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Abstract 

The last 20 years has seen an uptick in research on missing data problems, and most 

software applications now implement one or more sophisticated missing data handling routines 

(e.g., multiple imputation or maximum likelihood estimation).  Despite their superior statistical 

properties (e.g., less stringent assumptions, greater accuracy and power), the adoption of these 

modern analytic approaches is not uniform in psychology and related disciplines.  Thus, the 

primary goal of this manuscript is to describe and illustrate the application of multiple 

imputation.  Although maximum likelihood estimation is perhaps the easiest method to use in 

practice, psychological data sets often feature complexities that are currently difficult to handle 

appropriately in the likelihood framework (e.g., mixtures of categorical and continuous 

variables), but relatively simple to treat with imputation.  The paper describes a number of 

practical issues that clinical researchers are likely to encounter when applying multiple 

imputation, including mixtures of categorical and continuous variables, item-level missing data 

in questionnaires, significance testing, interaction effects, and multilevel missing data.  Analysis 

examples illustrate imputation with software packages that are freely available on the internet. 
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The methodological literature on missing data handling spans many decades, but the 

modern era of this work arguably began when Rubin (1976) established a theoretical framework 

for missing data problems.  Since then, there has been a substantial increase in missing data 

research, and most software applications now implement one or more sophisticated missing data 

handling routines.  Despite the uptick in methodological research and the concurrent publication 

of several missing data texts (Allison, 2002; Carpenter & Kenward, 2013; Enders, 2010; 

Graham, 2012; Little & Rubin, 2002; van Buuren, 2012), the migration to better analytic 

practices has understandably been slow.  Going back to the 2000s, literature reviews revealed 

that researchers relied primarily on deletion methods that remove cases with missing data 

(Jelicic, Phelps, & Lerner, 2009; Peugh & Enders, 2004; Wood, White, & Thompson, 2004), 

despite warnings that these “are among the worst methods available for practical applications” 

(Wilkinson & Taskforce on Statistical Significance, 1999, p. 598).  Although reporting practices 

have definitely improved in recent years, the application of modern missing data handling 

techniques is far from uniform in psychology and related disciplines.  Consequently, the primary 

goal of this manuscript is to promote the awareness and application of analytic methods that 

enjoy strong support in the methodological literature. 

Broadly speaking, the recent missing data literature supports the use of maximum 

likelihood estimation and multiple imputation (Schafer & Graham, 2002)1.  Maximum likelihood 

estimation (also known as full information maximum likelihood, or FIML) employs an iterative 

optimization algorithm that identifies parameter estimates that maximize fit to the observed data.  

 
1 Bayesian estimation is a third option that I do not consider here in the interest of space.  A 
Bayesian analysis mimics maximum likelihood estimation in the sense that it generates estimates 
and standard errors for a specific analysis model.  However, the missing data handling aspect of 
Bayesian estimation resembles multiple imputation because each cycle of the iterative algorithm 
generates a filled-in data set. 
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For example, in a regression analysis, the maximum likelihood estimates are coefficients that 

minimize the sum of the squared standardized distances between the observed data and the 

regression line.  Some methodologists have characterized maximum likelihood estimation as 

“implicit imputation” because it does not produce a filled-in data set (Widaman, 2006).  Rather, 

the procedure uses all of the available data to estimate a specific set of model parameters and 

their standard errors.  For example, to apply maximum likelihood to an ANOVA-type analysis, a 

researcher need only use a capable software package to estimate a regression model from the 

incomplete data.  Structural equation modeling software packages are particularly useful for 

implementing maximum likelihood because they can accommodate a range of missing data 

patterns (e.g., missing values on explanatory and outcome variables). 

In contrast, multiple imputation creates several versions of a data set, each of which 

contains different estimates of the missing values.  As explained later, most incarnations of 

multiple imputation use a regression model to fill in the data, treating incomplete variables as 

outcomes and complete variables as predictors.  To avoid imputations based on a single set of 

regression parameters, an iterative algorithm uses Bayesian estimation to update the regression 

model parameters, and it uses new estimates to generate each set of imputations.  Having 

generated a set of filled-in data sets, the researcher then performs one or more statistical analyses 

on each complete data set to obtain imputation-specific estimates and standard errors.  The final 

step pools the estimates and standard errors into a single set of results.    

With normally distributed data, a common set of input variables, and a sufficiently large 

sample size, there is no theoretical reason to expect differences between maximum likelihood 

estimation and multiple imputation (Gelman et al., 2014; Meng, 1994; Schafer, 2003), and 

empirical studies suggest that the two methods usually yield similar estimates and standard errors 
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(Collins, Schafer, & Kam, 2001)2.  All things being equal, maximum likelihood estimation is 

probably preferable for many situations on the basis of simplicity alone – as noted previously, a 

researcher need only translate the desired analysis to a capable software package.  However, 

psychological data sets often feature complexities that are currently difficult to handle 

appropriately in the likelihood framework.  A regression analysis with mixtures of categorical 

and continuous variables is a very simple, yet common, scenario where maximum likelihood 

estimation is not optimal.  For example, consider a model with a nominal covariate (e.g., race, 

diagnostic category, gender) and a continuous outcome.  A complete-data regression analysis 

uses a set of dummy codes to represent the nominal covariate, and it does so without imposing 

distributional assumptions on predictors.  In contrast, maximum likelihood missing data handling 

requires distributional assumptions for the incomplete variables, and software packages would 

typically force the user to treat a set of incomplete dummy codes as though they were 

multivariate normal (and some software programs will simply exclude cases with missing 

predictor scores).  An analysis that features scale scores computed from a set of questionnaire 

items is another common situation where maximum likelihood missing data handling is 

surprisingly difficult.  Because it does not fill in the data, maximum likelihood effectively 

encourages the user to treat the scale as missing when one or more of its component items is 

missing.  Specifying an analysis that leverages the typically-strong correlations among the items 

can be difficult, and ignoring this source of information can decimate power (Gottschall, West, 

& Enders, 2012; Mazza, Enders, & Ruehlman, 2015). 

 
2 It is difficult to identify a rule of thumb for a “sufficiently large” sample, but my experience 
suggests that multiple imputation and maximum likelihood can yield equivalent estimates in 
samples that are typical in psychological research (e.g., N = 200). 
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In my experience, multiple imputation is often a better tool for behavioral science data 

because it gives researchers the flexibility to tailor the missing data handling procedure to match 

a particular set of analysis goals.  For example, mixtures of categorical and continuous variables 

(e.g., a regression analysis with an incomplete nominal covariate) pose no problem for multiple 

imputation, and composite scores with incomplete item responses are similarly benign.  Because 

a number of accessible descriptions of maximum likelihood estimation appear in the literature 

(Enders, 2010, 2013; Graham, 2012; Schafer & Graham, 2002), I limit the scope of this 

manuscript to multiple imputation, focusing on practical issues that clinical researchers are likely 

to encounter in their work.  Throughout the paper, I use a series of data analysis examples to 

illustrate the application of multiple imputation to problems that are not necessarily easy to 

handle with maximum likelihood estimation.  Although multiple imputation is widely available 

in most general-use software packages, I use the Blimp application (Enders, Keller, & Levy, 

2016; Keller & Enders, 2014) because it is flexible enough to accommodate a variety of scale 

types (nominal, ordinal, and continuous) with single-level and multilevel data, and it can be used 

in conjunction with any analysis program.  Blimp is available for the Mac and Windows 

operating systems and is available for free download at 

www.appliedmissingdata.com/multilevel-imputation.html. 

Motivating Example 

The analysis example comes from a study of an online chronic pain management 

program (Ruehlman, Karoly, & Enders, 2012), where individuals were randomly assigned to an 

intervention condition (n = 167) or a wait-listed control group (n = 133).  The primary focus of 

this example is a 6-item depression measure, which researchers administered at pretest, 7-week 

follow-up, and 14-week follow-up.  The data set also includes a number of background variables 
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(e.g., gender, age, education) and baseline measures of pain severity and pain interference with 

daily life activities.  Table 1 gives the percentage of observed values for a subset of variables that 

I use throughout the paper.  So that interested readers can work through the data analysis 

examples, I used the means and correlations from real data to create an artificial data set that 

mimics the original.  The data set and analysis scripts are available for download at 

appliedmissingdata.com/multilevel-imputation.html, and the analysis scripts additionally appear 

in the appendices of this document. 

Projects like the pain management study often involve a team of researchers using 

different parts of a large data set consisting of hundreds or thousands of variables.  The missing 

data literature sometimes recommends a large-scale missing data handling procedure that 

accounts for dozens of variables (Rubin, 1996).  However, the complexity of psychological data 

sets usually precludes this strategy, and the sample sizes that are typical of such studies are also a 

limiting factor (e.g., the number of variables used to impute the data cannot exceed the number 

of cases, and usually needs to be much lower).  In my experience, it is often better to focus on a 

specific analysis or family of analyses because it is easier to implement a missing data handling 

procedure that honors important features of the data.  To illustrate this focused strategy, I 

consider a regression analysis that models the influence of the intervention on Wave 3 depression 

scores, controlling for age and baseline measures of depression and pain severity 

 

 𝐷𝐸𝑃$ = 𝛽' + 𝛽)(𝐷𝐸𝑃)) + 𝛽,(𝐴𝐺𝐸) + 𝛽$(𝑆𝐸𝑉𝐸𝑅𝐼𝑇𝑌) + 𝛽5(𝑇𝑋𝐺𝑅𝑃) + 𝜀 (1) 

 

where TXGRP is a binary dummy code (0 = control, 1 = intervention), SEVERITY is 7-point 

ordinal rating, and DEP1 and DEP3 are scale scores computed by summing the Wave 1 and Wave 
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3 questionnaire items, respectively.  I chose this model because it introduces complexities that 

are common in behavioral science research (e.g., mixtures of categorical and continuous 

variables, composite scores) – complexities that, in my view, often favor multiple imputation as 

a solution. 

Background and Terminology 

 Rubin and colleagues (Little & Rubin, 2002; Rubin, 1976) developed a theoretical 

framework for missing data handling problems that is key to understanding the strengths and 

limitations of different analytic approaches.  Rubin’s theory describes three missing data 

mechanisms that, roughly speaking, posit different “reasons” for the missing values: the missing 

completely at random (MCAR) mechanism describes situations where missingness is haphazard 

and unrelated to analysis variables, whereas the missing at random (MAR) and not missing at 

random (NMAR) mechanisms describe two types of systematic nonresponse.  From a practical 

perspective, these mechanisms function as assumptions that dictate the accuracy of a missing 

data handling procedure; a method such as multiple imputation (or maximum likelihood) that 

assumes MAR should yield accurate estimates when an MAR mechanism is tenable for a 

particular analysis, whereas a procedure that assumes MCAR (e.g., deleting cases) would 

produce biased estimates in the same scenario. 

Before describing the mechanisms in more detail, it is important to emphasize that 

missing data mechanisms and missing data patterns are different concepts.  The regression 

analysis from Equation (1) involves seven missing data patterns; 182 cases have complete data 

on all variables, and the remaining observations are spread across subgroups with one or more 

missing values.  The broader data set is further characterized by patterns of intermittent 

missingness (e.g., a participant skipped some questionnaire items but otherwise participated) and 
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attrition (e.g., a participant permanently quit the study and is missing one or more waves of data).  

Note that these patterns simply tally the configuration and frequency of the holes in the data, but 

they say nothing about systematic tendencies that predict nonresponse.  Because modern analysis 

methods such as multiple imputation are generally equipped to handle a wide range of patterns, 

the plausibility of different missing data mechanisms is usually our primary concern. 

Rubin’s (1976) missing data theory defines a hypothetical data set with no missing 

values, and it partitions the realized data into observed and missing components.  It is useful to 

view the missing parts as latent variable scores, the values of which reside only in the 

hypothetically-complete data matrix.  Each incomplete variable is yoked to a corresponding 

dummy code that indicates whether scores are observed or missing (e.g., M = 0 if complete, and 

M = 1 if missing).  The crux of Rubin’s theory is that the nonresponse indicators may be 

completely unrelated to the data, or they may be systematically related to either the observed or 

latent scores (or both).  Returning to the variables in Equation (1), we can create three missing 

data indicators, one each for pain severity and the two depression measures (age and treatment 

group membership are complete).  The missing data mechanisms describe three possible 

relations between the nonresponse indicators and the data. 

An MCAR (missing completely at random) mechanism occurs when missingness is 

unrelated to the data, missing or latent.  The regression analysis would be MCAR if the 

nonresponse indicators for the incomplete variables are unrelated to other variables (e.g., cases 

with observed and missing depression scores at Wave 3 are identical with respect to age, gender, 

treatment group membership, baseline depression, and so on).  MCAR values can result from 

haphazard events (e.g., a respondent’s internet connection unexpectedly cuts out during data 

collection), causes of missingness that are uncorrelated with the analysis variables, or as part of a 
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planned missingness design that saves resources and reduces respondent burden (Graham, 

Taylor, Olchowski, & Cumsille, 2008; Little & Rhemtulla, 2013; Mistler & Enders, 2011).  It is 

worth noting that MCAR is the only mechanism with testable propositions.  MCAR can be 

refuted, for example, if groups formed by the missing data indicators exhibit mean differences on 

other variables.  Little’s (1988) procedure is a multivariate test of such differences, and 

researchers often perform univariate t tests (or correlations) to examine relations between the 

missing data indicators and observed variables.  Although the absence of mean differences does 

not confirm an MCAR mechanism (Raykov, 2011), the presence of mean differences does rule 

out a purely random nonresponse mechanism. 

The MAR (missing at random) and NMAR (not missing at random) mechanisms define 

different types of systematic missingness.  An MAR mechanism occurs when the nonresponse 

indicators are related to only the observed data, and an NMAR mechanism further allows the 

latent scores to influence missingness.  For example, we could imagine a situation where 

individuals with high levels of pain interference are missing Wave 3 depression scores because 

pain impedes their ability to sit in front of a computer for extended periods of time.  This 

situation qualifies as MAR provided that the latent (hypothetical) depression scores do not 

further predict attrition (i.e., two participants with the same pain interference score are equally 

likely to drop out, regardless of their Wave 3 depression levels).  Finally, an NMAR mechanism 

would apply to the regression analysis, for example, if Wave 3 depression scores are missing for 

individuals with high levels of depression at that follow-up (e.g., because they perceive no 

benefit from the intervention and drop out). 

In practice, it is difficult to determine which mechanism best applies to a particular 

analysis because Rubin’s conditions involve propositions about the unobserved latent scores; 
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MCAR and MAR stipulate that missingness is unrelated to these hypothetical values, whereas 

NMAR allows for a linkage.  Of course, without access to the latent scores, it is impossible to 

know whether they predict missingness, and so we are ultimately forced to adopt an untestable 

assumption about the process that caused missing data (Raykov, 2011).  As noted previously, 

modern missing data handling methods such as multiple imputation and maximum likelihood 

estimation typically require an MAR mechanism, whereas excluding cases with missing data 

assumes an often-unrealistic MCAR mechanism with no sources of systematic missingness.  In 

practical terms, adopting an MAR-based approach such as multiple imputation ensures that we 

can obtain accurate estimates in a broader range of circumstances than we could be simply 

excluding incomplete cases.  Importantly, this advantage is largely unrelated to the amount of 

missing data; if the imputation procedure satisfies MAR, the resulting estimates can tolerate 

rather extreme levels of missingness (e.g., 50% or more; Enders, 2010). 

Selecting Variables for Imputation 

 The MAR assumption that is crucial to multiple imputation requires that, after 

conditioning on the observed data, the hypothetical latent scores carry no information about 

nonresponse.  In practical terms, MAR implies that the missing data indicators carry no 

additional information about the missing scores above and beyond that contained in the observed 

data.  MAR provides an important simplification that allows us to generate imputations (or 

perform an analysis, in the case of maximum likelihood estimation) without including the 

nonresponse indicators in the missing data handling procedure.  On the other hand, obtaining 

accurate estimates from an NMAR mechanism requires complicated modeling approaches that 

introduce the indicators in one form or another (Enders, 2011; Muthén, Asparouhov, Hunter, & 

Leuchter, 2011).  Although MAR may seem straightforward, satisfying this assumption often 
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requires that we look beyond the variables in our analysis and condition on (control for) so-

called auxiliary variables that differentiate the complete and incomplete cases.  This section 

describes the logic of the so-called inclusive analysis strategy (Collins et al., 2001) that attempts 

to identify auxiliary variables that are useful for imputation, either because they reduce 

nonresponse bias or improve power. 

 To illustrate the role that auxiliary variables play in satisfying the MAR assumption, 

Panel A of Figure 1 depicts the true associations among six variables in a data set: X and Y are 

variables in the analysis model, MY is the missing data indicator for Y, and A1, A2, and A3 are 

potential auxiliary variables that could be included in imputation.  In Panel A, the absence of an 

arrow connecting Y and MY indicates that MAR is satisfied if the imputation procedure includes 

A1 because this variable fully explains the relation between Y and MY (i.e., there is no residual 

relation between Y and MY after controlling for A1).  Panel B depicts the relations that result from 

excluding A1 from the imputation regression model.  Ignoring this variable induces a correlation 

between Y and MY, such that the missing data indicator carries information about the values of Y.  

The resulting NMAR mechanism would likely introduce bias because the imputation model 

could not generate accurate predictions without conditioning on MY (this is usually very difficult 

and requires special analytic procedures).  Panels C and D depict the consequences of ignoring 

A2 and A3, respectively, during imputation.  Omitting A2 may decrease power because the 

imputation routine cannot leverage the information contained in its correlation with Y, but this 

variable is not a source of nonresponse bias because it does not predict missingness.  Finally, 

although A3 predicts nonresponse, ignoring this variable does not affect the mechanism because 

it is uncorrelated with the analysis variables, and thus there are no indirect pathways that can 

absorb the relation with MY. 
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 Figure 1 highlights that some analyses will satisfy MAR only if the missing data handling 

procedure incorporates auxiliary variables that are not part of the analysis plan.  The figure also 

suggests that we should be most concerned with auxiliary variables that predict nonresponse and 

are correlated with the analysis variables (e.g., A1) because ignoring these variables fails to 

eliminate systematic differences between the complete and incomplete cases, thereby introducing 

bias.  Notice that satisfying MAR parallels the logic of ANCOVA in a quasi-experimental 

design, where the goal is to introduce covariates that remove pre-existing differences between 

groups.  In the context of missing data handling, the goal is to control for (condition on) auxiliary 

variables that differentiate the complete and incomplete cases.   Simple bivariate correlations can 

help identify potential auxiliary variables, as can path analysis models (Raykov & West, 2015). 

 To illustrate the search for auxiliary variables, Table 2 gives correlations between the 

three missing data indicators from the regression analysis and other variables in the data set 

(graphically, these correlations align with the double-headed arrows in Figure 1 that connect MY 

to X, A1, A2, and A3).  Positive correlations indicate that higher scores on a variable in the left-

most column are associated with higher rates of missingness on one of the three analysis 

variables (e.g., older participants are more likely to have missing depression scores), and 

negative correlations indicate that lower scores predict nonresponse (e.g., lower levels of 

education are associated with missingness).  Although somewhat arbitrary, the table highlights 

correlations greater than ± .20, which is roughly in the middle of the small effect size range 

(Cohen, 1988).  The bolded correlations with education and pain interference are particularly 

important because these two variables are not part of the regression analysis, and thus we may 

need to control for them if they are also correlated with the analysis variables. 
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Table 3 gives bivariate correlations among the study variables.  Because education level 

has relatively weak correlations with the analysis variables (the strongest correlation is r = -.13), 

it essentially functions like A3 from Figure 1, and thus we can safely ignore this variable during 

missing data handling (± .40 is a rough rule of thumb for salient auxiliary variable correlations; 

Collins et al., 2001).  However, like A1 in the figure, pain interference with daily life is a useful 

auxiliary variable because of its higher correlations with the analysis variables (r’s in the range 

of .32 to .59).  In addition to variables that predict nonresponse, we may also identify auxiliary 

variables that correlate with only the incomplete analysis variables, as these variables can 

improve power by increasing the precision of the imputations.  The Wave 2 depression scale is 

an excellent candidate as an auxiliary variable (r’s with Wave 1 and Wave 3 depression exceed 

.70), but its utility may be diminished somewhat by missing data (e.g., only 16 cases with 

missing Wave 1 scores have Wave 2 scores to borrow from, and 57 cases with missing Wave 3 

scores have data at Wave 2; Enders, 2008). 

Collectively, the correlations in Tables 2 and 3 suggest that pain interference and Wave 2 

depression scores are important auxiliary variables; controlling for the former mitigates 

nonresponse bias by improving the chances of satisfying the MAR assumption, and conditioning 

on the latter can improve power by borrowing information from a strong correlation.  As we will 

see in the next section, multiple imputation readily handles auxiliary variables with no additional 

effort – these additional variables are simply included in the imputation routine along with the 

variables from the analysis model.  This is a distinct advantage over maximum likelihood 

estimation, which requires structural equation modeling software and a rather cumbersome 

model setup (Graham, 2003).  

Multiple Imputation 



MULTIPLE IMPUTATION   15 

 Multiple imputation consists of three phases: an imputation phase, analysis phase, and 

pooling phase.  The imputation phase creates multiple copies of the data (e.g., 20 or more is a 

current rule of thumb; Graham, Olchowski, & Gilreath, 2007), each with different imputed 

values.  The basic idea behind imputation is to use a regression model to define a distribution of 

plausible replacement values for each case, then use computer simulation to “draw” a value at 

random from this distribution.  For example, if we assume a normal distribution for an 

incomplete variable, each imputation is drawn a normal curve with a predicted value and residual 

variance defining the mean and spread, respectively.  More formally, the distribution of 

replacement values for each case can be written as 

 

 𝑌(mis)~𝑁:𝑌;, 𝜎>,? (2) 

 

where Y(mis) is an estimate of the missing value, ~N denotes the normal distribution, 𝑌; is the 

predicted value from a regression equation, and 𝜎>, is the residual variance from the regression.  

Conceptually, the imputations from Equation (2) can be viewed as the sum of a predicted score 

and a random noise term (deviation score), the variance of which equals 𝜎>, (i.e., 𝑌(@AB) = 𝑌; + 𝜀). 

The imputation phase typically uses a two-step iterative algorithm that creates 

imputations and then applies Bayesian estimation methods to the filled-in data to generate a new 

set of regression parameters for the next round of imputation.  The updating process for 

regression parameters mimics the imputation step in the sense that new estimates are sampled 

from a distribution of plausible values.  For example, the procedure computes ordinary least 

squares estimates and standard errors from the filled-in data, then it uses these quantities to 

define the mean and standard deviation, respectively, of a normal distribution, from which it 
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draws new coefficients.  These updated parameter values carry forward to the next round of 

imputation, where they are used to create a different set of imputations.  Repeating these two 

steps many times accounts for missing data uncertainty by producing imputations from a range 

of plausible regression parameters.  As such, no two sets of imputations will be exactly alike – in 

fact, they may be quite different.   

After generating the desired number of imputations, the researcher then performs one or 

more statistical analyses on each complete data set to obtain imputation-specific estimates and 

standard errors.  For example, I later illustrate an analysis that fits the regression model from 

Equation (1) to 20 imputed data sets.  With careful planning, a single collection of imputed data 

sets can support a variety of different analyses, but this step should avoid variables or effects that 

were not part of the imputation procedure (e.g., if the imputation model included only zero-order 

relations, then the analysis phase should not consider interactive effects).  The analysis phase 

produces parameter estimates and standard errors for each data set, and the researcher 

subsequently aggregates these quantities into a single set of results in the pooling phase.  A 

single collection of point estimates is obtained by taking the arithmetic average of the 

imputation-specific estimates, and standard errors are combined in a similar fashion.  The 

ultimate product of the pooling phase is a single set of estimates and standard errors that have the 

same interpretation and meaning as those from a complete-data analysis.  Although the analysis 

and pooling phases sound tedious, most popular software packages have facilities that automate 

the procedures. 

Thus far I have been somewhat vague about the composition of the regression model that 

generates the distribution of missing values in Equation (2).  The classic incarnations of multiple 

imputation (Rubin, 1987; Schafer, 1997) use a multivariate regression model where incomplete 
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variables are outcomes and complete variables are predictors.  A distinguishing feature of this 

so-called joint model approach is that all incomplete variables are imputed in a single 

computational step.  A second approach to imputation – termed chained equations imputation or 

fully conditional specification – uses a series or univariate regression models to generate 

imputations (Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001; van Buuren, 2012; 

van Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006).  In this framework, variables are 

imputed in a round robin fashion, where each incomplete variable is an outcome at one step and 

a predictor at all other steps.  Fully conditional specification is ideal for mixtures of categorical 

and continuous variables because each imputation step can be tailored to the incomplete 

variable’s metric (van Buuren, 2007).  The joint model framework can also accommodate certain 

combinations of variable metrics (Asparouhov & Muthén, 2010; Carpenter & Kenward, 2013; 

Schafer, 1997; Schafer & Olsen, 1998), but I focus on fully conditional specification for the 

remainder of the paper because it is relatively easy to understand, and it is implemented in the 

Blimp application. 

Analysis Example 1 

In this section I use the regression model from Equation (1) to illustrate a basic multiple 

imputation analysis.  So that readers may recreate the analysis examples with freely available 

software, I use the Blimp application for imputation and R for the analysis and pooling phases.  

The imputation software, raw data file, and analysis scripts are available for download at 

www.appliedmissingdata.com/multilevel-imputation.html, and the analysis scripts are also found 

in Appendices A and B.  Note that the Blimp application also features a graphical interface for 

Mac and Windows that allows researchers to specify all features of imputation without any 
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coding.  Technical details about algorithmic approach implemented in Blimp are available in 

Enders, Keller, and Levy (2016).  

At a minimum, the imputation procedure should include all variables in the analysis 

model, but it can (and perhaps should) include auxiliary variables that predict missingness and/or 

correlate with the analysis variables.  We previously determined that pain interference with daily 

life activities and Wave 2 depression scores are good auxiliary variables, and so I implemented 

FCS imputation with seven variables: three waves of depression scales, age, pain severity, pain 

interference, and the treatment indicator.  For now, I treat the incomplete variables as though 

they are normally distributed, which is not necessarily optimal for the 7-point rating scale (the 

resulting imputations will have decimals).  I return to this issue later where I illustrate imputation 

for mixtures of categorical and continuous variables.  As an aside, estimating the regression 

model with maximum likelihood would treat all variables as multivariate normal, including the 

treatment indicator.  Although I temporarily violate distributional assumptions for the incomplete 

severity ratings, fully conditional specification does not require distributional assumptions for 

complete predictors.    

The imputation algorithm for this problem cycles through the incomplete variables one at 

a time, using a series of regression models to define distributions of plausible replacement 

values.  A single iteration of the algorithm draws replacement values from the following 

sequence of univariate normal distributions.  
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 𝐷𝐸𝑃)(@AB)~𝑁:C𝛽' + 𝛽)𝐴𝐺𝐸 + 𝛽,𝐼𝑁𝑇𝐸𝑅𝐹 + 𝛽$𝑇𝑋𝐺𝑅𝑃 + 𝛽5𝐷𝐸𝑃,(A@E)

+ 𝛽F𝐷𝐸𝑃$(A@E) + 𝛽G𝑆𝐸𝑉𝐸𝑅𝐼𝑇𝑌(A@E)H, 𝜎>,? 

⋮ 

𝐷𝐸𝑃,(@AB)~𝑁:C𝛽' + 𝛽)𝐴𝐺𝐸 + 𝛽,𝐼𝑁𝑇𝐸𝑅𝐹 + 𝛽$𝑇𝑋𝐺𝑅𝑃 + 𝛽5𝐷𝐸𝑃$(A@E)

+ 𝛽F𝑆𝐸𝑉𝐸𝑅𝐼𝑇𝑌(A@E) + 𝛽G𝐷𝐸𝑃)(A@E)H, 𝜎>,? 

⋮ 

𝐷𝐸𝑃$(@AB)~𝑁:C𝛽' + 𝛽)𝐴𝐺𝐸 + 𝛽,𝐼𝑁𝑇𝐸𝑅𝐹 + 𝛽$𝑇𝑋𝐺𝑅𝑃 + 𝛽5𝑆𝐸𝑉𝐸𝑅𝐼𝑇𝑌(A@E)

+ 𝛽F𝐷𝐸𝑃)(A@E) + 𝛽G𝐷𝐸𝑃,(A@E)H, 𝜎>,? 

⋮ 

𝑆𝐸𝑉𝐸𝑅𝐼𝑇𝑌(@AB)~𝑁:C𝛽' + 𝛽)𝐴𝐺𝐸 + 𝛽,𝐼𝑁𝑇𝐸𝑅𝐹 + 𝛽$𝑇𝑋𝐺𝑅𝑃 + 𝛽5𝐷𝐸𝑃)(A@E)

+ 𝛽F𝐷𝐸𝑃,(A@E) + 𝛽G𝐷𝐸𝑃$(A@E)H, 𝜎>,? 

⋮ 

(3) 

 

In words, each equation says that the missing values (denoted with a “mis” subscript) are drawn 

at random from a normal distribution, the mean and variance of which are determined by the 

predicted value in square brackets and residual variance from a regression model, respectively.  

To avoid complicating the notation, I use the same symbols for all equations, but it is important 

to note that the numeric values differ (e.g., each equation has a unique value of 𝛽' and other 

model parameters).  The vertical dots between the equations (i.e., ⋮ ) represent Bayesian 

estimation steps that generate the new regression parameters for the next round of imputation 

(Enders, 2010; Gelman et al., 2014; Sinharay, Stern, & Russell, 2001; van Buuren, 2012). 
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Notice that the right side of each equation includes complete and previously imputed 

variables (denoted by the “imp” subscript), such that the target of imputation at one step 

functions as a complete predictor at all other steps.  For example, an individual’s predicted DEP1 

score at the first step depends on the complete variables (age, pain interference, and treatment 

group membership) and on previously imputed variables (Wave 2 and 3 depression scores, pain 

severity).  After this variable is imputed and its regression parameters are updated, it moves to 

the right side of all other equations where it functions as a complete predictor.  Imputing 

variables in a round robin fashion ensures that the imputed values preserve all possible zero-

order relations among the variables.  Because the intervention effect is the primary interest in the 

subsequent analysis phase, it is important to emphasize that imputation preserves any group 

differences that may exist on the incomplete variables (it does not create differences that do not 

already exist, however).  For example, each 𝛽' term in Equation (3) can be viewed as the 

adjusted mean for the control group, and the 𝛽$ coefficients allow the treatment group means to 

differ.  The imputation models do assume that the treatment and control groups share a common 

variance-covariance matrix, however (i.e., imputation does not model interactive effects). 

To avoid ending up with imputations that are too similar, the computational steps from 

Equation (3) are often repeated for hundreds or thousands of cycles, with imputed data sets saved 

at specified intervals in the process.  For example, the program in Appendix A generates 20 sets 

of imputations by saving a data set after every 200th computational cycle (the BURN command 

specifies the number of initial computational cycles, and the THIN command specifies the 

number of iterations between data sets).  It is difficult to offer good rules of thumb for this aspect 

of imputation because the appropriate interval depends on data-specific features (e.g., the amount 

of missing data, magnitude of the correlations, number of variables), but software packages 
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generally provide graphical or numeric diagnostics that facilitate this decision (Gelman & Rubin, 

1992; Schafer, 1997; Schafer & Olsen, 1998).  I chose an interval of 200 based on values of the 

potential scale reduction factor (PSR; Gelman & Rubin, 1992), a numeric diagnostic based on 

stability of the regression parameters across iterations.  The Blimp application produces PSR 

tables when the “psr” keyword is listed on the OPTIONS line of the syntax, as it is in the 

appendix (or activated via a radio button in the graphical interface).  

After generating imputations, one or more statistical analyses are performed on each 

filled-in data set.  It is important to reiterate that the analyses should be restricted to variables or 

effects from the imputation model, as any variables not included in imputation are uncorrelated 

with the filled-in values (e.g., although gender is complete, adding it as a covariate in the 

analysis model is inappropriate because this variable did not contribute to the imputations).  To 

illustrate the analysis and pooling phases, I used the MITML package (Grund, Robitzsch, & 

Lüdke, 2016) in R to fit the regression model to each data set and combine the resulting 

estimates and standard errors.  Table 4 gives the estimates and standard errors from the first three 

data sets.  Notice that the estimates vary across data sets (e.g., the intervention slope ranges 

between -1.50 and -1.98), which is a natural consequence of analyzing different imputations.  

This so-called between-imputation variation is an important component of the analysis that 

captures uncertainty due to missing data. 

Table 5 gives the pooled estimates and standard errors from the regression analysis.  As 

noted previously, the pooled point estimates are simply arithmetic averages of the imputation-

specific values (Little & Rubin, 2002; Rubin, 1987).  However, notice that the pooled standard 

errors from Table 5 are markedly larger than those of the individual data sets in Table 4.  

Because the imputation-specific standard errors in Table 4 derive from complete data sets, their 
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arithmetic averages are too small because they fail to account for missing data uncertainty.  

Rubin’s pooling formula incorporates the average standard error from the imputed data sets, but 

it also incorporates a correction factor that inflates the standard error to compensate for 

imputation noise.  This correction term is based on the variability of the estimates across the 

imputed data sets (e.g., the variation in the intervention slope estimates that I noted previously), 

and its magnitude depends on the amount of missing data and the correlations among the 

variables.  Ultimately, the estimates and standard errors from Table 5 are interpreted in the same 

fashion as those from a complete-data analysis.  For example, the treatment group slope, 𝛽5 = -

1.87, SE = .46, p < .001, indicates that the intervention group mean was 1.87 points lower than 

that of the control group, controlling for the covariates.  Enders (2010, Ch. 11) gives 

recommendations for reporting the results from a multiple imputation analysis. 

Imputing Mixtures of Categorical and Continuous Variables 

 The previous analysis treated pain severity ratings as normally distributed, which had the 

effect of generating fractional rather than discrete imputations (e.g., an imputed value of 4.32).  

Rounding the fractional imputes to the nearest integer is one way to handle this issue, but 

methodology studies suggest that post-imputation rounding can introduce serious biases (Allison, 

2005; Horton, Lipsitz, & Parzen, 2003).  Although rounding can provide acceptable results in 

some situations (Bernaards, Belin, & Schafer, 2007; Carpenter & Kenward, 2013), advances in 

categorical imputation have largely negated the need to apply such procedures.  Categorical 

imputation routines are now widely available in software packages, although the capabilities of 

these programs vary (e.g., some programs are limited to ordinal or nominal variables, fewer 

packages can handle both).  The Blimp application can accommodate mixtures of nominal, 

ordinal, and continuous (normal) variables, both in single-level and multilevel analyses.  As 
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noted previously, tailoring the missing data handling routine to each variable’s scale is difficult 

and usually impossible in the context of maximum likelihood estimation, so this flexibility is a 

major advantage to multiple imputation. 

Logistic and probit regression are the principal frameworks for categorical imputation.  

Like the linear regression methods described previously, discrete imputes are a function of a 

deterministic component (i.e., predicted value) and random stochastic noise.  To illustrate the 

basic idea, consider an incomplete binary variable coded as zero or one (e.g., 0 = subclinical 

depression, 1 = clinical depression).  Logistic regression expresses the log odds (logit) of the 

outcome (e.g., a clinical diagnosis) as a linear function of a set of predictors.  Substituting 

predictor variable scores into a logistic regression equation yields the predicted log odds, and a 

simple transformation converts the predicted logit to a predicted probability (Agresti, 2012).  In 

the context of imputation, the predicted probability defines the distribution of plausible 

replacement values for each case.  For example, suppose that a logistic model estimated the 

predicted probability of clinical depression at .85 for a particular individual.  The imputation step 

would then draw a replacement value at random from a two-category distribution with group 

proportions of .15 and .85.  Like linear regression imputation, the distribution of replacement 

values varies across individuals, such that the shape of the distribution (the category proportions) 

depends on a predicted value.  Several popular software programs offer logistic regression 

imputation, including SAS, SPSS, Stata, and the MICE package in R, to name a few.  These 

software packages differ in the types of data they can address; some packages implement 

multinomial logistic imputation for nominal outcomes (e.g., SPSS), others use a so-called 

proportional odds model for ordinal variables (e.g., SAS), and others offer both options (e.g., 

Stata and MICE). 
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 Probit regression is a second option for categorical imputation.  This approach is 

sometimes referred to as latent variable imputation (Carpenter & Kenward, 2013; Enders, 

Mistler, & Keller, 2016; Quartagno & Carpenter, 2016) because it views discrete responses as 

arising from an underlying normal latent variable distribution (or distributions of latent variable 

difference scores, in the case of nominal variables with more than two categories)3.  For example, 

reconsidering the binary depression diagnosis, the latent variable approach defines an underlying 

normal variable that represents an individual’s propensity for clinical depression (for 

identification purposes, the underlying normal variable is usually scaled as a standard normal z-

score).  Further, a single threshold parameter divides the distribution into two discrete outcomes, 

such that latent scores below the threshold correspond to a value of zero (i.e., subclinical 

depression), and scores above the threshold correspond to a one (i.e., clinical depression).  The 

mechanics of probit-based imputation are quite similar to those of linear regression imputation.  

The Bayesian estimation routine first replaces discrete responses with latent variable scores, after 

which it estimates the regression of the latent variable scores on a predictor set.  Imputations are 

then generated by drawing latent variable scores from a standard normal distribution, and the 

latent values are subsequently converted to discrete imputes (e.g., in the case of a binary or 

ordinal variable, by comparing the location of the imputed z-scores relative to the threshold 

parameters).  Latent variable imputation is available in MLwiN, Mplus, Blimp, and the JOMO 

package for R.  I illustrate categorical imputation with Blimp later in the manuscript.  

Questionnaires with Item-Level Missing Data 

 
3 The logistic regression model can also be represented with an underlying normal latent 
variable, albeit with a different variance structure.  However, I refer to probit regression as a 
latent variable approach because this is common in the literature, and because Bayesian 
estimation for the probit model works directly with the underlying latent variable scores 
(Bayesian estimation for logistic regression does not). 
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 Recall from Table 1 that the depression data is characterized by intermittent missingness 

where participants skipped questionnaire items but otherwise participated and attrition where 

participants are missing one or two waves of data.  Perhaps the most common approach to 

handling the item-level missingness is to compute a scale score by averaging the available items 

(e.g., if a participant answered three items, the scale score is defined as the mean of those items).  

This approach, which is commonly referred to as “proration” in the applied literature, requires 

the restrictive MCAR mechanism (i.e., no systematic sources of missingness), but it further 

assumes that the item means and inter-item correlations are identical (e.g., all items have a mean 

of 3.0 and all inter-item correlations are .40).  Proration can introduce substantial biases when 

either of these conditions is violated (Mazza et al., 2015) – one or both usually are – and thus 

should be avoided.  Multiple imputation is almost always a superior approach to handling item-

level missing data. 

The previous analysis example treated the depression scale scores as missing when one or 

more of the component items was missing, and it applied a scale-level imputation procedure that 

ignores any complete item responses.  This approach is not ideal because it fails to leverage the 

strong correlations between the items and scale scores, and thus can result in a substantial loss of 

power relative to a procedure that imputes the items (Gottschall et al., 2012; Mazza et al., 2015).  

In fact, the power gain from imputing items rather than scales can be equivalent to increasing the 

sample size by 50% or more (Gottschall et al., 2012).  Not only does item-level imputation 

provide a dramatic boost in precision, but the procedure is very easy to implement: apply a 

categorical imputation routine to the incomplete items, compute scale scores from the filled-in 

item responses, and analyze the scale scores.  As an aside, maximum likelihood estimation is 

naturally suited for scale-level missing data handling (i.e., treating the scale as missing when one 
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or more items are missing), and thus it suffers from the same limitations as scale-level 

imputation.  Incorporating item-level data into a maximum likelihood analysis requires the 

researcher to specify a complex auxiliary variable model (Eekhout et al., 2015; Mazza et al., 

2015) or recast the scale scores as latent variables with items as indicators. 

Analysis Example 2 

In this section I reanalyze the regression model from Equation (1) after applying a 

categorical imputation routine to pain severity ratings and the incomplete questionnaire items.  

The methodological literature convincingly demonstrates the benefits of item-level imputation, 

but it does not offer a clear prescription for dealing with the combination of intermittent 

missingness and attrition.  For example, at Wave 2, 41 cases have one or two missing items, and 

26 individuals have no questionnaire data.  At Wave 3, attrition is the largest source of 

missingness, with 23 participants missing three or fewer items, and 71 cases missing the entire 

wave.  Item-level imputation improves power because it borrows information from highly 

correlated items measured at the same wave, but attrition forces the procedure to impute the 

entire Wave 3 questionnaire from weaker correlations with Wave 1 and Wave 2 items.  In some 

situations, it may be useful to reduce the number of variables in the imputation model by using a 

combination of item- and scale-level imputation.  For example, I could impute the Wave 1 items 

and the Wave 3 scale score, perhaps using a subset of the Wave 3 items as auxiliary variables.  

Appendices C and D give the imputation and analysis scripts from Blimp and R, 

respectively.  Because the benefit of item-imputation is so substantial and because the number of 

questionnaire items to be imputed is relatively small, I applied item-level imputation to the Wave 

1 and Wave 3 questionnaire data, and I used the three Wave 2 items with the lowest missingness 

rates as auxiliary variables.  Listing the questionnaire items on the ORDINAL command line 
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triggers categorical imputation based on the latent variable formulation.  Although there were no 

incomplete nominal variables, the imputation script shows the NOMINAL command line so that 

readers are aware of this option.  The NOMINAL line identifies incomplete nominal variables, 

but it also converts complete nominal variables to dummy codes for use in the imputation 

regression model.  Finally, based on convergence diagnostics, I instructed the iterative algorithm 

to save a data set after every 1000 computational cycles.  A larger interval is usually necessary 

when imputing ordinal variables because the threshold parameters that slice the latent variable 

distributions into segments are relatively unstable across iterations.  Table 6 gives the pooled 

estimates and standard errors from the regression analysis.  As before, these quantities are 

interpreted in the same fashion as those from a complete-data analysis (e.g.,  𝛽5 = -1.64 indicates 

that the intervention group mean was 1.64 points lower than that of the control group, controlling 

for the covariates).   

Significance Testing and Model Fit 

 Although multiple imputation offers no particular advantages to maximum likelihood 

estimation when it comes to significance testing – in fact, there is some evidence to suggest that 

imputation-based significance tests may require a slightly larger sample size to reach optimal 

performance (Enders & Mansolf, in press) – this important topic warrants a brief discussion, as 

the development and evaluation of multiple imputation test statistics is an active area of 

methodological research (Enders & Mansolf, 2016; Liu & Enders, 2016; Grund, Lüdtke, and 

Robitzsch, 2016; Licht, 2010).  Returning to the regression analysis from the previous section, 

the primary interest is whether the intervention influences the outcome above and beyond the 

covariates.  Evaluating a single estimate is done using the familiar t (or z) ratio 
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𝑡 =

:𝜃; − 𝜃'?
𝑆𝐸  

(4) 

 

where 𝜃; is the multiple imputation point estimate (the arithmetic average of the imputation-

specific estimates), 𝜃' is the hypothesized value (typically zero), and the denominator is the 

pooled standard error.  The test statistics in Tables 5 and 6 uses a small-sample adjustment based 

on a fractional degrees of freedom value (Barnard & Rubin, 1999), but the test statistic can also 

be referred to a standard normal z distribution (Asparouhov & Muthén, 2010).  Small-sample 

adjustments to the t statistic appear to offer better Type I error control in very small samples 

(Barnard & Rubin, 1999; Reiter, 2007), but the choice of reference distribution probably makes 

little difference in most cases (Liu & Enders, 2016). 

 Multiparameter significance tests can be obtained using either a Wald or likelihood ratio 

statistic.  When applied to a single parameter, the Wald test is just the square of the statistic from 

Equation (4). 

 

 
𝑊 =

:𝜃; − 𝜃'?
,

𝑆𝐸,  
(5) 

 

However, the Wald formulation above readily extends to more than one parameter (the 

multiparameter variant is often referred to as D1 in the literature; Enders, 2010; Schafer, 1997).  

For example, consider an omnibus test that evaluates the four regression slopes from Equation 

(1).  In this case, 𝜃; is a vector containing the four estimates, 𝜃' is a corresponding vector of 

zeros, and the denominator is a 4 by 4 matrix (a submatrix from the variance-covariance matrix 
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of the estimates), the diagonal of which contains squared standard errors4.  The R syntax in 

Appendix D illustrates the Wald test, the value of which indicates that the set of predictors 

explains variation in Wave 3 depression scores, F(4, 246.58) = 80.13, p < .001.  As an aside, the 

corresponding test statistic from the first analysis example was substantially lower, F(4, 172.89) 

= 60.87, p < .001, presumably due to the loss of power that results from scale-level imputation.  

Finally, note that either an F or chi-square distribution can generate the p-value for the Wald test 

(Asparouhov & Muthén, 2010; Li, Raghunathan, & Rubin, 1991). 

 Whereas the Wald test requires only one analysis, the likelihood ratio statistic (sometimes 

referred to as D3 in the literature; Enders, 2010; Schafer, 1997) compares the relative fit of two 

models.  The first is a general model that includes all parameters of interest, and the second is a 

nested model that imposes constraints on a subset of parameters.  Returning to the omnibus test 

example, the analysis model from Equation (1) is the general model, and the nested model 

constrains the four regression slopes to zero during estimation.  The R syntax in Appendix D also 

illustrates the likelihood ratio statistic, the value of which is F(4, 1047.16) = 48.06, p < .001.  

The likelihood ratio statistic is generally more complicated to implement because it requires 

multiple passes through the data (the first pass computes the average likelihood ratio test from 

the imputed data sets, and the second computes the average a second time while constraining all 

parameters to their pooled values), but its derivation implies equivalence to the Wald test, at least 

in large samples (Meng & Rubin, 1992). 

 Structural equation modeling is an exceedingly popular analytic tool that warrants a brief 

discussion.  The Wald statistic for multiply imputed data is applicable to a wide variety of 

 
4 Technically, the multivariate version of the Wald test does not use a matrix in the denominator, 
as there is no division operator in matrix algebra.  Rather, the test statistic employs an inverse, 
which is the matrix analog of a reciprocal from scalar algebra. 
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multiparameter significance tests (e.g., testing whether a group of path coefficients is different 

from zero; testing between-group equality constraints in multiple group invariance models), but 

it does not function as a global test of model fit.  The familiar test of model fit for complete data 

is a likelihood ratio statistic comparing the relative fit of the researcher’s model (the nested 

model) to that of a best-fitting saturated model (the general model).  The multiple imputation 

variant of the likelihood ratio statistic outlined by Meng and Rubin (1992) can serve the same 

purpose with missing data, and it is currently available in some software packages (e.g., Mplus 

and the lavaan package in R; Asparouhov & Muthén, 2010; Contributors, 2014).  The scant 

research on this topic suggests that, relative to its maximum likelihood counterpart, the multiple 

imputation test statistic may require somewhat larger sample sizes to reach its optimal 

performance (e.g., N > 200 in relatively simple models), and it may have less power to reject a 

false model (Enders & Mansolf, in press).  Importantly, the chi-square version of Meng and 

Rubin’s (1992) test can be used to construct imputation-based fit indices such as the CFI, TLI, 

and RMSEA (Enders & Mansolf, in press) by substituting the pooled statistic into standard 

complete-data expressions for the fit measures.  Limited research suggests that these measures 

are comparable to those of maximum likelihood.   

Interaction Effects 

 Interaction (moderation) effects are ubiquitous throughout psychology and pose 

interesting methodological challenges for missing data handling.  As its currently implemented 

in popular software packages, multiple imputation holds no particular advantage over maximum 

likelihood estimation, but newly developed imputation routines that are not yet implemented in 

mainstream software programs appear to offer a substantial improvement (Bartlett, Seaman, 

White, & Carpenter, 2015).  Interactive effects are important to consider here because they 
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generally require specialized imputation procedures.  To motivate the ensuing discussion, I 

expand the regression analysis from Equation (1) to include a product term where pain severity 

moderates the effect of the intervention on depression scores.  

 

 𝐷𝐸𝑃$ = 𝛽' + 𝛽)(𝐷𝐸𝑃)) + 𝛽,(𝐴𝐺𝐸) + 𝛽$(𝑆𝐸𝑉𝐸𝑅𝐼𝑇𝑌) + 𝛽5(𝑇𝑋𝐺𝑅𝑃)

+ 𝛽F(𝑆𝐸𝑉𝐸𝑅𝐼𝑇𝑌)(𝑇𝑋𝐺𝑅𝑃) + 𝜀 
(6) 

 

Recall that pain severity ratings are incomplete, which means that the product term is as well.  At 

first glance, it may seem reasonable to simply compute the interaction as the product of the 

treatment indicator and the imputed severity scores.  However, this so-called impute-then-

transform approach (von Hippel, 2009) pushes the product term coefficient toward zero because 

the imputation phase fails to model the interactive effect (i.e., an imputation model based solely 

on the lower-order terms explicitly assumes that 𝛽F equals zero).   

When one component of the product is categorical and complete – as it is here – the best 

strategy is to perform imputation within subgroups defined by the categorical variable (Enders & 

Gottschall, 2011).  The procedure requires the following steps: (a) create separate data sets for 

the intervention and control groups, (b) generate imputations for each group (the intervention 

dummy code cannot be included because it is constant within group), (c) merge the subgroup 

data sets, (d) compute the product term by multiplying the dummy code and the imputed severity 

ratings, and (e) estimate the regression model from Equation (6).  Notice that the product term is 

not an explicit part of the imputation model and must be computed post-imputation.  Although 

this step resembles the problematic impute-then-transform approach, separate-group imputation 

allows the covariance structure to differ across groups, thereby preserving all possible two-way 
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interactions between the grouping variable and the imputation model variables (Enders & 

Gottschall, 2011).  

Separate-group imputation is limited in practice because it requires a categorical 

predictor with no missing values, and group sizes must be sufficiently large to support 

imputation (Graham, 2009) – at a minimum, all variables in a group’s imputation model should 

have more observations than the number of variables in the model (Asparouhov & Muthén, 

2010).  A second option is to include the incomplete product term in the imputation model, 

treating it just like any other incomplete variable (Enders, Baraldi, & Cham, 2014; van Buuren, 

2012; von Hippel, 2009).  Unfortunately, this so-called transform-then-impute strategy (von 

Hippel, 2009) generally requires an MCAR mechanism and produces biased estimates when data 

are systematically missing (Carpenter & Kenward, 2013; Enders et al., 2014; Yuan & Savalei, 

2014).  Fortunately, promising new imputation procedures are currently under development and 

will likely become available in software packages in the near future (Bartlett et al., 2015).  Until 

then, product term imputation may be the only viable option for preserving interaction effects 

with incomplete data.  As an aside, maximum likelihood estimation suffers from the same 

limitations as product term imputation and thus does not provide a viable alternative.   

Product term imputation has two noteworthy features.  First, because the procedure treats 

the product as a distinct variable with unique moments, the resulting imputations do not equal the 

product of their component parts.  It is tempting to remedy this issues by recomputing the 

product following imputation, but this too introduces bias and should be avoided (von Hippel, 

2009).  Second, the common practice of centering lower-order variables prior to computing their 

product (Aiken & West, 1991) is not applicable to multiply imputed data because the means are 

unknown.  Consequently, the imputation and analysis stages must use raw score variables.  
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Conditional (lower-order) effects that are consistent with a centered solution can then be 

obtained via algebraic transformation (Aiken & West, 1991; Bauer & Curran, 2005; Hayes & 

Matthes, 2009), or by centering the lower-order terms and the product variable post-imputation 

(Enders et al., 2014).  It is important to emphasize that centering a product term is not as simple 

as subtracting its average because the product of two deviation score variables generally has a 

non-zero mean.  Enders et al. (2014) provides computer code for product term imputation that 

illustrates the transformation and post-imputation centering methods. 

Multilevel Data 

 A great deal of recent methodological work has focused on missing data handling 

methods for multilevel data structures (Drechsler, 2015; Enders, Mistler, & Keller, 2016; Enders, 

Keller, & Levy, 2016; Goldstein, Bonnet, & Rocher, 2007; Goldstein, Carpenter, Kenward, & 

Levin, 2009; Grund, Lüdke, & Robitzsch, 2016; Schafer & Yucel, 2002; Shin & Raudenbush, 

2007; Yucel, 2008, 2011).  This work has important implications for psychological research 

because nested data structures are exceedingly common throughout our discipline (e.g., students 

nested within schools; repeated measures nested within individuals; individuals nested within 

dyads or families).  Maximum likelihood estimation for multilevel models with incomplete data 

is often limited because software packages may restrict missing data handling to outcome 

variables, and programs that can handle incomplete predictors typically limit this functionality to 

random intercept models (Asparouhov & Muthén, 2010; Shin & Raudenbush, 2007, 2010).  

Multiple imputation, on the other hand, is well suited for a variety of multilevel analysis 

problems because it makes no distinction about a variable’s role in the subsequent analysis 

model.  The Blimp application was developed to handle a wide variety of common multilevel 

analysis problems, including models with random slopes, categorical variables, and up to three 
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levels (Enders, Keller, & Levy, 2016).  Other software packages offer a more limited set of 

capabilities; some programs are restricted to random intercept analyses, others can impute only 

level-1 variables, while others are restricted to normal variables (Enders, Mistler, & Keller, 

2016).   

 Single-level imputation procedures are inappropriate for multilevel data structures 

because they ignore between-cluster sources of variation ( Enders, Mistler, & Keller, 2016; 

Reiter, Raghunathan, & Kinney, 2006; van Buuren, 2011).  One method for addressing this 

problem is to code cluster membership with a set of dummy variables and include the codes as 

predictors in a single-level imputation scheme.  This so-called fixed effect imputation strategy 

tends to distort standard errors in some cases (Andridge, 2011; Reiter et al., 2006; van Buuren, 

2011) and can produce biased estimates when the intraclass correlation is low (Drechsler, 2015; 

Lüdtke, Robitzsch, & Grund, in press). Multiple imputation of missing data in multilevel 

designs: A comparison of different strategies.  From a practical perspective, fixed effect 

imputation is usually not an ideal option because it is limited to random intercept analyses, and it 

cumbersome to implement ( Enders, Mistler, & Keller, 2016). 

Earlier in the paper I established the idea that imputations are effectively the sum of a 

predicted value a random residual term.  Multilevel imputation schemes apply the same logic, 

but the predicted values include one or more residual terms that capture between-cluster 

differences in the intercepts and possibly the slopes.  To illustrate, consider a simple bivariate 

random intercept analysis  

 

 𝑌NO = 𝛽' + 𝛽)𝑋NO + 𝑢O + 𝜀NO (7) 
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where Yij and Xij are scores for observation i within cluster j, uj is a between-cluster (i.e., level-2) 

residual that captures residual mean differences not explained by X, and 𝜀NO is a within-cluster 

(i.e., level-1) residual.  Further, assume that X is missing and Y is complete.  Like its single-level 

counterpart, multilevel imputation draws missing values from a normal distribution with a mean 

and variance equal to the predicted score and within-cluster residual variance, respectively. 

 

 𝑋NO(mis)~𝑁:C𝛽' + 𝛽)𝑌NO + 𝑢OH, 𝜎>,? (8) 

 

Importantly, the predicted score enclosed in square brackets includes a level-2 residual term uj 

that preserves between-cluster (i.e., random intercept) variation X.  With more complicated 

analysis models, the predicted score can expand to include cluster means and random slope 

residuals, among other things (Carpenter & Kenward, 2013; Enders, Keller, & Levy, 2016).  It is 

worth noting that imputation for random slope models may not yield estimates that are bias free, 

particularly when predictor variables in the analysis model have missing data (Enders, Keller, & 

Levy, 2016; Grund, Lüdke, & Robitzsch, 2016).  Nevertheless, extending Equation (8) to include 

random slope residuals reflects the current implementation of multilevel FCS (Enders, Keller & 

Levy, 2016; Grund, Lüdke, & Robitzsch, 2016; van Buuren, 2011, 2012; van Buuren et al., 

2014), although new approaches to this problem are currently under development (Erler, 

Rizopoulos, van Rosmalen, Jaddoe, Franco, & Lesaffre, 2016). 

 Methodological literature makes it abundantly clear that multilevel data sets require 

specialized missing data handling routines, longitudinal analyses warrant discussion because 

they do not necessarily require a multilevel imputation scheme.  In fact, single-level imputation 

may be preferable in some cases.  In the context of longitudinal data, it is widely known that the 
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multilevel growth model is sometimes equivalent to a single-level latent curve model from 

structural equation modeling (Chou, Bentler, & Pentz, 1998; Hox & Stoel, 2005; Mehta & West, 

2000).  The equivalence (or lack thereof) of the two modeling frameworks depends on whether 

the time between assessments is constant across individuals.  Returning to the online chronic 

pain management program, suppose that depression scores were obtained from all participants at 

exactly 7 and 14 weeks post-baseline.  Because a common covariance matrix is applicable to the 

entire sample, multilevel and structural equation modeling growth curve analyses are equivalent.  

In contrast, suppose that logistical constraints forced the researchers to stagger data collection, 

such that the initial follow-up was collected in the 5- to 9-week interval post-baseline, and the 

second follow-up was obtained between 12 and 16 weeks.  The individually-varying assessment 

schedules require a unique covariance matrix for each participant (e.g., because the correlation 

between baseline and a 5-week follow-up would be stronger than the correlation between 

baseline and a 9-week follow-up), thereby necessitating a multilevel analysis.   

In situations where a single-level analysis is appropriate (i.e., time between 

measurements is the same for all participants), arranging the data in wide format (i.e., columns 

represent repeated measurements) and applying a single-level imputation scheme is 

advantageous because the researcher need not specify the functional form of the growth 

trajectory.  Returning to Equation (3), the 𝛽' terms from the first three imputation steps capture 

mean levels of depression, adjusted for the predictors in each equation.  Importantly, these means 

freely vary with no restrictions, thereby producing imputations that are perfectly valid for 

exploring linear or quadratic growth, and it makes no difference whether the subsequent analysis 

employs a multilevel or latent curve model.  In contrast, person-specific assessment schedules 

require a stacked data format and multilevel imputation.  The multilevel framework treats the 
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passage of time as an explicit predictor variable, with nonlinear trajectories often specified as 

polynomial functions of time (e.g., a quadratic growth curve includes a time variable and its 

square).  In a similar vein, multilevel imputation requires the researcher to explicitly specify the 

growth curve’s functional form (e.g., if nonlinear change is expected, the imputation model must 

include polynomial terms for the time variable).  Because single-level imputation requires less a 

priori knowledge on the part of the researcher, it is probably preferable in situations where it’s 

applicable. 

As a brief aside, some disciplines still rely on a longitudinal imputation approach known 

as last observation carried forward.  As its name implies, this method uses the last observed 

value for a participant to impute missing values at future measurements (e.g., if a participant 

drops out after the second wave, her Wave 2 score serves as an imputation for all future waves).  

Conventional wisdom suggests that last observation carried forward yields conservative 

estimates of intervention effects in longitudinal studies because it assumes no change after 

dropout.  However, methodological research has shown that this imputation scheme can either 

exaggerate or attenuate group differences, even when the mechanism is MCAR (Cook, Zeng, & 

Yi, 2004; Liu & Gould, 2002; Mallinckrodt, Clark, & David, 2001; Molenberghs et al., 2004).  

Consequently, last observation carried forward is not a viable alternative to multiple imputation 

in longitudinal data sets. 

Discussion 

The last 20 years has seen a substantial increase in missing data research, and most 

software applications now implement one or more modern missing data handling routines.  

Despite their widespread availability and superior statistical properties (e.g., less stringent 

assumptions about the cause of missing data, greater accuracy and power), the adoption of these 
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modern analytic methods is not uniform throughout psychology and related disciplines.  

Consequently, the primary goal of this manuscript is to promote the awareness and application of 

analytic methods that enjoy a strong foundation of support in the methodological literature.  

Broadly speaking, the missing data literature supports the use of maximum likelihood estimation 

and multiple imputation (and Bayesian analyses).  Maximum likelihood estimation is perhaps the 

easiest method to use in practice because researchers need only specify their analyses in a 

capable software package (e.g., any one of several structural equation modeling packages).  

However, psychological data sets often feature complexities that are currently difficult to handle 

appropriately in the likelihood framework (e.g., mixtures of categorical and continuous 

variables).  Multiple imputation is often a better tool for behavioral science data because it gives 

researchers the flexibility to tailor the missing data handling procedure to match a particular set 

of analysis goals.  Throughout the paper, I discussed a number of practical issues that clinical 

researchers are likely to encounter when applying multiple imputation, including mixtures of 

categorical and continuous variables, item-level missing data in questionnaires, significance 

testing, interaction effects, and multilevel missing data.  Two analysis examples illustrated the 

application of multiple imputation in freely available software, in hopes of encouraging the 

adoption of this method in applied research.   

 

  



MULTIPLE IMPUTATION   39 

Agresti, A. (2012). Categorical data analysis (3rd ed.). Hoboken, NJ: Wiley. 

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. 

Newbury Park, CA: Sage. 

Allison, P. D. (2002). Missing data. Newbury Park, CA: Sage. 

Allison, P. D. (2005). Imputation of categorical variables with PROC MI. Paper presented at the 

SAS Users Group International.  

Andridge, R. R. (2011). Quantifying the impact of fixed effects modeling of clusters in multiple 

imputation for cluster randomized trials. Biom J, 53(1), 57-74. 

doi:10.1002/bimj.201000140 

Asparouhov, T., & Muthén, B. (2010). Multiple imputation with Mplus. Retrieved from 

http://www.statmodel.com/download/Imputations7.pdf. website:  

Barnard, J., & Rubin, D. B. (1999). Small-sample degrees of freedom with multiple imputation. 

Biometrika, 86, 948-955.  

Bartlett, J. W., Seaman, S. R., White, I. R., & Carpenter, J. R. (2015). Multiple imputation of 

covariates by fully conditional specification: Accommodating the 

substantive model. Statistical Methods in Medical Research, 24, 462-487.  

Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: 

Inferential and graphical techniques. Multivariate Behavioral Research, 40, 373-400.  

Bernaards, C. A., Belin, T. R., & Schafer, J. L. (2007). Robustness of a multivariate normal 

approximation for imputation of incomplete binary data. Statistics in Medicine, 26, 1368-

1382 

Carpenter, J. R., & Kenward, M. G. (2013). Multiple imputation and its application. West 

Sussex, UK: Wiley. 



MULTIPLE IMPUTATION   40 

Chou, C. P., Bentler, P. M., & Pentz, M. A. (1998). Comparison of two statistical approaches to 

study growth curves. Structural Equation Modeling: A Multidisciplinary Journal, 5, 247-

266.  

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: 

Erlbaum. 

Collins, L. M., Schafer, J. L., & Kam, C.-M. (2001). A comparison of inclusive and restrictive 

strategies in modern missing data procedures. Psychological Methods, 6(330-351).  

Contributors, s. (2014). semTools: Useful tools for structural equation modeling. R package 

version 0.4-9. Retrieved from http://cran.r-

project.org/web/packages/semTools/index.html website.  

Cook, R. J., Zeng, L., & Yi, G. Y. (2004). Marginal analysis of incomplete longitudinal binary 

data: A cautionary note on LOCF imputation. Biometrics, 60, 820–828.  

Drechsler, J. (2015). Multiple imputation of multilevel missing data--rigor versus simplicity. 

Journal of Educational and Behavioral Statistics, 40(1), 69-95. 

doi:10.3102/1076998614563393 

Eekhout, I., Enders, C. K., Twisk, J. W. R., de Boer, M. R., de Vet, H. C. W., & Heymans, M. 

W. (2015). Analyzing incomplete item scores in longitudinal data by Including item score 

information as auxiliary variables. Structural Equation Modeling: A Multidisciplinary 

Journal, 22, 1-15. doi:10.1080/10705511.2014.937670 

Enders, C. K. (2008). A note on the use of missing auxiliary variables in FIML-based structural 

equation models. Structural Equation Modeling: A Multidisciplinary Journal, 434-448.  

Enders, C. K. (2010). Applied missing data analysis. New York: Guilford Press. 



MULTIPLE IMPUTATION   41 

Enders, C. K. (2011). Missing not at random models for latent growth curve analyses. 

Psychological Methods, 16, 1-16. doi:10.1037/a0022640.supp 

Enders, C. K. (Ed.) (2013). Analyzing structural equation models with missing data (2nd ed.). 

Greenwich, CT: Information Age. 

Enders, C. K., Baraldi, A. N., & Cham, H. (2014). Estimating interaction effects with incomplete 

predictor variables. Psychological Methods, 19, 39-55. doi:10.1037/a0035314.supp 

Enders, C. K., & Gottschall, A. C. (2011). Multiple imputation strategies for multiple group 

structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 

18(1), 35-54. doi:10.1080/10705511.2011.532695 

Enders, C. K., Keller, B. T., & Levy, R. (2016). A fully conditional specification approach to 

multilevel imputation of categorical and continuous variables. Manuscript submitted for 

publication.  

Enders, C. K., & Mansolf, M. (in press). Assessing the fit of structural equation models with 

multiply imputed data. Psychological Methods.  

Enders, C. K., Mistler, S. A., & Keller, B. T. (2016). Multilevel multiple imputation: A review 

and evaluation of joint modeling and chained equations imputation. Psychological 

Methods, 21, 222-240.  

Erler, N. S., Rizopoulos, D., van Rosmalen, J., Jaddoe, V.W.V., Franco, O.H., & Lesaffre, 

E.M.E.H. (2016). Dealing with missing covariates in epidemiologic studies: a 

comparison between multiple imputation and a full Bayesian approach. Statistics in 

Medicine, 35, 2955-2974. 

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). 

Bayesian data analysis (3rd ed.). Boca Raton, FL: CRC Press. 



MULTIPLE IMPUTATION   42 

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple 

sequences. Statistical Science, 7, 457-472.  

Goldstein, H., Bonnet, G., & Rocher, T. (2007). Multilevel structural equation models for the 

analysis of comparative data on educational performance. Journal of Educational and 

Behavioral Statistics, 32(3), 252-286. doi:10.3102/1076998606298042 

Goldstein, H., Carpenter, J., Kenward, M. G., & Levin, K. A. (2009). Multilevel models with 

multivariate mixed response types. Statistical Modelling, 9(3), 173-197. 

doi:10.1177/1471082x0800900301 

Gottschall, A. C., West, S. G., & Enders, C. K. (2012). A comparison of item-level and scale-

level multiple imputation for questionnaire batteries. Multivariate Behavioral Research, 

47(1), 1-25. doi:10.1080/00273171.2012.640589 

Graham, J. W. (2003). Adding missing-data-relevant variables to fiml-based structural equation 

models. Structural Equation Modeling: A Multidisciplinary Journal, 10, 80-100.  

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of 

Psychology, 60, 549-576. doi:10.1146/annurev.psych.58.110405.085530 

Graham, J. W. (2012). Missing data: Analysis and design. New York: Springer. 

Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are really 

needed? Some practical clarifications of multiple imputation theory. Prevention Science, 

8, 206-213.  

Graham, J. W., Taylor, B. J., Olchowski, A. E., & Cumsille, P. E. (2008). Planned missing data 

designs in psychological research. Psychological Methods, 11, 323-343. 

doi:10.1037/1082-989X.11.4.323.supp 



MULTIPLE IMPUTATION   43 

Grund, S., Lüdke, O., & Robitzsch, A. (2016). Multiple imputation of missing covariate values 

in multilevel models with random slopes: a cautionary note. Behavioral Research 

Methods, 48, 640-649.  

Grund, S., Lüdtke, O., & Robitzsch, A. (2016). Pooling ANOVA results from multiply imputed 

datasets: A simulation study. Methodology, 12, 75-88. 

Grund, S., Robitzsch, A., & Lüdke, O. (2016). Package 'mitml'. Retrieved from https://cran.r-

project.org/web/packages/mitml/ website:  

Hayes, A. F., & Matthes, J. (2009). Computational procedures for probing interactions in OLS 

and logistic regression: SPSS and SAS implemen- tations. Behavioral Research Methods, 

41, 924-936.  

Horton, N. J., Lipsitz, S. R., & Parzen, M. (2003). A potential for bias when rounding in multiple 

imputation. The American Statistician, 57, 229-232.  

Hox, J., & Stoel, R. D. (2005). Multilevel and SEM approaches to growth curve modeling. In B. 

S. Everitt & D. C. Howell (Eds.), Encyclopedia of Statistics in Behavioral Science. 

Chichester, UK.: John Wiley & Sons. 

Jelicic, H., Phelps, E., & Lerner, R. M. (2009). Use of missing data methods in longitudinal 

studies: the persistence of bad practices in developmental psychology. Developmental 

Psychology, 45, 1195-1199.  

Keller, B. T., & Enders, C. K. (2014). A latent variable chained equations approach for 

multilevel multiple imputation. Paper presented at the Modern Modeling Methods 

Conference, Storrs, Connecticut.  



MULTIPLE IMPUTATION   44 

Li, K. H., Raghunathan, T. E., & Rubin, D. B. (1991). Large-sample significance levels from 

multiply imputed data using moment-based statistics and an F reference distribution. 

Journal of the American Statistical Association, 86, 1065-1073.  

Licht, C. (2010). New methods for generating significance levels from multiply-imputed data 

(Doctoral dissertation). Universität Bamberg. Retrieved from http://d-

nb.info/101104966X/34 

Liu, G., & Gould, A. L. (2002). Comparison of alternative strategies for analysis of longitudinal 

trials. Journal of Biopharmaceutical Statistics, 12, 207–226.  

Little, R. J. A. (1988). A test of missing completely at random for multivariate data with missing 

values. Journal of the American Statistical Association, 83, 1198-1202. 

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data. Hoboken, NJ: 

Wiley. 

Little, T. D., & Rhemtulla, M. (2013). Planned missing data designs for developmental 

researchers. Child Development Perspectives, 7, 199-204.  

Liu, Y., & Enders, C. K. (2016). Evaluation of multi-parameter test statistics for multiple 

imputation.   

Mallinckrodt, C. H., Clark, W. S., & David, S. R. (2001). Accounting for dropout bias using 

mixed effects models. Journal of Biopharmaceutical Statistics, 11, 9–21.  

Mazza, G. L., Enders, C. K., & Ruehlman, L. S. (2015). Addressing item-level missing data: A 

comparison of proration and full information maximum likelihood estimation. 

Multivariate Behavioral Research, 50, 504-519.  

Mehta, P. D., & West, S. G. (2000). Putting the individual back into individual growth curves. 

Psychological Methods, 5, 23-43.  



MULTIPLE IMPUTATION   45 

Meng, X.-L. (1994). Multiple-imputation inferences with uncongenial sources of input. 

Statistical Science, 9, 538-558.  

Meng, X.-L., & Rubin, D. B. (1992). Performing likelihood ratio tests with multiply-imputed 

data sets. Biometrika, 79, 103-111.  

Mistler, S. A., & Enders, C. K. (2011). An introduction to planned missing data designs for 

developmental research. In B. Laursen, T. Little, & N. Card (Eds.), Handbook of 

Developmental Research Methods (pp. 742-754). New York: Guilford. 

Molenberghs, G., Thijs, H., Jansen, I., & Beunckens, C., Kenward, M. G., Mallinckrodt, C., et al. 

(2004). Analyzing incomplete longitudinal clinical trial data. Biostatistics, 5, 445–464.  

Muthén, B., Asparouhov, T., Hunter, A. M., & Leuchter, A. F. (2011). Growth modeling with 

nonignorable dropout: alternative analyses of the STAR*D antidepressant trial. 

Psychological Methods, 16(1), 17-33. doi:10.1037/a0022634 

Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: A review of reporting 

practices and suggestions for improvement. Review of Educational Research, 74(525-

556).  

Quartagno, M., & Carpenter, J. R. (2016). jomo: A package for multilevel joint modelling 

multiple imputation (Version 2.1-2). Retrieved from http://CRAN.R-

project.org/package=jomo. 

Raghunathan, T. E., Lepkowski, J. M., Van Hoewyk, J., & Solenberger, P. (2001). A 

multivariate technique for multiply imputing missing values using a sequence of 

regression models. Survey Methodology, 27, 85-95.  



MULTIPLE IMPUTATION   46 

Raykov, T. (2011). On Testability of missing data mechanisms in incomplete data sets. 

Structural Equation Modeling: A Multidisciplinary Journal, 18(3), 419-429. 

doi:10.1080/10705511.2011.582396 

Raykov, T., & West, B. T. (2015). On enhancing plausibility of the missing at random 

assumption in incomplete data analyses via evaluation of response-auxiliary variable 

correlations. Structural Equation Modeling: A Multidisciplinary Journal, 1-9. 

doi:10.1080/10705511.2014.937848 

Reiter, J. P. (2007). Small-sample degrees of freedom for multi-component significance tests 

with multiple imputation for missing data. Biometrika, 94(2), 502-508. 

doi:10.1093/biomet/asmO28 

Reiter, J. P., Raghunathan, T. E., & Kinney, S. K. (2006). The importance of modeling the 

survey design in multiple imputation for missing data. Survey Methodology, 32, 143-150.  

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592.  

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Hoboken, New Jersey: 

Wiley. 

Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the American Statistical 

Association, 91, 473-489.  

Ruehlman, L. S., Karoly, P., & Enders, C. (2012). A randomized controlled evaluation of an 

online chronic pain self management program. Pain, 153, 319-330.  

Schafer, J. L. (1997). Analysis of incomplete multivariate data. New York: Chapman & Hall. 

Schafer, J. L. (2003). Multiple imputation in multivariate problems when the imputation and 

analysis models differ. Statistica Neerlandica, 57, 19-35.  



MULTIPLE IMPUTATION   47 

Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. 

Psychological Methods, 7, 147-177.  

Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing-data 

problems: A data analyst’s perspective. Multivariate Behavioral Research, 33, 545-571.  

Schafer, J. L., & Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-

effects models with missing values. Journal of Computational and Graphical Statistics, 

11(2), 437-457. doi:Doi 10.1198/106186002760180608 

Shin, Y., & Raudenbush, S. W. (2007). Just-identified versus overidentified two-level 

hierarchical linear models with missing data. Biometrics, 63(4), 1262-1268. 

doi:10.1111/j.1541-0420.2007.00818.x 

Shin, Y., & Raudenbush, S. W. (2010). A latent cluster-mean approach to the contextual effects 

model with missing data. Journal of Educational and Behavioral Statistics, 35, 26–53.  

Sinharay, S., Stern, H. S., & Russell, D. (2001). The use of multiple imputation for the analysis 

of missing data. Psychological Methods, 6, 317-329.  

van Buuren, S. (2007). Multiple imputation of discrete and continuous data by fully conditional 

specification. Statistical Methods in Medical Research, 16, 219-242.  

van Buuren, S. (2011). Multiple imputation of multilevel data. In J. J. Hox & J. K. Roberts 

(Eds.), Handbook of Advanced Multilevel Analysis (pp. 173-196). New York: Routledge. 

van Buuren, S. (2012). Flexible imputation of missing data. New York: Chapman & Hall. 

van Buuren, S., Brand, J. P. L., Groothuis-Oudshoorn, C. G. M., & Rubin, D. B. (2006). Fully 

conditional specification in multivariate imputation. Journal of Statistical Computation 

and Simulation, 76, 1049-1064.  

van Buuren, S., Groothuis-Oudshoorn, K., Robitzsch, A., Vink, G., Doove, L., & Jolani, S. 



MULTIPLE IMPUTATION   48 

(2014). Package ‘mice’. Retrieved from cran.r-project.org/web/packages/mice/mice.pdf. 

von Hippel, P. T. (2009). How to impute interactions, squares, and other transformed variables. 

Sociological Methodology, 39, 265-291.  

Widaman, K. F. (2006). Missing data: What to do with or without them. Monographs of the 

Society for Research in Child Development, 71, 42-64.  

Wilkinson, L., & Inference, T. F. o. S. (1999). Statistical methods in psychology journals: 

Guidelines and explanations. American Psychologist, 54, 594-604.  

Wood, A. M., White, I. R., & Thompson, S. G. (2004). Are missing outcome data adequately 

handled? A review of published randomized controlled trials in major medical journals. 

Clinical Trials(1), 368-376.  

Yuan, K.-H., & Savalei, V. (2014). Consistency, bias and efficiency of the normal-distribution-

based MLE: The role of auxiliary variables. Journal of Multivariate Analysis, 124, 353-

370. doi:10.1016/j.jmva.2013.11.006 

Yucel, R. M. (2008). Multiple imputation inference for multivariate multilevel continuous data 

with ignorable non-response. Philos Trans A Math Phys Eng Sci, 366(1874), 2389-2403. 

doi:10.1098/rsta.2008.0038 

Yucel, R. M. (2011). Random covariances and mixed-effects models for imputing multivariate 

multilevel continuous data. Statistical Modelling, 11, 351-370.  

 

  



MULTIPLE IMPUTATION   49 

Table 1    

Percentage of Observed Data for Analysis Variables   
Variable Name % Complete Range 

Intervention Code TXGRP 100.0 0-1 
Gender MALE 100.0 0-1 
Age AGE 100.0 18-78 
Education EDUC 95.0 1-7 
Exercise Frequency EXERCISE 93.3 1-8 
Pain Interference INTERF 100.0 6-42 
Pain Severity Rating SEVERITY 93.7 1-7 
Wave 1 Depression Item 1 T1DEP1 100.0 1-5 
Wave 1 Depression Item 2 T1DEP2 94.7 1-5 
Wave 1 Depression Item 3 T1DEP3 94.7 1-5 
Wave 1 Depression Item 4 T1DEP4 100.0 1-5 
Wave 1 Depression Item 5 T1DEP5 100.0 1-5 
Wave 1 Depression Item 6 T1DEP6 100.0 1-5 
Wave 2 Depression Item 1 T2DEP1 84.7 1-5 
Wave 2 Depression Item 2 T2DEP2 86.7 1-5 
Wave 2 Depression Item 3 T2DEP3 91.3 1-5 
Wave 2 Depression Item 4 T2DEP4 91.3 1-5 
Wave 2 Depression Item 5 T2DEP5 91.3 1-5 
Wave 2 Depression Item 6 T2DEP6 86.7 1-5 
Wave 3 Depression Item 1 T3DEP1 76.3 1-5 
Wave 3 Depression Item 2 T3DEP2 76.3 1-5 
Wave 3 Depression Item 3 T3DEP3 76.3 1-5 
Wave 3 Depression Item 4 T3DEP4 72.7 1-5 
Wave 3 Depression Item 5 T3DEP5 72.7 1-5 
Wave 3 Depression Item 6 T3DEP6 74.0 1-5 
Wave 1 Depression Scale DEP1 89.7 6-30 
Wave 2 Depression Scale DEP2 77.7 6-30 
Wave 3 Depression Scale DEP3 68.7 6-30 
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Table 2    

Missing Data Indicator Correlations   
 Missing Data Indicator 

Variable SEVERITY DEP1 DEP3 
TXGRP -0.10 -0.03 -0.03 
MALE 0.10 0.02 0.07 
AGE 0.06 0.24 0.27 

EDUC 0.05 -0.31 -0.18 
EXERCISE -0.02 -0.07 -0.15 

INTERF 0.01 0.02 0.35 
SEVERITY NA 0.02 0.20 

DEP1 -0.01 NA 0.02 
DEP2 -0.03 0.00 0.15 
DEP3 0.01 0.06 NA 
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Table 3           

Correlations Among Study Variables               

Variable 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 

1. TXGRP 1.00          

2. MALE -0.04 1.00         

3. AGE 0.09 0.23 1.00        

4. EDUC -0.09 0.01 0.04 1.00       

5. EXERCISE 0.00 -0.13 0.04 0.25 1.00      

6. INTERF 0.00 0.04 0.03 -0.11 -0.34 1.00     

7. SEVERITY 0.00 0.10 0.03 -0.14 -0.28 0.59 1.00    

8. DEP1 -0.04 0.13 -0.13 0.04 -0.23 0.36 0.29 1.00   

9. DEP2 -0.10 0.17 -0.05 0.11 -0.14 0.39 0.34 0.72 1.00  

10. DEP3 -0.21 0.16 0.01 0.13 -0.09 0.32 0.27 0.73 0.75 1.00 

Note: Correlations based on maximum likelihood estimation with full sample. 
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Table 4         

Parameter Estimates from Three Imputed Data Sets       
 Imputation 1  Imputation 2  Imputation 3 

Variable Est. SE   Est. SE   Est. SE 
INTERCEPT 2.244 1.196  2.368 1.239  0.928 1.205 

DEP1 0.661 0.037  0.705 0.038  0.658 0.037 
AGE 0.059 0.017  0.059 0.017  0.075 0.016 

SEVERITY 0.294 0.146  0.023 0.149  0.407 0.147 
TXGRP -1.982 0.380   -1.498 0.384   -1.820 0.375 
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Table 5      

Pooled Estimates and Standard Errors from Analysis Example 1   
Variable Est. SE t df p 

INTERCEPT 2.119 1.632 1.299 56.711 0.100 

DEP1 0.660 0.047 14.136 74.721 < .001 
AGE 0.062 0.024 2.591 45.596 0.006 

SEVERITY 0.287 0.191 1.505 66.434 0.069 

TXGRP -1.871 0.459 -4.079 92.360 < .001 
  

  



MULTIPLE IMPUTATION   54 

Table 6      

Pooled Estimates and Standard Errors from Analysis Example 2   
Variable Est. SE t df p 

INTERCEPT 1.245 1.410 0.883 138.062 0.189 

DEP1 0.679 0.041 16.384 181.605 < .001 
AGE 0.069 0.020 3.497 128.080 < .001 

SEVERITY 0.307 0.173 1.773 135.973 0.039 

TXGRP -1.640 0.427 -3.842 181.090 < .001 
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Figure 1.  Panel A depicts the true associations among six variables in a data set: X and Y are 

variables in the analysis, MY is the missing data indicator for Y, and A1, A2, and A3 are potential 

auxiliary variables.  In Panel A, the absence of an arrow connecting Y and MY indicates that 

MAR is satisfied after controlling for A1 because the missing data indicator is unrelated to the 

incomplete variable.  Panel B depicts an NMAR mechanism that results from ignoring (failing to 

condition on) A1.  Panels C and D show MAR mechanisms that result from ignoring A2 and A3, 

respectively.
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Appendix A 

Blimp imputation syntax for Analysis Example 1 

 

data: /users/craig/desktop/example/painstudy.dat;  

varnames: txgrp male age educ exercise interf severity 

  t1dep1 t1dep2 t1dep3 t1dep4 t1dep5 t1dep6 

  t2dep1 t2dep2 t2dep3 t2dep4 t2dep5 t2dep6 

  t3dep1 t3dep2 t3dep3 t3dep4 t3dep5 t3dep6 

  dep1 dep2 dep3; 

missing: 999; 

model: ~ txgrp age interf severity dep1 dep2 dep3; 

seed: 90095; 

burn: 200; 

thin: 200; 

nimps: 20; 

chains: 2; 

outfile: /users/craig/desktop/example/ex1imps.csv; 

options: stacked psr; 
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Appendix B 

R Analysis and Pooling Syntax for Analysis Example 1 

 

# load libraries 

library(mitml) 

# read imputations in stacked format 

impdata <- read.csv(file = "~/desktop/example/ex1imps.csv",  

  head = FALSE, sep = ",") 

names(impdata) = c("imp", "txgrp", "male", "age",  

  "educ", "exercise", "interf", "severity", 

  "t1dep1", "t1dep2", "t1dep3", "t1dep4", "t1dep5", "t1dep6", 

  "t2dep1", "t2dep2", "t2dep3", "t2dep4", "t2dep5", "t2dep6", 

  "t3dep1", "t3dep2", "t3dep3", "t3dep4", "t3dep5", "t3dep6", 

  "dep1", "dep2", "dep3") 

# split stacked data into separate files 

implist <- split(impdata, impdata$imp) 

implist <- as.mitml.list(implist) 

# estimate models 

model <- with(implist, lm(dep3 ~ dep1 + age + severity + txgrp)) 

dfdenom <- 300 - 4 - 1 

testEstimates(model, df.com = dfdenom) 
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Appendix C 

Blimp imputation syntax for Analysis Example 1 

 

data: /users/craig/desktop/example/painstudy.dat;  

varnames: txgrp male age educ exercise interf severity 

  t1dep1 t1dep2 t1dep3 t1dep4 t1dep5 t1dep6 

  t2dep1 t2dep2 t2dep3 t2dep4 t2dep5 t2dep6 

  t3dep1 t3dep2 t3dep3 t3dep4 t3dep5 t3dep6 

  dep1 dep2 dep3; 

missing: 999; 

ordinal: severity t1dep1 t1dep2 t1dep3 t1dep4 t1dep5 t1dep6  

  t2dep3 t2dep4 t2dep5 t3dep1 t3dep2 t3dep3 t3dep4 t3dep5 t3dep6; 

nominal: ; 

model: ~ txgrp age interf severity t1dep1 t1dep2 t1dep3 t1dep4 t1dep5 

t1dep6  

  t2dep3 t2dep4 t2dep5 t3dep1 t3dep2 t3dep3 t3dep4 t3dep5 t3dep6; 

seed: 90291; 

burn: 1000; 

thin: 1000; 

nimps: 20; 

chains: 2; 

outfile: /users/craig/desktop/example/ex2imps.csv; 

options: stacked psr;  
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Appendix D 

R Analysis and Pooling Syntax for Analysis Example 1 

 

# load libraries 

library(mitml) 

# read imputations in stacked format 

impdata <- read.csv(file = "~/desktop/example/ex2imps.csv",  

  head = FALSE, sep = ",") 

names(impdata) = c("imp", "txgrp", "male", "age",  

  "educ", "exercise", "interf", "severity", 

  "t1dep1", "t1dep2", "t1dep3", "t1dep4", "t1dep5", "t1dep6", 

  "t2dep1", "t2dep2", "t2dep3", "t2dep4", "t2dep5", "t2dep6", 

  "t3dep1", "t3dep2", "t3dep3", "t3dep4", "t3dep5", "t3dep6", 

  "dep1", "dep2", "dep3") 

# compute scales 

dep1items <- c("t1dep1", "t1dep2", "t1dep3", "t1dep4", "t1dep5", 

"t1dep6") 

dep3items <- c("t3dep1", "t3dep2", "t3dep3", "t3dep4", "t3dep5", 

"t3dep6") 

impdata$dep1 <- rowSums(impdata[, dep1items]) 

impdata$dep3 <- rowSums(impdata[, dep3items]) 

# split stacked data into separate files 

implist <- split(impdata, impdata$imp) 

implist <- as.mitml.list(implist) 

# estimate model 

model <- with(implist, lm(dep3 ~ dep1 + age + severity + txgrp)) 

dfdenom <- 300 - 4 - 1 

testEstimates(model, df.com = dfdenom) 

# estimate restricted model and compute wald (d1) and likelihood ratio 

(d3) tests 

restricted <- with(implist, lm(dep3 ~ 1)) 

testModels(model, restricted, method = c("D1"), df.com = dfdenom) 

testModels(model, restricted, method = c("D3"), df.com = NULL) 


