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Abstract 

Literature addressing missing data handling for random coefficient models is particularly 

scant, and the few studies to date have focused on the fully conditional specification framework 

and “reverse random coefficient” imputation. Although it has not received much attention in the 

literature, a joint modeling strategy that uses random within-cluster covariance matrices to 

preserve cluster-specific associations (Yucel, 2011) is a promising alternative for random 

coefficient analyses. This study is apparently the first to directly compare these procedures. 

Analytic results suggest that both imputation procedures can introduce bias-inducing 

incompatibilities with a random coefficient analysis model. Problems with fully conditional 

specification result from an incorrect distributional assumption, whereas joint imputation uses an 

underparameterized model that assumes uncorrelated intercepts and slopes. Monte Carlo 

simulations suggest that biases from these issues are tolerable if the missing data rate is 10% or 

lower and the sample is comprised of at least 30 clusters with 15 observations per group. Further, 

fully conditional specification tends to be superior with intraclass correlations that are typical of 

cross-sectional data (e.g., ICC = .10), whereas the joint model is preferable with high values 

typical of longitudinal designs (e.g., ICC = .50).  
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A substantial body of methodological research supports missing data handling techniques 

that assume a missing at random (MAR) mechanism, whereby the probability of nonresponse on 

a given variable is unrelated to that variable’s scores after conditioning on observed data (Little 

& Rubin, 2002; Rubin, 1976). Maximum likelihood estimation and multiple imputation are the 

principal MAR-based methods that enjoy widespread use in the behavioral sciences. Relative to 

single-level analysis problems, the application of these approaches to multilevel missing data has 

received somewhat less attention in the literature. Existing research has largely focused on 

random intercept models (DiazOrdaz, Kenward, Gomes, & Grieve, 2016; Drechsler, 2015; 

Goldstein, Carpenter, Kenward, & Levin, 2009; Larson, 2011; Lüdke, Robitzsch, & Grund, 

2017; Mistler & Enders, 2017; Reiter, Raghunathan, & Kinney, 2006; Shin & Raudenbush, 

2007, 2010; Taljaard, Donner, & Klar, 2008; van Buuren, 2011; Yucel & Demirtas, 2010), and 

literature addressing random coefficient models is especially nascent (Enders, Keller, & Levy, 

2017; Grund, Lüdke, & Robitzsch, 2016).  

Joint model imputation and fully conditional specification (also known in the literature as 

chained equations and sequential regression imputation) are the major multiple imputation 

frameworks for multilevel data (Carpenter, Goldstein, & Kenward, 2011; Enders et al., 2017; 

Enders, Mistler, & Keller, 2016; Goldstein, Bonnet, & Rocher, 2007; Goldstein et al., 2009; 

Schafer, 2001; Schafer & Yucel, 2002; van Buuren, 2011, 2012), and both are widely available 

in software packages. Consistent with their single-level counterparts, these procedures create 

several copies of the data, each containing different estimates of the missing values. Both employ 

an iterative algorithm that estimates multilevel model parameters and then samples missing 

values from a distribution that conditions on these quantities. Importantly, joint model 

imputation uses a multivariate multilevel regression model that features incomplete variables 
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regressed on complete variables, whereas fully conditional specification imputes variables one at 

a time from a sequence of univariate models with an incomplete variable regressed on complete 

and previously imputed variables. As explained later, univariate and multivariate imputation 

schemes offer very different approaches to random coefficient models. 

The few studies to examine missing data handling for random coefficient models have 

focused on the fully conditional specification imputation framework (Enders et al., 2017; Enders 

et al., 2016; Grund, Lüdke, et al., 2016) popularized by van Buuren and colleagues (van Buuren, 

2011, 2012; van Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006; van Buuren et al., 2014). 

In the context of a random slope analysis, fully conditional specification employs a “reverse 

random coefficient” approach (Grund, Lüdke, et al., 2016) that treats y as a random predictor of 

an incomplete covariate, and vice versa. Simulation results suggest that fully conditional 

specification can produce negatively biased slope variance estimates (Enders et al., 2017; Grund, 

Lüdke, et al., 2016), and analytic work shows that an incorrect distributional assumption is 

responsible for this problem (Enders, Du, & Keller, 2017, October). As an alternative, Yucel 

(2011) proposed a joint (multivariate) imputation strategy that uses random within-cluster 

covariance matrices to model cluster-specific associations. This promising approach was recently 

implemented in the R package jomo (Quartagno & Carpenter, 2016a), and the only study to 

examine its performance did so in the context of individual patient data meta-analysis 

(Quartagno & Carpenter, 2016b). As we show later, using within-cluster covariance matrices to 

model random coefficients is potentially problematic because the method cannot preserve 

covariance between the random intercepts and slopes, but the practical magnitude of this 

shortcoming is unclear. 
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Random coefficient models pose particularly challenging missing data problems because 

existing imputation frameworks can introduce bias. Promising new Bayesian imputation 

procedures are currently under development but are not yet widely available in software (Enders 

et al., 2017, October; Erler et al., 2016). Although fully conditional specification and joint 

modeling with random covariance matrices are both imperfect, they will not necessarily produce 

comparable results because their underlying models are quite different. As such, understanding 

the relative strengths and weaknesses of these strategies is important for selecting an appropriate 

imputation procedure. Because the methodology literature currently offers no guidance on this 

issue, the primary goal of our manuscript is to compare fully conditional specification and joint 

model imputation with random level-1 covariance matrices. We begin by describing each 

approach and discussing its compatibility with a random coefficient analysis, after which we use 

Monte Carlo computer simulations to evaluate parameter recovery in a wide range of conditions 

typical of applied research settings. The paper concludes with a real data analysis example. 

To keep the ensuing discussion as simple as possible, we focus on missing data handling 

for a two-level random slope model with a single predictor at each level. The analysis model is 

 

 𝑦"# = 𝛽& + 𝛽(𝑥"# + 𝛽*𝑤# + 𝑏&# + 𝑏(#𝑥"# + 𝑒"# (1) 

 

where yij is the outcome score for observation i in cluster j, xij and wj are level-1 and level-2 

predictors, respectively, 𝛽& is the intercept, and 𝛽( and 𝛽* are the fixed effect slope coefficients 

for the two predictors. Consistent with the standard multilevel model formulation, we assume 

that the intercept and slope residuals, 𝑏&# and 𝑏(#, respectively, are multivariate normal with zero 
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means and an unstructured covariance matrix 𝚺/. Similarly, the within-cluster residuals are 

normal with common variance 𝜎1*. 

 As an aside, readers may question our focus on multiple imputation, given that maximum 

likelihood is the default estimator in most multilevel software programs. Maximum likelihood is 

applicable to a wide range of single-level missing data problems, but it is arguably less flexible 

for multilevel missing data. Dedicated software programs that operate within the traditional 

mixed model framework allow incomplete outcomes (e.g., a longitudinal analysis where the 

number and configuration of measurements differs across respondents), but the absence of 

distributional assumptions for explanatory variables forces programs to exclude observations or 

clusters with missing predictor scores. The HLM program (Raudenbush, Bryk, & Congdon, 

2013) appears to be the only dedicated multilevel software package that can accommodate 

incomplete explanatory variables, but this functionality is limited to random intercept models 

with normally distributed predictors (Shin & Raudenbush, 2007, 2010; Shin & Raudenbush, 

2013). The multilevel structural equation modeling framework (Mehta & Neale, 2005; Rabe-

Hesketh, Skondral, & Zheng, 2012; Stapleton, 2013) is a second option for fitting random 

coefficient models with missing data. Mplus (Muthén & Muthén, 1998–2017) is the only 

package we know of that can accommodate random slope predictors with missing data, but no 

technical documentation is available describing this functionality. Maximum likelihood 

estimators for incomplete multilevel data tend to invoke complicated transformations of the 

population joint distribution (Shin & Raudenbush, 2007, 2010), making it difficult to understand 

and explain their performance without also knowing their technical underpinnings1. As such, we 

 
1 We included the Mplus implementation of maximum likelihood estimation in a subset of our 
simulations, and the method was uniformly biased. We do not report these results here because 
there is currently no technical documentation that helps us understand and explain the results. 
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focus on multiple imputation because it is arguably a more mature technology for incomplete 

multilevel data. 

Joint Model Imputation with Random Covariance Matrices 

The joint imputation framework is based on a multivariate regression model that is 

typically parameterized by regressing the set of incomplete variables on the set of complete 

variables, or by treating all variables as outcomes regardless of missing data pattern (Asparouhov 

& Muthén, 2010; Carpenter & Kenward, 2013; Goldstein et al., 2009; Schafer & Yucel, 2002; 

Yucel, 2011). We describe the latter parameterization, focusing on a variant of the joint model 

that introduces heterogeneous within-cluster covariance matrices (Yucel, 2011). This approach 

holds promise for random coefficient models but has not received much attention in the 

literature. Note that we alter our notation in this section (e.g., replacing 𝛽s with 𝛾s, etc.) to 

clearly differentiate the imputation and analysis models, and we use alphanumeric subscripts to 

associate parameters to specific variables (e.g., 𝛾(4) and 𝛾(6)). 

The joint imputation model for the random coefficient analysis defines each observation 

as the sum of a grand mean and one or more normally distributed deviation scores 

 

𝑦"# = 𝛾(4) + 𝑢#(4) + 𝜀"#(4)	

𝑥"# = 𝛾(6) + 𝑢#(6) + 𝜀"#(6)	

𝑤# = 𝛾(:) + 𝑢#(:) (2) 

;
𝑢#(4)
𝑢#(6)
𝑢#(:)

<~	𝒩(𝟎, 𝚺A)			B
𝜀"#(4)
𝜀"#(6)C~	𝒩 B𝟎, 𝚺DEC 
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where 𝛾(∙) is the regression intercept or grand mean, 𝑢#(∙) is a level-2 deviation score capturing 

the difference between a latent cluster mean and the grand mean (e.g., 𝑢#(4) = 𝜇#(4) − 𝛾(4)), and 

𝜀"#(∙) is a within-cluster deviation between an observation and its corresponding latent group 

mean (e.g., 𝜀"#(4) = 𝑦"# − 𝜇#(4)). Further, 𝚺A is the level-2 covariance matrix of the between-

cluster deviation scores, and 𝚺DE is the within-cluster covariance matrix for cluster j, as follows. 

 

𝚺A =

⎝

⎜
⎛

𝜎A(L)
* 𝜎A(L,M) 𝜎A(L,N)

𝜎A(M,L) 𝜎A(M)
* 𝜎A(M,N)

𝜎A(N,L) 𝜎A(N,M) 𝜎A(N)
*

⎠

⎟
⎞
			𝚺DE = R

𝜎DE(L)
* 𝜎DE(L,M)

𝜎DE(M,L) 𝜎DE(M)
*

S 

(3) 

𝚺DE~	ℐ𝒲 B𝜐 + 𝑛#, 𝐒 + 𝐒DEC 

 

where ℐ𝒲 denotes an inverse Wishart probability distribution for cluster j’s covariance matrix, 𝜐 

and 𝐒 are the degrees of freedom and scale matrix (i.e., center and spread) of the hierarchically-

specified Wishart distribution of all random covariance matrices, 𝑛# is the number of 

observations in cluster j, and 𝐒DE is the within-cluster residual sum of squares and cross-products 

matrix for cluster j. Importantly, allowing the covariance matrices to vary across clusters differs 

from the classic joint model formulation (Schafer, 2001; Schafer & Yucel, 2002) and provides a 

mechanism for preserving random slope variation. 

 The computational machinery for joint model imputation uses an iterative Markov chain 

Monte Carlo (MCMC) algorithm consisting of two major steps. At each iteration, the algorithm 

first uses Bayesian estimation to generate model parameters and level-2 deviation scores, 

conditional on the filled-in data from the previous cycle, after which it updates imputations, 
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conditional on the current estimates. The estimation sequence generates a coefficient vector, 𝛄, 

between-cluster covariance matrix, 𝚺A, level-2 deviation scores, 𝐮 = [𝑢(4), 𝑢(6), 𝑢(:)\, and a set 

of J within-cluster covariance matrices, 𝚺]D = B𝚺D^, … , 𝚺D`C. The distribution of the random 

covariance matrices across all clusters requires two additional parameters, the degrees of 

freedom and scale matrix, 𝜐 and S (i.e., parameters defining the distribution’s center and spread, 

respectively). Roughly speaking, 𝜐 and S can be can be viewed as quantities that define a pooled 

level-1 covariance matrix. 

The Bayesian estimation sequence views model parameters as random variables, and it 

uses Monte Carlo computer simulation to “sample” plausible estimates from a series of 

probability distributions. Specifically, each iteration t of the MCMC algorithm applies the 

following estimation steps to the filled-in data 

 

1. Sample a coefficient vector �̇�(b) from 𝒩B𝛄	|�̇�(bd(), 𝚺]̇D
(bd(),	dataC 

2. Sample the level-2 covariance matrix �̇�A
(b) from 𝐼𝒲[𝚺A	|	�̇�(bd(),	data\ 

3. Sample the scale matrix �̇�(b) from ℐ𝒲 B𝐒	|	�̇�(bd(), 𝚺]̇D
(bd(),	dataC 

4. Sample the scalar degrees of freedom �̇�(b) from 𝑓 B𝜐	|	𝚺]̇D
(bd(),	dataC 

5. Sample level-2 residuals �̇�(b) from 𝒩B𝐮	|	�̇�(b), �̇�A
(b), 𝚺]̇D

(bd(),	dataC 

6. Sample level-1 covariance matrices �̇�DE
(b) from	ℐ𝒲 B𝚺DE	|	�̇�

(b), �̇�(b), �̇�(b), �̇�(b), dataC 

(4) 

 

where 𝒩 and ℐ𝒲 are normal and inverse Wishart distributions, respectively, and the dot accents 

denote synthetic estimates generated via Monte Carlo computer simulation (van Buuren, 2012). 
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The full conditional distributions of 𝛄, 𝚺A, and 𝐮 are given in a variety of resources that describe 

the classic joint model formulation (Carpenter & Kenward, 2013; Goldstein et al., 2009; Schafer 

& Yucel, 2002; Yucel, 2011)2. The conditional distributions of 𝜐 and S are based on aggregate 

information from 𝚺]D (Yucel, 2011, p. 359), and the final sampling step draws random covariance 

matrices from a distribution that leverages this pooled information as well as cluster-specific 

variation (see Equation 3). Finally, we use the generic symbol 𝑓 to denote the conditional 

distribution of 𝜐 because this quantity does not follow a standard parametric form. In addition to 

Yucel (2011), interested readers can consult Carpenter and Kenward (2013) and Quartagno and 

Carpenter (2016b) for additional technical details, including a discussion of prior distributions. 

After estimating the parameters and random effects, a final MCMC step updates missing 

values by sampling imputations from a multivariate normal distribution, the center and spread of 

which depend on the multilevel model parameters and level-2 residual terms. 

 

⎝

⎜
⎛
�̇�"#
(b)

�̇�"#
(b)

�̇�#
(b)

⎠

⎟
⎞
~	𝒩 B�̇�(b) + �̇�#

(b), �̇�DE
(b)C (5) 

 

Recall that w has no within-cluster variation, so each �̇�# is simply the sum of a grand mean and 

between-cluster residual term (i.e., �̇�# = �̇�(:) + �̇�#(:)). The updated version of the completed 

data set carries forward to the next iteration, where MCMC estimation steps provide new 

 
2 Cluster-specific covariance matrices replace a common within-cluster matrix in the classic joint 
model formulation, but the probability distributions for 𝛄, 𝚺A, and 𝐮 are otherwise the same. The 
joint model uses improper uniform prior distributions for the coefficients and level-2 residual 
terms. Both the level-1 and level-2 covariance matrices use Wishart prior distributions with 
identity scale matrices and degrees of freedom equal to the dimension of the respective matrices. 
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parameter estimates and residual terms for the next round of imputation. The desired number of 

imputed data sets is obtained by iterating the MCMC algorithm and culling data sets at specified 

intervals in the chain (Schafer, 1997; Schafer & Olsen, 1998). 

Compatibility of Imputation and Analysis Models 

 A vital consideration with multiple imputation is whether (and how) the imputation 

model preserves features of the analysis; methodologists have described this issue as 

congeniality (Meng, 1994; Schafer, 2003) and more recently as compatibility (Bartlett, Seaman, 

White, & Carpenter, 2014; Carpenter & Kenward, 2013). Yucel (2011) explained that modeling 

heterogeneous covariance matrices is “mimicking the idea underlying random effects” (p. 352), 

but he did not specifically examine random coefficient models3. The covariance matrix 

formulation makes it difficult to see which parts of the imputation model are preserving 

important features of the random slope analysis, but we can informally explore compatibility by 

using estimates of 𝚺DE and 𝚺A to define within- and between-cluster regression parameters that 

are analogous to those of the analysis model. To be clear, we are not examining whether the 

random coefficient analysis and imputation model are formally compatible with the joint 

distribution of the population. Rather, we are deriving regression model parameters as functions 

of 𝚺DE and 𝚺A in order to highlight major similarities and differences between the imputation and 

analysis models. Quartagno and Carpenter (2016b) provide a similar assessment in the context of 

meta-analysis models. 

 
3 Quartagno and Carpenter (2016b) considered the application of random covariance matrices to 
various meta-analysis models. 
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 To begin, consider the level-1 part of the imputation model from Equation 2. The 𝚺DE 

matrix contains variances and covariances of within-cluster deviation scores for cluster j, which 

we use to define a level-1 regression model with 𝜀"#(6) predicting 𝜀"#(4) 

 

[𝑦"# − 𝜇#(4)\ =
𝜎DE(M,L)
𝜎DE(M)
* [𝑥"# − 𝜇#(6)\ + 𝑒"# = 𝜋(#[𝑥"# − 𝜇#(6)\ + 𝑒"# 

(6) 

𝜎1E
* = 𝜎DE(L)

* − 𝜋(#* 𝜎DE(M)
*  

 

where 𝜋(# is the slope coefficient for cluster j, 𝑒"# is a within-cluster residual for observation i in 

cluster j, and 𝜎1E
*  is the corresponding residual variance for that group. Equation 6 clearly shows 

that the random covariance matrices are responsible for preserving slope variation, as these 

parameters imply a unique regression coefficient for each group, 𝜋(#. Importantly, the level-1 

model has no mean structure or intercept that varies across level-2 units because the within-

cluster deviation scores have an expectation of zero in all groups. To facilitate our subsequent 

comparison with the analysis model, we express the cluster-specific slopes as a function of an 

average coefficient and a between-cluster residual term, 𝜋(# = 𝛾( + 𝑔(#. Substituting the right 

side of this expression into Equation 6 gives the following level-1 regression model. 

 

[𝑦"# − 𝜇#(4)\ = 𝛾([𝑥"# − 𝜇#(6)\ + 𝑔(#[𝑥"# − 𝜇#(6)\ + 𝑒"# (7) 

 

Next, the 𝚺A matrix contains variances and covariances of between-cluster deviation 

scores, which we can use to define a level-2 multiple regression model with 𝑢#(6) and 𝑢#(:) 

predicting 𝑢#(4) 
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[𝜇#(4) − 𝛾(4)\ = 	 j[𝜇#(6) − 𝛾(6)\ [𝑤# − 𝛾(:)\k l
𝜎A(M)
* 𝜎A(M,N)

𝜎A(N,M) 𝜎A(N)
* m

d(

n
𝜎A(M,L)
𝜎A(N,L)

o + 𝑔&#	

= 	 j[𝜇#(6) − 𝛾(6)\ [𝑤# − 𝛾(:)\k p
𝛾*
𝛾qr + 𝑔&# 

(8) 

𝜎st
* = 𝜎A(L)

* − p
𝛾*
𝛾qr

u
l
𝜎A(M)
* 𝜎A(M,N)

𝜎A(N,M) 𝜎A(N)
* m p

𝛾*
𝛾qr 

 

where 𝛾* and 𝛾q are between-cluster slope coefficients, 𝑔&# is a residual that captures 

unexplained variation in the cluster means, and 𝜎st
*  is the residual variance.  

Finally, combining the right and left sides of the within- and between-cluster regression 

equations and adding the grand mean of y to each side of the resulting expression gives a model 

with the same form as the random coefficient analysis. 

 

𝑦"# = 𝛾(4) + 𝛾([𝑥"# − 𝜇#(6)\ + 𝛾*[𝜇#(6) − 𝛾(6)\ + 𝛾q[𝑤# − 𝛾(:)\	

+	𝑔&# + 𝑔(#[𝑥"# − 𝜇#(6)\ + 𝑒"# 
(9) 

 

Comparing Equations 1 and 9 reveals three important differences between the imputation and 

analysis models, one of which is potentially problematic. First, Equation 9 includes an additional 

regression slope that partitions the relation between x and y into distinct within- and between-

cluster components (i.e., 𝛾( and 𝛾*, respectively), as in the classic contextual effects model 

(Enders, 2013; Kreft, de Leeuw, & Aiken, 1995; Longford, 1989; Lüdke, Marsh, Robitzsch, & 

Trautwein, 2011). Second, the imputation model accommodates a heterogeneous within-cluster 

residual variance structure (e.g., 𝜎1E
*  from Equation 6), whereas the analysis model assumes 
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constant variance. Incompatibilities such as these that arise from a rich imputation model with 

ancillary parameters are usually not problematic and may even be beneficial (Collins, Schafer, & 

Kam, 2001; Meng, 1994; Schafer, 2003). Although Equations 6 through 9 clearly confirm that 

random covariance matrices mimic random effects, they highlight an important caveat. 

Specifically, because 𝚺DE and the corresponding within-cluster regression model do not include a 

mean structure or intercept that varies across level-2 units, between-cluster variation in 𝜋(# (or 

equivalently, 𝑔(#) is necessarily orthogonal to functions of 𝚺A, notably the between-cluster 

residual term, 𝑔&#. Consequently, an imputation model based on random covariance matrices 

could only be approximately compatible with a random coefficient analysis with uncorrelated 

intercepts and slopes (i.e., a block-diagonal 𝚺/). This restriction could be detrimental to analyses 

where the level-2 covariance captures an interesting substantive phenomenon (e.g., growth 

models where initial status informs change rates). 

Fully Conditional Specification 

Whereas joint model approach uses a multivariate regression model to generate 

imputations, fully conditional specification cycles through incomplete variables one at a time, 

generating imputations from a sequence of univariate multilevel models that feature an 

incomplete variable regressed on all remaining variables, complete and previously imputed 

(Enders et al., 2017; Enders et al., 2016; van Buuren, 2011, 2012). Consistent with the previous 

section, we alter our notation (e.g., replacing 𝛽s with 𝛾s, etc.) to clearly differentiate the 

imputation and analysis models, and we use alphanumeric subscripts to associate parameters to 

specific variables (e.g., 𝛾(4) and 𝛾(6)). 

Returning to the random slope analysis from Equation 1, fully conditional specification 

applies the following imputation models 
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𝑦"# = 𝛾&(4) + 𝛾((4)𝑥"# + 𝛾*(4)𝑤# + 𝛾q(4)�̅�# + 𝑢&#(4) + 𝑢(#(4)𝑥"# + 𝜀"#(4) 

(10) 
B
𝑢&#(4)
𝑢(#(4)C ~𝒩[𝟎, 𝚺A(4)\			𝜀"#(4)~𝒩[0, 𝜎D(4)* \ 

 

𝑥"# = 𝛾&(6) + 𝛾((6)𝑦"# + 𝛾*(6)𝑤# + 𝛾q(6)𝑦x# + 𝑢&#(6) + 𝑢(#(6)	𝑦"# + 𝜀"#(6) 

(11) 
B
𝑢&#(6)
𝑢(#(6)C~𝒩[𝟎, 𝚺A(6)\			𝜀"#(6)~𝒩[0, 𝜎D(6)* \ 

 

𝑤# = 𝛾&(:) + 𝛾((:)𝑦x# + 𝛾*(:)�̅�# + 𝑢&#(:) 
(12) 

𝑢&#(:)~𝒩[0, 𝜎A(:)* \ 

 

where �̅�# and 𝑦x# are the level-2 cluster means computed from the imputed data for cluster j, 𝑢&#(∙) 

and 𝑢(#(∙) are now between-cluster residual terms, and 𝜀"#(∙) is a within-cluster residual with 

constant variance 𝜎D(∙)* . Notice that the round-robin imputation scheme features the outcome from 

one equation (the target of imputation) as a predictor in all other equations. Importantly, the 

models use a “reverse random coefficient” approach (Grund, Lüdke, et al., 2016) preserve 

random slope variation, whereby x is a random predictor in the y imputation model, and vice 

versa. Also, note that latent rather than manifest variable group means can be used to preserve 

between-cluster variation among the incomplete variables (Grund, Lüdke, & Robitzsch, 2017). 

Analytic and simulation results suggest that manifest cluster means provide good performance in 

most situations but can introduce slight biases with low intraclass correlations, few observations 

per cluster, and extremely unbalanced cluster sizes (Grund et al., 2017). 
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Like joint model imputation, fully conditional specification employs an iterative MCMC 

algorithm that generates Bayesian estimates of model parameters and level-2 residual terms, 

conditional on the filled-in data, after which it updates the imputations, conditional on current 

estimates and residuals. Each iteration applies these estimation and imputation steps to the 

incomplete variables in a sequence. The model parameters for an incomplete level-1 variable q 

include a coefficient vector, 𝛄(y), level-2 residuals, 𝐮(y), within-cluster residual variance 𝜎D(y)* , 

and the level-2 residual covariance matrix 𝚺A(y), whereas level-2 imputation requires only the 

coefficients and residual variance (see Equation 12). Consistent with the joint model, Monte 

Carlo computer simulation samples plausible estimates from the series of probability 

distributions given below. 

 

1. Sample a coefficient vector 	�̇�(y)
(b)  from 𝒩B𝛄(y)	|	�̇�(y)

(bd(), �̇�D(y)
*(bd(),	dataC 

2. Sample level-2 residuals �̇�(y)
(b)  from 𝒩B𝐮(y)	|	�̇�(y)

(b) , �̇�D(y)
*(bd(), �̇�A(y)

(bd(),	dataC 

3. Sample level-1 residual variance �̇�D(y)
*(b) from	ℐ𝒲 B𝜎D(y)* 	|		�̇�(y)

(b) , �̇�(y)
(b) ,	dataC 

4. Sample the level-2 covariance matrix �̇�A(y)
(b)  from ℐ𝒲 B𝚺A(y)	|	�̇�(y)

(b) ,	dataC 

(13) 

 

As before, the dot accents denote synthetic values generated via Monte Carlo simulation (van 

Buuren, 2012). A variety of resources provide the technical details about these distributions 

(Browne & Draper, 2000; Enders et al., 2017; van Buuren, 2012)4. 

 
4 As described in the technical appendix of Enders et al. (2017) improper uniform prior 
distributions are adopted for the coefficients and level-2 residual terms. The inverse Wishart 
distribution for the level-2 covariance matrices 𝚺A(y) implemented an identity prior with p + 1 
degrees of freedom, which is a common recommendation in the literature. Similarly, the inverse 
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After estimating the parameters and random effects for incomplete variable q, a final 

MCMC step updates missing values by sampling imputations from a univariate normal 

distribution, the center and spread of which depend on the model parameters. The imputation 

steps for our example are as follows. 

 

𝑦"#
(b)	~	𝒩B�̇�&(4) + �̇�((4)�̇�"#

(bd() + �̇�*(4)�̇�#
(bd() + �̇�q(4)�̅̇�#

	(bd() + �̇�&#(4) + �̇�(#(4)�̇�"#
(bd(), �̇�D(4)

* C (14) 

 

�̇�"#
(b)	~	𝒩B�̇�&(6) + �̇�((6)�̇�"#

(b) + �̇�*(6)�̇�#
(bd() + �̇�q(6)�̇�x#

	(b) + �̇�&#(6) + �̇�(#(6)�̇�"#
(b), �̇�D(6)

* C (15) 

 

�̇�#
(b)	~	𝒩B�̇�&(:) + �̇�((:)�̇�x#

	(b) + �̇�*(6)�̅̇�#
	(b), �̇�A(:)

* C (16) 

 

To simplify notation, we omit the iteration superscript from the parameters and residual terms 

because these quantities always originate from iteration t. 

Compatibility of Imputation and Analysis Models 

Consistent with the joint model, the imputation models in Equations 10 and 11 are more 

flexible than necessary because they include a contextual effects-type specification that partitions 

the relation between x and y into unique within- and between-cluster components (Carpenter & 

Kenward, 2013; Enders et al., 2017; Enders et al., 2016)5. The primary problem with fully 

conditional specification is its use of reverse regression to preserve random slope variation (e.g., 

y is a random predictor of x, and vice versa). As noted previously, simulation studies suggest that 

 
Wishart prior for the residual variance uses a scale parameter of unity with two degrees of 
freedom. 
5 Carpenter and Kenward (2013, p. 220) attribute the idea of including cluster means as 
predictors to a personal communication from Ian White. 
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this strategy can produce negatively biased slope variance estimates (Enders et al., 2017; Enders 

et al., 2016; Grund, Lüdke, et al., 2016), and an incorrect distributional assumption appears to be 

responsible for this problem (Enders et al., 2017, October). Specifically, when a random 

predictor is missing, assuming a normal distribution for the level-2 residuals in the analysis or y 

imputation model precludes the possibility that the corresponding residuals from the reverse 

regression are also normal. MCMC estimation violates this assumption when it samples level-2 

residuals for x’s imputation model in Equation 11. A related issue occurs in the single-level 

context with reverse regressions that include a product term (Bartlett et al., 2014; Gelman & 

Raghunathan, 2001). 

To provide additional insight into the incompatibility problem, we can express the 

random effects from the reverse regression as a function of the corresponding terms from the 

analysis model. To begin, we solve for x in the analysis model as follows. 

  

𝑥"# =
𝑦"# − [𝛽& + 𝛽*𝑤# + 𝑏&# + 𝑒"#\

𝛽( + 𝑏(#
(17) 

 

Next, the right side of this expression replaces 𝑥"# in the left side of the reverse random 

coefficient model in Equation 11. For simplicity, we omit the cluster means from the right side of 

the imputation model since they do not appear in the analysis. Finally, solving for the imputation 

model’s random effects gives the following expressions. 

 

𝛾&(6) + 𝑢&#(6) =
−[𝛽& + 𝑏&#\
𝛽( + 𝑏(#

 (18) 
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𝛾((6) + 𝑢(#(6)	 =
1

𝛽( + 𝑏(#	
 

𝜀"#(6) =
−𝑒"#	

𝛽( + 𝑏(#	
 

 

Equation 18 shows that assuming normality for 𝑏&# and 𝑏(# precludes the possibility that 𝑢&#(6), 

𝑢(#(6), and 𝜀"#(6) are normal because neither the inverse of a normal variate nor the ratio of two 

Gaussians are members of the normal distribution family. In fact, the above expressions can be 

quite skewed and kurtotic. Consequently, applying the MCMC estimation steps from Equation 

13 to the reverse random coefficient model violates a key distributional assumption that ends up 

impacting imputation quality. As an aside, this issue does not occur when x is complete, nor does 

it occur in random intercept models. 

Computer Simulation Study 

To date, the only study to examine imputation with random covariance matrices did so in 

the context of individual patient data meta-analysis (Quartagno & Carpenter, 2016b), and it did 

not examine fully conditional specification. Given the compatibility issues highlighted 

previously, it is important to understand the relative strengths and weaknesses of these two 

approaches, as they will not necessarily produce comparable results. To address this gap in the 

literature, we designed a Monte Carlo simulation study with two within-subjects factors (missing 

data handling method and cause of missingness) and five between-subjects factors: intraclass 

correlation (ICC = .10 and .50), residual correlation between the random intercepts and slopes (0 

and .50), number of clusters (J = 15, 30, and 100), within-cluster sample size (nj = 5, 15, 30, and 

50), and MAR missing data rate (10%, 20%, and 30%). We generated 2000 artificial data sets 

within each of the 144 between-subjects design cells, resulting in 288,000 replications.  
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Previous studies of fully conditional specification (Enders et al., 2017; Grund, Lüdke, et 

al., 2016) and recommendations from the literature guided our design choices. For example, the 

ICC values of .10 and .50 are common in published applications and are consistent with those 

from cross-sectional and repeated measures designs, respectively (Gulliford, Ukoumunne, & 

Chinn, 1999; Hedges & Hedberg, 2007; Murray & Blitstein, 2003; Spybrook et al., 2011). In 

choosing the level-1 and level-2 sample sizes, we attended to recommendations from the 

literature (Kreft & de Leeuw, 1998; Maas & Hox, 2005), but we also selected small values 

capable of introducing bias (McNeish & Stapleton, 2016). It is difficult to identify typical 

missing data rates because published manuscripts do not routinely report this information, so we 

selected values large enough to expose small-sample biases in variance estimates (Enders et al., 

2017). 

Data Generation 

 The random coefficient analysis from Equation 1 served as the true population model for 

the simulations. The data generation procedure also included level-1 and level-2 auxiliary 

variables, a1 and a2, respectively. As described later, a1 determined missingness probabilities for 

x in one of the simulations (y was the cause of missingness in the second), and a2 always served 

as the cause of missingness on w. To specify effect sizes on a convenient metric, we used the 

values in Table 1 to define the total correlations among the variables. We chose correlations of 

.30 to align with Cohen’s (1988) medium effect size benchmark, and we set the correlations 

between the analysis and auxiliary variables to .40 to ensure that bias would result if these 

additional variables are omitted from imputation (Collins et al., 2001). We also set the 

correlation between x and y to .40 so we could manipulate the cause of missingness (i.e., a1 or y) 

without changing the strength of the MAR selection mechanism. 



RANDOM COEFFICIENT MODELS WITH MISSING DATA  21 

 We solved for the population parameters using the following steps. First, we fixed the 

total variance of all variables to unity. The level-2 predictor w and the auxiliary variables had all 

variation assigned to a single level, whereas x and y had variation at both levels, with between-

cluster variance set to either .10 or .50 (ICC = .10 and .50, respectively). Second, we computed 

the level-1 and level-2 covariance matrices, 𝚺(() and 𝚺(*), by pre- and post-multiplying the total 

correlation matrix by a diagonal matrix containing the level-1 or level-2 standard deviations 

(e.g., in the ICC = .10 condition the level-1 and level-2 standard deviations of x (or y) were √. 90 

and √. 10, respectively). The total covariance matrix was the sum of the within- and between-

cluster matrices (i.e., 𝚺 = 𝚺(() + 𝚺(*)). Third, we used the following expressions to solve for the 

model parameters 

 

𝛃 = 𝚺(6:)d( 𝚺(4,6:) 

(19) 

𝜎/^
* = .40B𝜎4

*(*)C 

𝜎1* = 𝜎4
*(() − 𝛃u𝚺(6:)

(() 𝛃 − 𝜎/^
* 𝜎6

*(() 

𝜎/t
* = 𝜎4

*(*) − 𝛃u𝚺(6:)
(*) 𝛃 − 𝜎/^

* 𝜎6
*(*) 

𝜎/t/^ = 𝑟/t/^[𝜎/t
* 𝜎/^

* \d* 

𝛽& = 5 

 

where 𝚺(6:), 𝚺(6:)
(() , and 𝚺(6:)

(*)  are submatrices containing the variances and covariances of the 

predictors, 𝚺(4,6:) is a vector containing covariances between the outcome and predictors, 𝜎4
*(() 

and 𝜎4
*(*) (or 𝜎6

*(() and 𝜎6
*(*)) are within- and between-cluster variances, respectively, 𝑟/t/^ is the 
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correlation between the intercepts and slopes. We somewhat arbitrarily set the slope variance 

equal to 40% of the between-cluster variance, reasoning that this parameter should be large 

enough to reveal important differences between the imputation methods.  

Applying the previous expressions produced the parameter values in Equation 20. We 

then used the following steps to generate the data: (a) sample the within- and between-cluster 

components of the predictor variables from a normal distribution with zero means and 

covariance matrices of 𝚺(6:)
(()  and 𝚺(6:)

(*) , respectively, (b) compute x as the sum of its within- and 

between-cluster deviation scores, (c) sample 𝑏&# and 𝑏(# from a normal distribution with zero 

means and a covariance matrix 𝚺/, (d) sample 𝑒"# from a normal distribution with variance 𝜎1*, 

and (e) compute 𝑦"# as a weighted sum of x, w, 𝑏&#, 𝑏(#, and 𝑒"#, as in Equation 20. The R data 

generation script is available upon request from the first author. 

 

ICC = .10 

𝑦"# = 5.00 + .395[𝑥"#\ + .057[𝑤#\ + 𝑏&# + 𝑏(#𝑥"# + 𝑒"# 

(20) 

𝚺/ = p. 073 . 027
. 027 . 040r 	or	 p

. 073 0
0 . 040r,			𝜎1

* = 	 .734 

ICC = .50 

𝑦"# = 5.00 + .372[𝑥"#\ + .133[𝑤#\ + 𝑏&# + 𝑏(#𝑥"# + 𝑒"# 

𝚺/ = p. 292 . 121
. 121 . 200r 	or	 p

. 292 0
0 . 200r,			𝜎1

* = 	 .331 

 

As noted previously, either the level-1 auxiliary variable a1 or the outcome y determined 

missing values on x, and a2 served the same role for w. In all cases, higher scores on the cause of 

missingness produced higher rates of missing data. Using a logistic regression model, we defined 

the level-1 missingness probability for each observation as  
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𝑝"# =
𝑒�t��^��E

1 + 𝑒�t��^��E
(21) 

 

where 𝜆& and 𝜆( are intercept and slope coefficients, respectively, and 𝑧"# is the standardized 

version of a1 or y. Using the latent variable formulation for logistic regression (Agresti, 2012; 

Johnson & Albert, 1999), we derived coefficients that produced the desired missing data rate 

while maintaining a .50 correlation between the cause of missingness and the underlying normal 

propensity for missing data. The slope coefficient was 𝜆( = 1.815, and the intercept coefficients 

for the 10%, 20%, and 30% missing data rates were approximately 𝜆& = -3.22, -2.10, and -1.31. 

Substituting 𝑧 into Equation 21 produced an N-row vector of level-1 missingness probabilities, 

and we subsequently created an N-row vector of missing data indicators (0 = observed, 1 = 

missing) by sampling binary values from a binomial distribution with success rate equal to each 

observation’s missingness probability. An identical procedure produced missing values on w, 

such that 𝑝# and 𝑧# (the standardized version of a2) replaced 𝑝"# and 𝑧"# in the logistic function. 

Because different auxiliary variables determined level-1 and level-2 missingness, this deletion 

process induced a general missing data pattern where x or w (or both) could be missing for a 

particular observation. 

Imputation, Estimation, and Outcomes 

 We used the R package jomo (Quartagno & Carpenter, 2016a) for joint model imputation 

and the Blimp application (Enders et al., 2017) for fully conditional specification. To diagnose 

convergence of the MCMC algorithm, we used Blimp to generate potential scale reduction 

factors (Gelman & Rubin, 1992) for a single replication in every design cell. These diagnostic 

values generally reached acceptable levels (e.g., < 1.05) in fewer than 1500 iterations. Based on 
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these convergence diagnostics, we generated 20 imputations6 (Graham, Olchowski, & Gilreath, 

2007) from MCMC chains with 50,000 iterations, such that the first data set was saved after the 

2500th iteration and the remaining data sets were saved every 2500 iterations thereafter (i.e., in 

Blimp, we set the burn-in and thinning intervals to 2500). We relied on the default prior 

distributions of each software package under the assumption that most researchers would do the 

same. The imputation models for both procedures included the three analysis variables and two 

auxiliary variables. We used Mplus 8 (Muthén & Muthén, 1998–2017) to fit the analysis model 

to the multiply imputed data sets, and we wrote a custom R program to pool the resulting 

estimates and standard errors. All computational tasks were executed on UCLA’s Shared 

Hoffman2 Cluster, and we used a Linux shell script to coordinate the simulation components. 

The simulation code is available upon request from the first author. 

We examined three outcomes, relative bias, mean squared error, and confidence interval 

coverage. Relative bias was computed as the difference between an average estimate and the true 

population value divided by the true value and multiplied by 100 (i.e., bias as a percentage of the 

true value). In the conditions with orthogonal random effects, we used the non-zero covariances 

from Equation 20 as the divisor of the relative bias expression to avoid dividing by zero. 

Published simulation studies often define relative bias less than 10% in absolute value as 

acceptable (Finch, West, & MacKinnon, 1997; Kaplan, 1988). Mean squared error (MSE) is the 

average squared difference between an estimate and its true population value. This outcome is an 

overall measure of accuracy that captures the sum of squared bias and sampling variance. To 

facilitate interpretation, we defined an MSE ratio as MSEJM / MSEFCS, such that values greater 

 
6 When considering the design of the study, we examined a subset of results with 5 and 100 
imputations. Because bias values were effectively the same in both situations, we adopted 
Graham et al.’s (2007) recommendation to use 20 imputations. 
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than unity favor fully conditional specification (i.e., the joint model had larger squared errors), 

whereas values less than one favor the joint model. Finally, 95% confidence interval coverage 

was computed as the proportion of estimates where the 95% symmetric confidence interval (i.e., 

the estimate plus or minus 1.96 standard error units) included the true parameter value. Values 

lower than the nominal 95% rate reflect Type I error inflation (e.g., a coverage value of 90% 

suggests a twofold increase in Type I errors), whereas values greater than 95% reflect 

conservative inference. Confidence interval coverage is an indicator of standard error quality 

when estimates are unbiased. We consider coverage for only the slope coefficients because the 

literature argues that symmetric confidence intervals are inappropriate for variance estimates 

(Maas & Hox, 2005; Snijders & Bosker, 2012). 

Results 

The results are organized as follows. We begin by discussing the scenario where auxiliary 

variables determine missingness and the random intercepts and slopes are uncorrelated in the 

population. This situation is a useful baseline because the random covariance matrix approach 

should be approximately compatible with the data-generating model. Next, we examine the same 

missingness mechanism with correlated random effects. As described previously, this correlation 

should be detrimental to the joint model because imputation uses fewer parameters than the data-

generating process. We did not expect this correlation to meaningfully influence fully 

conditional specification. Finally, we discuss any differences that result from an MAR 

mechanism where the outcome variable causes missingness in x. In the interest of space, we use 

a limited set of figures to highlight the main findings, and we present the results for all 

combinations of conditions in the online supplemental material [included here for reviewers]. 

Missingness Due to Auxiliary Variables and Uncorrelated Random Effects  
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Figures 1 and 2 are trellis plots displaying relative bias for the ICC = .10 simulation with 

15 and 30 clusters, respectively. In the interest of space, we relegate the 100-cluster plot to the 

online supplemental material because it was comparable to Figure 2. The figures highlight a few 

general trends. Not surprisingly, increasing the number of clusters from 15 to 30 reduced bias, 

particularly for the 𝛽* coefficient and the intercept variance, estimates that rely heavily on the 

number of level-2 units. Similarly, increasing the within-cluster sample size from 5 to 15 reduced 

bias, but further increasing the group sizes did not impact most parameters. With the exception 

of the slope variance, using 30 clusters with at least 15 observations per group produced 

imputation estimates that exhibited roughly the same bias as complete-data estimates, even with 

30% missing data. 

Figures 1 and 2 suggest that both imputation approaches had difficulty preserving random 

slope variation, although they errored in different directions and by different amounts. 

Specifically, the joint model overestimated slope variance, with bias decreasing to reasonable 

levels (e.g., less than 10% in absolute value) when the within-cluster sample size was 30 or 

larger. The reliance on the within-cluster sample size is not surprising given that joint model uses 

random level-1 covariance matrices to preserve random slope variation (see Equation 6). On the 

other hand, fully conditional specification consistently underestimated slope variance, and the 

magnitude of this bias did not decrease in larger samples. Rather, bias was largely a function of 

missingness, with values exceeding 10% in absolute value at a 20% missing data rate. 

The trellis plots in Figures 3 and 4 display relative bias for the ICC = .50 simulation with 

15 and 30 clusters, respectively. The major trends from the ICC = .10 simulations were also 

evident here, so we do not reiterate these results. The primary difference in Figures 3 and 4 is 

that the joint model slope estimates were negatively rather than positively biased. We suspect 



RANDOM COEFFICIENT MODELS WITH MISSING DATA  27 

that the prior distribution (an inverse Wishart with identity scale matrix) is responsible for this 

change, perhaps because its mass better approximates that of the likelihood function. As before, 

the bias decreased to reasonable levels with group sizes of 30 or larger. 

Mean squared error ratios provide additional information about the relative performance 

of the two imputation approaches. Recall that mean squared error captures the overall accuracy 

of an estimate, with ratios greater than unity favoring fully conditional specification (i.e., joint 

model estimates were further from their true values, on average). For brevity, we report average 

ratios across the fixed regression coefficients and the level-2 covariance matrix elements and do 

not consider ratios for individual parameters. However, the online supplemental material 

includes trellis plots of the mean squared error ratios for all conditions. Mean squared error ratios 

for the regression coefficients favored fully conditional specification, albeit slightly, with 

average ratio values of approximately 1.02. The ratios for the level-2 covariance matrix differed 

by intraclass correlation. Fully conditional specification was superior in the ICC = .10 

conditions, with average ratio values of approximately 1.10, whereas the joint model was 

superior in the ICC = .50 conditions, with average ratios of about .96. 

No additional figures are needed to convey the confidence interval coverage results. 

Collapsing across other design cells, the average coverage value for the joint model regression 

slopes was .94 (min = .88, max = .99), and the corresponding average for fully conditional 

specification was .93 (min = .89, max = .99). To further convey the results, we examined the 

percentage of design cells with coverage values between .925 and .975, an interval defining the 

so-called liberal criterion from Bradley (1978). These results varied by intraclass correlation but 

consistently favored joint model imputation. Specifically, in the ICC = .10 simulations, 

approximately 81.9% of the joint model coverage values fell in Bradley’s interval, as compared 
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to 75% for fully conditional specification. In the ICC = .50 conditions, the corresponding values 

were 75% and 59.7%. 

Missingness Due to Auxiliary Variables and Correlated Random Effects  

 Next, we consider the results from the simulation conditions where the residual 

correlation between the random intercepts and slopes equaled .50. As described previously, a 

non-zero covariance should be detrimental to the joint model because imputation uses fewer 

parameters than the data-generating process. To illustrate these results, the trellis plot in Figure 5 

displays relative bias values from the ICC = .50 condition with 30 clusters. As expected, the joint 

model underestimated the level-2 covariance, although the magnitude of this bias was not as 

large as one might expect. In particular, bias was generally in a tolerable range (e.g., less than 

10% in absolute value) if the missing data rate was 20% or less. Consistent with the previous 

results, joint model imputation improved as the within-cluster sample size increased. Mean 

squared error ratios were largely similar to those from the simulation with uncorrelated random 

effects. For example, ratios for the level-2 covariance matrix elements again differed by 

intraclass correlation, with average ratio values of about 1.06 and .93 in the ICC = .10 and .50 

conditions, respectively. 

Missingness Due to the Outcome Variable  

 To explore whether our simulation results can generalize to other MAR processes, we 

repeated the previous simulations, this time treating y as the cause of missingness on x. The 

level-2 auxiliary a2 again determined missingness for w, and the imputation routines always 

included both auxiliary variables. Manipulating the cause of missingness produced no 

meaningful changes to the results. For completeness, the online supplemental material includes a 

full set of trellis plots displaying relative bias, but no additional plots are needed to convey these 
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results here. Similarly, the mean squared error ratios and confidence interval coverage results 

were virtually identical to those from the previous simulation, so no further discussion of these 

results is warranted. 

Real Data Example 

In this section we use the R package jomo (Quartagno & Carpenter, 2016a) and the 

Blimp application (Enders et al., 2017) to illustrate joint model imputation and fully conditional 

specification, respectively. The Blimp application for macOS, Windows, and Linux is a free 

download available at www.appliedmissingdata.com/multilevel-imputation. The data set for the 

analysis mimics a cluster-randomized design from an educational study of math achievement 

where 50 schools with 25 students each are randomly assigned to a novel math curriculum 

condition (the intervention) or a standard curriculum condition (the control) (Montague, Krawec, 

Enders, & Dietz, 2014). The analysis model examines the influence of the intervention dummy 

code (0 = control, 1 = intervention), controlling for math self-efficacy and teacher experience in 

years. 

 

𝑚𝑎𝑡ℎ"# = 𝛽& + 𝛽([𝑚𝑎𝑡ℎ𝑠𝑒"#\ + 𝛽*[𝑡𝑒𝑎𝑐ℎ𝑒𝑥𝑝#\ + 𝛽q[𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛#\ 

+	𝑏&# + 𝑏(#[𝑚𝑎𝑡ℎ𝑠𝑒"#\ + 𝑒"# 
(22) 

 

The intervention dummy code is complete but all other analysis variables have missing values. 

For the purposes of the analysis example, we treat math self-efficacy (a 6-point rating scale) as 

continuous, but jomo and Blimp have facilities for imputing categorical variables (Carpenter & 

Kenward, 2013; Enders et al., 2017).  
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The online supplemental material gives the jomo and Blimp syntax files and R code for 

the analysis and pooling steps. The Blimp commands can also be implemented via pull-down 

menus from the graphical user interface (macOS and Windows only). In the jomo package, 

random level-1 covariance matrices are invoked by specifying the imputation method as 

“random”, whereas Blimp denotes a random association by joining two variables with a colon 

(e.g., “math:mathse”) on the MODEL line. We refer readers to the software documentation files 

for additional details on syntax conventions (Enders et al., 2017; Quartagno & Carpenter, 

2016a). Table 2 gives the estimates from the two approaches. Consistent with the simulation 

results, the imputation methods produced similar fixed effect estimates but different variance 

components. In particular, fully conditional specification produced level-2 covariance matrix 

elements that were uniformly smaller than those of joint model imputation. Pooled likelihood 

ratio tests (Meng & Rubin, 1992) obtained from the mitml package (Grund, Robitzsch, & Lüdke, 

2016) indicated that the slope variance (and covariance) were significant, although the joint 

model test statistic was somewhat larger in value at F(2,1176.28) = 13.60, p < .001 versus 

F(2,567.04) = 6.51, p = .002. Of course, it is difficult to form judgments from a single sample, 

but the analysis results highlight that the two imputation approaches can produce divergent 

estimates. 

Discussion 

Procedures for handling multilevel missing data have received less attention in the 

literature relative to single-level analysis problems. Existing research has largely focused on 

random intercept models, and literature addressing random slopes is particularly scant. To date, 

the few studies to examine missing data handling for these models have focused on the fully 

conditional specification framework and “reverse random coefficient” imputation (Enders et al., 
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2017; Grund, Lüdke, et al., 2016). Although it has not received much attention in the literature, a 

joint modeling strategy that uses random within-cluster covariance matrices to preserve cluster-

specific associations (Yucel, 2011) is a promising alternative for random coefficient analyses. 

This approach was recently implemented in the R package jomo (Quartagno & Carpenter, 

2016a), and the only study to examine its performance did so in the context of individual patient 

data meta-analysis (Quartagno & Carpenter, 2016b). 

The primary goal of our manuscript was to compare fully conditional specification to 

joint model imputation with random level-1 covariance matrices. A vital consideration with 

multiple imputation is whether (and how) the imputation model preserves features of the 

analysis, a notion described as congeniality (Meng, 1994; Schafer, 2003) or compatibility 

(Bartlett et al., 2014; Carpenter & Kenward, 2013). Simulation results suggest that fully 

conditional specification can produce negatively biased slope variance estimates (Enders et al., 

2017; Grund, Lüdke, et al., 2016), and we show that an incorrect distributional assumption is 

responsible for this issue; the reverse regression model’s random effects cannot be normally 

distributed if the analysis model’s random effects are also normal (a standard assumption in 

multilevel modeling applications). In a similar vein, we show that joint model imputation with 

random covariance matrices is potentially problematic because it fails to preserve covariation 

between the intercepts and slopes. 

Our simulation results convey a number of take-home messages to substantive 

researchers. First, both imputation procedures generally produced tolerable biases when the 

missing data rate was 10% or less and the sample was comprised of at least 30 clusters with 15 

observations per group. These favorable conditions may encompass a wide range of multilevel 

modeling applications. Second, in terms of overall accuracy, fully conditional specification 
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appears to be superior when the intraclass correlation is low (e.g., ICC = .10), whereas joint 

model imputation is somewhat better when the intraclass correlation is high (e.g., ICC = .50). 

Roughly speaking, this suggests that fully conditional specification is preferable for cross-

sectional data, and the joint model is better for within-subjects designs. Third, the missing data 

pattern is an important determinant of imputation quality. Problems with fully conditional 

specification are generally restricted to incomplete predictors with random slopes, and the 

incompatibilities that we described earlier in the paper would not occur with incomplete 

outcomes or fixed predictors. On the other hand, there is no reason to expect joint model 

imputation to improve if y is missing and x is complete. 

Perhaps the most important take-home message from our study is that neither fully 

conditional specification nor joint model imputation are optimal for random slope analyses with 

incomplete predictors. Fully Bayesian (i.e., model-based) imputation (Erler et al., 2016; Ibrahim, 

Chen, & Lipsitz, 2002; Zhang & Wang, 2017) and its close relative substantive model-

compatible imputation (Bartlett, Seaman, White, & Carpenter, 2014; Enders, Du, & Keller, 

2018; Goldstein, Carpenter, & Browne, 2014) are promising alternatives that are starting to 

receive attention in the literature. Erler et al. (2016) and Grund, Lüdke, and Robitzsch (2018) 

illustrate model-based Bayesian imputation with the JAGS software package (Plummer, 2016), 

and a substantive model-compatible variant of fully conditional specification was recently 

implemented in the Blimp application (Enders et al., 2018; Keller & Enders, 2018). Both 

procedures avoid bias by respecifying the conditional distribution of the incomplete covariates 

(e.g., the problematic reverse random coefficient model from Equation 11) into a composite 

function, the components of which are compatible with the analysis model. Limited simulation 

results suggest that these procedures can provide a rather dramatic improvement over 
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conventional imputation routines when the analysis model includes random coefficients and 

other types of interactive effects (Enders et al., 2018; Grund et al., 2018). For interested readers, 

the online supplemental material gives the Blimp code for applying substantive model-

compatible imputation to a random slope analysis, and this material also gives plots displaying 

relative bias values from a subset of our simulation conditions. Additional analysis examples 

(e.g., for models with interactive terms) are available in the Blimp user guide (Keller & Enders, 

2018). 

Though our study addresses an important gap in the methodological literature, our 

simulations lack generalizability because we necessarily investigated a limited set of conditions. 

Future studies could investigate different combinations of level-1 and level-2 sample sizes, 

different effect sizes, and more complex models. The interaction of model complexity and 

sample size could be particularly important for understanding joint model imputation, given the 

influence of within-cluster sample size on imputation quality. Also, it could be important to 

investigate the impact of unequal group sizes on fully conditional specification, as the imputation 

model for level-2 variables (e.g., see Equation 12) does not directly adjust for the fact that cluster 

means are potentially derived from different numbers of level-1 units. Analytic and simulation 

results suggest that manifest cluster means provide good performance in most situations but can 

introduce slight biases with low intraclass correlations, few observations per cluster, and 

extremely unbalanced cluster sizes (Grund et al., 2017). A future release of Blimp will feature 

the option to invoke the latent cluster mean procedure described in Grund et al. (2017). Next, we 

limited this preliminary comparison to normally distributed variables. Nonnormal continuous 

variables are potentially problematic for multiple imputation (Yuan, Yang-Wallentin, & Bentler, 

2012; Yucel & Demirtas, 2010), so future studies should examine whether the two imputation 
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frameworks are differentially impacted by this common problem. Additionally, both approaches 

readily accommodate incomplete categorical variables; Blimp uses a probit regression 

framework (i.e., latent variable imputation) for ordinal or nominal variables, and jomo offers the 

same functionality for nominal variables (imputation for nominal variables can also 

accommodate ordered categories, albeit it with a richly parameterized model). Although both 

software programs use the same underlying latent variable definition of categorical variables 

(Albert & Chib, 1993; Carpenter & Kenward, 2013; Johnson & Albert, 1999), implementing this 

approach in the joint model framework could greatly accentuate model complexity-related 

issues, particularly with incomplete level-1 variables and random slopes. Finally, it is important 

to emphasize that we considered a rather conventional multilevel regression model. Further 

studies could examine the use of multiple imputation with other covariance structures or analytic 

frameworks (e.g., random intercept models, multilevel structural equation models, generalized 

estimating equations).  

In sum, relatively few studies have examined missing data handling for random 

coefficient models, and ours was the first to compare fully conditional specification to joint 

model imputation with random covariance matrices (Yucel, 2011). Although both approaches 

can introduce bias-inducing incompatibilities, they tend to do so in somewhat different 

situations. Nevertheless, the potential for problematic biases underscores the importance of 

promising new Bayesian imputation procedures (Enders et al., 2017, October; Erler et al., 2016). 
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Table 1 

Population Correlations for Computer Simulation 

  y x w av1 av2 

1. y 1.0 0.4 0.3 0.4 0 

2. x 0.4 1.0 0.3 0.4 0 

3. w 0.3 0.3 1.0 0.0 0.4 

4. av1 0.4 0.4 0.0 1.0 0 

5. av2 0 0 0.4 0 1.0 
 

 

  



RANDOM COEFFICIENT MODELS WITH MISSING DATA  45 

Table 2      

Real-Data Analysis Results       

Fully Conditional Specification 

Effect Est. SE t df p 

Intercept 34.08 2.30 14.79 6324.43 0.00 

Self-Efficacy 1.86 0.34 5.49 751.07 0.00 

Teacher Exp. 0.58 0.14 4.11 8483.01 0.00 

Condition 3.00 1.33 2.25 3188.41 0.02 

Intercept Var. 29.05     

Covariance -5.75     

Slope Var. 2.40     

Residual Var. 89.92     

Joint Model with Random Covariance Matrices 

Effect Est. SE t df p 

Effect 33.97 2.38 14.26 1924.85 0.00 

Self-Efficacy 1.86 0.37 5.01 1818.39 0.00 

Teacher Exp. 0.60 0.14 4.30 5138.86 0.00 

Condition 2.78 1.30 2.15 11586.23 0.03 

Intercept Var. 40.29     

Covariance -9.74     

Slope Var. 3.74     

Residual Var. 89.00         
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Figure 1. Average relative bias values for design cells with ICC = .10 and 15 clusters. Relative 

bias is defined as the difference between an average estimate and the true value expressed as a 

proportion of the true value. The dashed lines represent bias values of ± 0.10. 
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Figure 2. Average relative bias values for design cells with ICC = .10 and 30 clusters. Relative 

bias is defined as the difference between an average estimate and the true value expressed as a 

proportion of the true value. The dashed lines represent bias values of ± 0.10. 
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Figure 3. Average relative bias values for design cells with ICC = .50 and 15 clusters. Relative 

bias is defined as the difference between an average estimate and the true value expressed as a 

proportion of the true value. The dashed lines represent bias values of ± 0.10. 

 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10% Missing 20% Missing 30% Missing

Clusters = 15
O

bs. per Cluster = 5
Clusters = 15

O
bs. per Cluster = 15

Clusters = 15
O

bs. per Cluster = 30
Clusters = 15

O
bs. per Cluster = 50

−40 −30 −20 −10 0 10 20 30 40 −40 −30 −20 −10 0 10 20 30 40 −40 −30 −20 −10 0 10 20 30 40

Residual Var.

Slope Var.

Covariance

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Covariance

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Covariance

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Residual Var.

Slope Var.

Covariance

Intercept Var.

Level−2 Slope

Level−1 Slope

Intercept

Percent Relative Bias

● Complete JM FCS

ICC = 0.1 COR = 0.5



RANDOM COEFFICIENT MODELS WITH MISSING DATA  49 

Figure 4. Average relative bias values for design cells with ICC = .50 and 30 clusters. Relative 

bias is defined as the difference between an average estimate and the true value expressed as a 

proportion of the true value. The dashed lines represent bias values of ± 0.10. 
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Supplement I: Blimp Syntax for Substantive Model-Compatible Imputation 

The syntax below applies substantive model-compatible imputation from Enders et al. (2018) to 

an artificial data set from the simulations reported in the body of the paper. Additional 

information about Blimp code is available in the user’s guide (Keller & Enders, 2018). 

 

DATA: ~/desktop/data.csv; 

VARNAMES: id a1 a2 y x w; 

! specify random slope with y:x; 

MODEL: id ~ a1 a2 y:x w; 

! specify outcome variable from the substantive analysis; 

OUTCOME: y; 

BURN: 2500; 

THIN: 2500; 

NIMPS: 20; 

MISSING: 999; 

SEED: 90291; 

OUTFILE: ~/desktop/imp*.csv; 

OPTIONS: separate; 

  



RANDOM COEFFICIENT MODELS WITH MISSING DATA  52 

Supplement J: Simulation Results Evaluating Substantive Model-Compatible Imputation 

To provide a preliminary evaluation of substantive model-compatible fully conditional 

specification (SMC-FCS), we applied the procedure to the subset of simulation conditions with 

an ICC = .50 and correlated random effects. The trellis plots display relative bias values for this 

new procedure as well as the conventional imputation approaches evaluated in the manuscript. 

Additional details on SMC-FCS can be found in Enders et al. (2018). 
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Supplemental Figure 1. Average relative bias values for design cells with ICC = .50 and 15 

clusters. Relative bias is defined as the difference between an average estimate and the true value 

expressed as a proportion of the true value. The dashed lines represent bias values of ± 0.10. 
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Supplemental Figure 2. Average relative bias values for design cells with ICC = .50 and 30 

clusters. Relative bias is defined as the difference between an average estimate and the true value 

expressed as a proportion of the true value. The dashed lines represent bias values of ± 0.10. 
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Supplemental Figure 3. Average relative bias values for design cells with ICC = .50 and 100 

clusters. Relative bias is defined as the difference between an average estimate and the true value 

expressed as a proportion of the true value. The dashed lines represent bias values of ± 0.10. 
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