification, discovery, association, and 
socialization) are presented with their examples, and a new theoretical framework 
consisted of the six functions and their structure is proposed. 

SIX FUNCTIONS OF GENERALIZATION IN LEARNING MATHEMATICS  

Variablization 

In short, the widely accepted meaning of generalization is to extending the range of 
reasoning. When one intends to extend the range, some attributes of the particular at 
hand are ignored and abstracted to become variables. For example, when students find 
out that area of a concrete rhombus ABCD with diagonals of AC (9cm) and BD (6cm) 
can be calculated by 269 yu , and from it they infer that the area of all rhombuses can 
be calculated by “diagonal ´  another diagonal ¸2”. In this case, the students see length 
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of sides, inner angles, and so on as not essential attributes, thus these attributes will 
become variables, while the angle between two diagonals is not variable. The 
variablized attributes are dealt as algebraic variables, and can be substituted by any 
concrete values. As a result, students can know all objects in a set (ex. set of rhombus) 
nevertheless there is infinite number of objects in the set. We call this characteristic 
function variablization. This function leads to construct new class. The variablized 
objects are more or less isolated from physical objects. Thus, some symbols are needed 
to deal with the objects. For this reason, some researchers emphasized the importance 
of generalization in algebra. The variablization is important function of generalization, 
but it is not enough for learning algebra (cf. Dörfler, 2008). 
Unification 

There is another case of generalization as “extending the range of reasoning”. One 
recognizes that known various particulars are integrated by single notion, and therefore 
elements in a set are increased. As a result, in such case, the range of reasoning also is 
extended. For example, let’s consider the same example of area of rhombus used in 
explaining the variablization. The area formula “diagonal ´  another diagonal ¸2” for 
rhombus is also applied to kite, because the formula depends only on the condition that 
angle between two diagonals makes a right angle, and because that angle between two 
diagonals is also right angle. In this case, two particulars (area of rhombus and area of 
kite) are unified by single notion (area formula). Thereby the range of the formula that 
calculates area of rhombus is extended. We call this characteristic function of 
generalization unification. According to Polya (1954), sometimes we can surprisingly 
unify different objects by single notion through generalization. We need pay attention 
to this different function unification from the function variablization. 
Purification 

In actual problem solving, there are many situations where one does not always intend 
to work the function variablization of generalization. In such situation, for solving the 
problem easily one removes the attributes appeared unnecessary from the original 
problem. For example, let’s think about the problem to find. 1100101102103 �uuu .If 
students must solve this problem without using any devices, they have to work on a 
quixotic challenge to find 106110601 . Thus, some students are motivated to 
conjecture that generalizing the problem may be useful for solving it. They express it 
generally, and try to factorize 161161)1)(2)(3( 234 ���� ���� nnnnnnnn . In this 
case, to factorize the generalized ( 13)13(16116 222234 �� �� ���� nnnnnnnn ) is 
easier than to find 106110601 . Finally, they substitute n=100 for the equation, and get 
the answer to original problem is 10301. In this case, the generalization of “extending 
the range of reasoning” is not purpose but means. We call this characteristic function 
purification. Dirichlet and Dedekind (1999) and some researchers pointed out “As it 
often happens, the general problem turns out to be easier than the special problem 
would be if we had attacked it directly (p. 13; quoted in Polya (1954: 29))” . 
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Discovery 

According to Giusti (1999), new mathematical knowledge is invented implicitly while 
solving a problem and subsequently discovered as valuable object. In deed, Giusti 
(1999) pointed out that method of solving problem of planetary orbit (i.e. differential) 
invented the notion of limit implicitly. In school mathematics, we can find similar 
examples of generalization leading to a “discovery”. For instance, in the above 
example used for the purification (find 1100101102103 �uuu ), one can discover new 
proposition; “the value of 1)1)(2)(3( ���� nnnn  is always natural number 132 �� nn ” 
by generalizing the original problem. This proposition was not expected when students 
tried to solve the problem. We call this characteristic function discovery. According to 
Tatsis and Tatsis (2012), the function discovery of generalization is for students to 
“grasp” the deeper underlying structure of mathematics. 
This function is closely related to the Dörfler’s notion of “symbols as objects”. 
According to Dörfler (1991), at first the abstracted something is associated with 
cognized particular(s), then, they are separated in the process of generalization. As a 
result, the abstracted something with symbols become independent object. He called 
this process as “symbols as objects”. As the above example indicates, the function 
discovery is interpreted as our conscious evaluation of the independent object. 
Association 

In learning mathematics, new mathematical objects (knowledge, concepts, and so on) 
are constructed in mathematical activities. The something new should be meaningful 
for students. According to Howson (2005), there are two methods to create meaning. 
The first is to construct geometrical (graphical) model such as Poincaré Disk Model in 
mathematics, and number line for arithmetic operations in school mathematics. The 
second is to associate known objects with new object. The second has two methods in 
detail; to investigate and organize the connection between known objects with new 
object, and to construct new object by using known objects and inference rules. 
Here, if we interpret “known objects” in the latter method of the second as “the 
particular”, we can say, new object that is constructed by using the particular and 
inference rules has meaning. We call this characteristic function association. For 
example, according to Howson (2005), one can meaningfully construct integer (the 
general notion) by using natural number (the particular) and inference rules. In school 
mathematics, for example, students have their meaning for general triangle that is 
invisible and inexistent, because they construct general triangle by being based on 
particular triangles. Ito (1993) focused on this function and developed his learning 
theory, and analyzed elementary school students. As a result, he pointed out that the 
students had spontaneous attitude to use this function in order to construct new objects. 
In mathematics classroom, usually the function association does not become obvious. 
Rather, the function seems work implicitly in students’ mind in learning mathematics. 
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Socialization 

For example, if one says that the next term in the number sequence of 1, 2, 3, 4, 5, 6,… 
is 727, most people may not agree to it, and say that answer is 7. If those who wants to 
convince others that the next term is 727, they must present that the sequence ^ `na  can 
be generalized such as naaaaaaan ������� )6)(5)(4)(3)(2)(1( . In this example, both 
7 and 727 are correct. As this example shows, however, other people do not always 
accept an individual subjective cognition even if the individual cognition (e.g. 727) is 
reasonable for the person without making the reason public. Thus, if the person wants 
to make one’s own cognition be socially acceptable knowledge among other people, 
the generalization is required. Typically, we can say that Euclid described The Element 
with the intention to generalize the known and accepted propositions for socialization. 
This social aspect of generalization is emphasized by Dörfler (1991). We call this 
characteristic function socialization. Because the socialization means to open own 
cognition to other people, the function plays a very important role in constructing 
sound mathematical knowledge. 
The function socialization of generalization usually works implicitly, especially from 
students’ viewpoint. When students’ cognition meet the counterintuitive, the function 
may become obvious. Nevertheless, the function socialization always plays very 
fundamental roll in the activity of learning mathematics in school classroom. 

A FRAMEWORK FOR THE FUNCTION OF GENERALIZATION 

In this section we will organize the six functions for making a theoretical framework. 
The above examples and consideration suggest that there is epistemological order from 
variablization to unification, and from purification to discovery respectively. In fact, 
Polya (1954) argued that unification is more higher than variablization, and likened it 
to the proverb; “To dilute a little wine with a lot of water is cheap and easy. To prepare 
a refined and condensed extract from several good ingredients is much more difficult, 
but valuable (p.30)”. On the other hand, their examples imply that association and 
socialization are usually functioning implicitly, but both play fundamental rolls in 
learning mathematics. In addition, association and socialization are in their nature 
different from other four functions. They are not exclusive, and play different roll in 
constructing meanings for oneself or other people. Therefore, we propose a 
hypothetical structure of the six functions of generalization in Figure 3. 

 
Figure 3: A hypothetical structure of the six functions of generalization 

The framework consisted of six functions and their structure implies three didactical 
suggestions. First, teacher should design didactical situations where students can 
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discern meaning of the six functions of generalization (ex. purification and/or 
unification). It is the answer to the students’ question; “For what do we generalize it? ”. 
Second, the structure shown in Figure 3 has possibility of a principle of didactics for 
designing mathematics classes. For example, if teacher intends to promote the 
unification in a mathematics class, the unification should be set up after the 
variablization or the purification. If teacher intends to promote students discern the 
socialization and/or the association, it is latent until after teacher expose students to 
other functions in a mathematics class. In a mathematics class, when one function of 
generalization is changed, teacher should give students the needed didactical support 
for making them be aware of the change “for what we do generalize it”. Third, the most 
important suggestion is that the structure may become a guideline in forming mental 
habit for students through their experiencing the functions of generalization in 
mathematics classes. For example, Figure 3 shows that after activity of variablization, 
students do the activity of unification, and then reflecting on the association. However, 
it is difficult for students at the beginning do these activities without any didactical 
supports by teacher. Hence, if mathematics classes are usually planed based on the 
structure in Figure 3, it may become a guideline in forming mental habit for students, 
for example, “we have variablized this notion, so maybe we can unify other objects!” 
We expect that the formed mental habit could support students use the functions of 
generalization, leading to enjoy and endeavor their generalization as genuine 
mathematics activity. 

CONCLUDING REMARKS 

In this paper, as the answer to RQ1, we identified six functions with their examples of 
generalization; variablization, purification, unification, discovery, association, and 
socialization. We proposed the new theoretical framework consisted of the six 
functions and their structure for generalization in learning mathematics. Then, as the 
answer to RQ2, we implied three didactical suggestions for teaching and learning 
mathematics in classroom. First, teacher should design didactical situations where 
students can discern meaning of the six functions of generalization. Second, the 
structure has possibility of a principle of didactics for designing mathematics classes. 
Third, the structure may become a guideline in forming mental habit for students 
through their experiencing the functions of generalization in mathematics classes. 
The following are main tasks to be tackled in the future research. First, we need to plan 
and practice mathematics classes based on the framework for the function of 
generalization in classrooms. Second, the functions and their structure need to be more 
refined with empirical data and philosophical consideration. Third, we need to 
investigate and sequence in detail the differences in the function of generalization for 
students in learning mathematics from elementary to secondary school mathematics. 
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