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We present a mathematical analysis that distinguishes two quantitative perspectives 
on ratios and proportional relationships: Multiple Batches and Variable Parts. We 
argue that (a) existing research on proportional relationships has addressed Multiple 
Batches but has largely overlooked Variable Parts, (b) Multiple Batches makes the 
co-variation aspect of proportional relationships more explicit, while Variable Parts 
makes the fixed multiplicative relationship between two quantities more explicit, (c) 
the distinction between Multiple Batches and Variable Parts is orthogonal to the 
within-measure-space versus between-measure-space ratio distinction, and (d) 
Variable Parts affords promising new approaches for addressing linear relationships. 

PAST RESEARCH ON PROPORTIONAL RELATIONSHIPS  

Ratios and proportional relationships are critical mathematics in elementary and 
secondary grades (e.g., Kilpatrick, Swafford, & Findell, 2001; National Council of 
Teachers of Mathematics, 1989, 2000). Although traditional instruction has 
emphasized applying rote procedures like cross multiplication to solve missing-value 
and comparison problems, a robust understanding of proportional relationships 
involves (a) attending to co-variation between two quantities and (b) forming 
multiplicative relationships between those quantities. Despite a significant body of 
empirical and theoretical research on proportional relationships, understanding how to 
support students’ and teachers’ understandings of both aspects of proportional 
relationships remains a significant challenge for the field.  
Empirical research has documented numerous difficulties that students, and sometimes 
teachers, experience with proportional relationships. One line of research has analyzed 
factors that influence the difficulty of proportion problems for students—including 
whether students are familiar with problem contexts (e.g., Tourniaire, 1986), whether 
quantities are discrete or continuous (e.g., Behr, Lesh, Post, & Silver, 1983), and 
whether ratios are integral, nonintegral, or unit ratios (e.g., Hart, 1981, 1988; Karplus, 
Pulos, & Stage, 1983; Noelting, 1980a, 1980b). A second line of research has 
examined students’ and teachers’ capacities to distinguish missing-value problems that 
describe proportional relationships from ones that do not (e.g., Cramer, Post, & 
Currier, 1993; Fisher, 1988; Freudenthal, 1983; Van Dooren, De Bock, Vleugels, & 
Verschaffel, 2010.) A third line of research has examined difficulties that students and 
teachers have conceiving of a ratio as a measure of a physical attribute, such as 
steepness or speed (Simon & Blume, 1994; Thompson & Thompson, 1994). A fourth 
line of research has examined strategies that students use to solve problems about 
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proportions successfully, often before any substantial instruction in these topics. These 
include forming progressively elaborate unit structures (e.g., Lamon 1993a, 1994; 
Lobato & Ellis, 2010) and double counting strategies (e.g., Hart 1981, 1988; Lamon, 
1993b).  
Theoretical research has identified various ways to think about multiplicative 
relationships in terms of quantities (see Greer, 1992, for a review). There is widespread 
agreement among mathematics education researchers that ratios and proportional 
relationships are part of the multiplicative conceptual field—a web of interrelated ideas 
that includes multiplication and division, fractions, linear functions, and more 
(Vergnaud, 1983, 1988). Furthermore, much of the theoretical work on proportional 
relationships has been informed by Vergnaud’s (1983) identification of isomorphism 
of measures as one of three fundamental multiplicative structures. Isomorphism of 
measures covers direct proportions between two measure spaces, and Vergnaud 
distinguished forming multiplicative relationships within measure spaces from 
forming such relationships between measure spaces (e.g., Freudenthal, 1973; Lamon, 
2007; Noelting, 1980b). 
We present an analysis that contributes to the theory of proportional relationships, 
identifying an overlooked perspective that promises new avenues for reasoning about 
proportional relationships and foundations for understanding slope and rate of change, 
among other subsequent topics.  

THE TWO PERSPECTIVES ON PROPORTIONAL RELATIONSHIPS 

Beckmann and Izsák (2013) identified two distinct, complementary perspectives on 
how quantities vary together in a proportional relationship. The two perspectives 
follow from consistently distinguishing the multiplier, M, from the multiplicand, N, in 
the equation M yN = P (M denotes number of groups, N denotes the number of units in 
each/whole group, and P denotes the number of units in M groups). 
Figure 1 uses Punch Problem 1 to illustrate the two perspectives, which conceptualize 
and depict covariation and fixed multiplicative relationships in complementary ways. 
Multiple Batches has been widely studied among children—for instance, Lamon, 
(1993b) and Lobato and Ellis (2010) have referred to it as composed unit reasoning. In 
this perspective (Figure 1a), a mixture of 3 cups peach juice and 2 cups grape juice is 
fixed as 1 batch. One varies the number of batches to produce different amounts in the 
same ratio, which corresponds to operating on M. Vertical alignment on the double 
number line indicates amounts in the same 3-to-2 ratio. Covariation is made visually 
explicit as movement of that vertical alignment up and down the double number line, 
but the fixed multiplicative relationship between the quantities—the amount of peach 
juice is always 3/2 times the amount of grape juice—remains implicit. Variable Parts 
has been largely overlooked in past research and teaching on proportional 
relationships. In this perspective (Figure 1b), one fixes numbers of parts of peach juice 
(3) and grape juice (2), and all parts are the same size. One varies the size of the parts to 
produce different amounts in the same ratio (throughout, any one part remains equal to 
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all the other parts), which corresponds to operating on N. The numbers of parts show 
explicitly that the amount of peach juice is always 3/2 times the amount of grape juice, 
but variation within parts remains implicit.  

Figure 1: (a) The multiple batches perspective. (b) The variable parts perspective. 
The two perspectives on proportional relationships are orthogonal to the 
within-measure-space versus between-measure-space ratio distinction mentioned 
previously (Vergnaud, 1983): One can use each perspective to relate quantities within 
measure spaces or between measure spaces. To illustrate within-measure-space 
reasoning from the two perspectives, consider the following problem that continues to 
use the punch scenario. You made a mixture of 3 cups peach juice and 2 cups grape 
juice. Now you want to make a mixture in the same ratio using 1/4 as much peach juice. 
How much grape juice should you use? Using Multiple Batches, one might view the 
1/4 as operating on 1 batch and therefore reason that 1/4  should operate on the cups of 
peach and grape juice (1/4 batchy3 cups of peach juice in each batch; 1/4 batchy2 cups 
grape juice in each batch). In this case, multiplying by 1/4 changes the number of 
batches (M). Using Variable Parts, one might start with 1 cup of juice in each of the 5 
parts and view 1/4 as operating on the size of each part. Here, one needs 3 parts peach 
juicey1/4 cup in each part and 2 parts grape juicey1/4 cup in each part. In this case, 
multiplying by 1/4 changes the size of all 5 parts (N). Beckmann and Izsák (2013) 
explain how both Multiple Batches and Variable Parts can support 
between-measure-space reasoning.  
Research on proportional relationships has emphasized Multiple Batches, which 
facilitates within-measure-space reasoning using a variety of strategies, including a 
“building up” strategy and iterating and partitioning a composed unit (e.g., Kaput & 
West, 1994; Lamon, 1994, 2007; Lobato & Ellis, 2010; Vergnaud, 1988). Although 
Lobato and Ellis showed how iterating and partitioning a composed unit can be used to 
derive a fixed multiplicative relationship between measure spaces, Kaput and West 
noted that some multiplicative relationships are not well handled by iterating and 
partitioning within measure spaces:  

A major question not addressed in this chapter is how to deal with multiplicative change 
situations that are not well modeled [sic] by build-up patterns, change situations that are 
not inherently replicative. These include the geometric similarity problems handled poorly 
by our students. The larger, rescaled figure is not the join of several smaller ones. Rather, 
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each of the infinitely subdivisible parts of the smaller figure “grows” by the same amount 
to produce the larger as discussed by Confrey (this volume). This form of multiplicative 
growth likely has different primitive conceptual roots and is likely to require a different 
curriculum strand and different types of concrete representations. (p. 284)  

We hypothesize that Variable Parts and strip diagrams can provide the needed 
complementary perspective on multiplicative relationships. In particular, in the next 
section, we argue that adding Variable Parts to the study of proportional relationships 
may provide a more robust foundation for the study of linear functions than Multiple 
Batches alone. Thus, Variable Parts deserves consideration in research on cognition 
around proportional relationships. 

TWO PERSPECTIVES AS A FOUNDATION FOR LINEAR FUNCTIONS 

An important theme in the extensive literature on students’ and, to a lesser extent, 
teachers’ understandings of algebra is the role of prior experience with arithmetic, 
including with rational numbers, in supporting and constraining reasoning about linear 
relationships (e.g., Carraher & Schliemann, 2007; Hackenberg, 2010, 2013; Kieran, 
1992). For instance, Kieran (p. 394) argued one source of difficulty is that using 
algebraic notation to model problem situations requires students to modify their 
interpretations of symbols like the equal sign and to use arithmetic operations that 
invert operations they have learned to use almost automatically, while Hackenberg has 
argued that experience reasoning with fractions in terms of quantities provides a 
critical foundation for interpreting equations that relate quantities. We focus on the 
persistent challenge of forming fixed multiplicative relationships between quantities, 
including slope.  
Confusion about meanings of slope, rate of change, and steepness have been found 
among students using either reform or more traditional curricula (Lobato, Ellis, & 
Munoz, 2003; Teuscher, Reys, Evitts, & Heinz, 2010), as well as among future 
teachers (e.g., Simon & Blume, 1994). As one example, Lobato et al. (2003) reported 
on U.S. high school students’ understandings of slope after instruction using a reform 
curriculum that emphasized slope as a rate of change between covarying quantities in 
multiple real-world settings and that used multiple representations. The researchers’ 
reported examples of students’ persistent difficulties understanding slope as a 
multiplicative relationship between changes in values of x and y, even when students 
reasoned about partitioning and iterating Multiple Batches. Such results raise as a 
question whether other perspectives on covarying quantities might better support 
appropriate multiplicative conceptualizations of slope (or constants of 
proportionality). Next, we return to the Punch Problem 1 (Figure 1) and examine how 
Multiple Batches and Variable Parts can support such conceptualizations.  
In a Multiple Batches approach to slope, one thinks of having 3 cups peach juice for 
every 2 cups grape juice. The value 3/2 specifies the number of cups of peach juice 
needed for every 1 cup of grape juice (a unit rate) (Figure 2a). This view foregrounds 
slope as the coordinated variation within the grape juice and peach juice measure 
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spaces: For every new cup of grape juice, the amount of peach juice increases by 3/2 
cups. This perspective evokes repeatedly moving to the right 1 unit and up 3/2 units, 
but the general multiplicative relationship, y = (3/2) x, is less evident. In a Variable 
Parts approach to slope, the value 3/2 is a direct multiplicative comparison between the 
numbers of parts of grape and peach juice: The number of parts peach juice is 3/2 the 
number of parts grape juice (Figure 2b). Put another way, the value 3/2 is the factor that 
multiplies the number of parts of grape juice to produce the number of parts of peach 
juice, regardless of amounts. Figure 2b shows how strip diagrams can be coordinated 
with Cartesian graphs to support such an interpretation of slope. This view foregrounds 
slope as a multiplicative relationship: The y-coordinate is 3/2 of the x-coordinate, so y 
= (3/2) x. 

Figure 2: Two perspectives on slope. (a) Multiple batches. (b) Variable parts. 

CONCLUSION AND DISCUSSION 

An important question for future empirical research is whether introducing Variable 
Parts as a complementary perspective to Multiple Batches might help both students 
and teachers develop both key features of proportional relationships between two 
quantities and help them apply what they learn about proportional relationships to 
subsequent, central topics, such as slope. Our presentation of the two perspectives on 
ratios and proportional relationships suggests that adding a Variable Parts perspective 
may benefit students and teachers.  
One benefit is that Variable Parts may support forming direct multiplicative 
comparisons of two quantities. Past research has shown that children and adults can 
have difficulty making such comparisons when using Multiple Batches (e.g., 
Vergnaud, 1980; Schliemann & Nunes, 1990).  
A second benefit is that Variable Parts may support understanding not just slope and 
rate of change as multiplicative relationships but also equations that relate variables. 
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Numerous studies have demonstrated students’ difficulties forming equations (e.g., 
Clement, 1982; Koedinger & Nathan, 2004). The process of deriving equations from 
strip diagrams by relating quantities may highlight a relational rather than 
computational interpretation of the equal sign (e.g., Kieran 1992) and support 
generating linear equations. Investigating this possibility would be consistent with 
Kieran’s (2007) recommendation for additional research on how students could be 
assisted to make connections between verbal problem solving activity and generating 
equations (p. 729).  
Finally, an important question for future research is how students and teachers might 
develop understandings of the two perspectives. It might be that Multiple Batches 
better supports initial coordination of two varying quantities but that Variable Parts 
better supports subsequent applications, such as applications to linear functions. 
Furthermore, it might that students and teachers understandings of the two perspectives 
could support one another: Seeing covariation explicitly in Multiple Batches might 
support seeing covariation in Variable Parts and seeing multiplicative comparisons 
explicitly in Variable Parts might support seeing such comparisons in Multiple 
Batches. Thus, in combination, the two perspectives on proportional relationships are 
promising for supporting students’ understandings of a central mathematical domain. 
Therefore, the two perspectives deserve further investigation.  
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