
Why Deep Knowledge Tracing has less Depth than
Anticipated

Xinyi Ding
Lyle School of Engineering

Southern Methodist University
xding@smu.edu

Eric C. Larson
Lyle School of Engineering

Southern Methodist University
eclarson@lyle.smu.edu

ABSTRACT
Knowledge tracing allows Intelligent Tutoring Systems to
infer which topics or skills a student has mastered, thus ad-
justing curriculum accordingly. Deep Knowledge Tracing
(DKT) uses recurrent neural networks (RNNs) for knowl-
edge tracing and has achieved significant improvements com-
pared with models like Bayesian Knowledge Tracing (BKT)
and Performance Factor Analysis (PFA). However, DKT is
not as interpretable as other models because the decision-
making process learned by recurrent neural networks is not
wholly understood by the research community. In this pa-
per, we critically examine the DKT model, visualizing and
analyzing the behaviors of DKT in high dimensional space.
We modify and explore the DKT model and discover that
Deep Knowledge Tracing has some critical pitfalls: 1). in-
stead of tracking each skill through time, DKT is more
likely to learn an ‘ability’ model; 2) the recurrent nature
of DKT reinforces irrelevant information that it uses dur-
ing the tracking task; 3) an untrained recurrent network can
achieve similar results to a trained DKT model, supporting a
conclusion that recurrence relations are not properly learned
and, instead, improvements are simply a benefit of projec-
tion into a high dimensional, sparse vector space. Based
on these observations, we propose improvements and future
directions for conducting knowledge tracing research using
deep models.

Keywords
knowledge tracing, recurrent neural network, visualization

1. INTRODUCTION
Knowledge tracing has been investigated for decades. It al-
lows Intelligent Tutoring Systems to infer which topics or
skills a student has mastered, thus adjusting curriculum ac-
cordingly. Two widely used models are Bayesian Knowl-
edge Tracing (BKT) [2] and Performance Factor Analysis
(PFA)[11]. These models are designed in a way that each
parameter has a semantic meaning. For example, the guess

and slip parameter in the BKT model reflect the probabil-
ity that a student could guess the correct answer and make
a mistake despite mastery of a skill, respectively. BKT at-
tempts to explicitly model these parameters and use them
to infer a binary set of skills as mastered or not mastered.
In parallel with research in knowledge tracing models, deep
neural networks have gained popularity in fields like Natu-
ral Language Processing and Computer Vision [3, 9]. Piech
et. al proposed Deep Knowledge Tracing (DKT) [12], using
recurrent neural networks for knowledge tracing. The DKT
model achieves significantly improved results compared to
BKT and PFA. However, its mechanisms are not well un-
derstood by the research community. That is, none of the
parameters are mapped to a semantically meaningful mea-
sure which diminishes our ability to understand how DKT
performs predictions. There have been some attempts to
explain why DKT works well [8, 15], but these studies treat
DKT model more like a black box, without studying the
state space that underpins the recurrent neural network. In
this work, we analyze and visualize the learned state space
of the DKT model to better understand its mechanisms.

Recurrent neural networks can learn long range dependen-
cies across many time steps. Long short term memory (LSTM)
networks, gated-recurrent unit (GRU) networks, and numer-
ous other variants enhance the vanilla RNNs in one way or
another have achieved empirical success [6, 1, 5]. However,
there are incredibly few works explaining what is happening
under the hood. Karpathy et al. [7] provide a detailed analy-
sis of the behaviors of recurrent neural network in language
processing and find that some neurons are responsible for
long range dependencies like quotes and brackets. We take
a similar approach for analyzing the DKT model.

We aim to provide a better understanding of the DKT model
and a more solid footing for using deep models for knowledge
tracing. In this paper, we “open the box” of the DKT re-
current architecture, visualizing and analyzing the behaviors
of the DKT model in a high dimensional space. We track
activation changes through time and analyze the impact of
each skill in relation to other skills. We modify and explore
the DKT model, finding that some irrelevant information
is reinforced in the recurrent architecture. Finally, we find
that an untrained DKT model (with gradient descent ap-
plied only to layers outside the recurrent architecture) can
be trained to achieve similar performance as a fully trained
DKT architecture. Based on our analyses, we propose im-
provements and future directions for conducting knowledge

Xinyi Ding and Eric Larson "Why Deep Knowledge Tracing has
less Depth than Anticipated" In: Proceedings of The 12th
International Conference on Educational Data Mining (EDM
2019), Collin F. Lynch, Agathe Merceron, Michel Desmarais, &
Roger Nkambou (eds.) 2019, pp. 282 - 287

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 282

tracing with deep recurrent neural network models.

2. RELATED WORK
Bayesian Knowledge Tracing (BKT) [2] was proposed by
Corbett et al. In their original work, each skill has its
own model and parameters are updated by observing the
responses (correct or incorrect) of applying a skill. Perfor-
mance Factor analysis (PFA) [11] is an alternative method to
BKT and it is believed to perform better when each response
requires multiple skills. Both BKT and PFA are designed in
a way that each parameter has its own semantic meaning.
For example, the slip parameter of BKT represents the pos-
sibility of getting a question wrong even though the student
has mastered the skill. These models are easy to interpret,
but suffer from scalability issues and often fail to capture
the dependencies between each skill because many elements
are treated as independent to facilitate optimization.

Piech et al. recently proposed the Deep Knowledge Tracing
model (DKT) [12], which exploits recurrent neural networks
for knowledge tracing and achieves significantly improved
results. Piesch et al. transformed the problem of knowledge
tracing by assuming each question can be associated with
a “skill ID”, with a total of N skills in the question bank.
The input to the recurrent neural network is a binary vector
encoding of skill ID for a presented question and the correct-
ness of the student’s response. The output of the recurrent
network is a length N vector of probabilities for answering
each skill-type question correctly. The DKT model could
achieve >80% AUC on the ASSISTmentsData dataset [4],
compared with the BKT model that achieves 67% AUC.
This is an exciting result because it demonstrates the possi-
bility of using neural networks for knowledge tracing.

Despite the effectiveness of DKT model, its mechanism is
not well understood by the research community. Khajah et
al. investigate this problem by extending BKT [8]. They ex-
tend BKT by adding forgetting, student ability, and skill dis-
covery components, comparing these extended models with
DKT. Some of these extended models could achieve close re-
sults compared with DKT. Xiong et al. discover that there
are duplicates in the original ASSISTmentsData dataset [15].
They re-evaluate the performance of DKT on different sub-
sets of the original dataset. Both Khajah and Xiong’s work
are black box oriented—that is, it is unclear how predictions
are performed within the DKT model. In our work, we try
to bridge this gap and explain some behaviors of the DKT
model.

Trying to understand how DKT works is difficult because
the mechanisms of RNNs are not totally understood even in
the machine learning community. Even though the recurrent
architecture is well understood, it is difficult to understand
how the model adapts weights for a given prediction task.
One common method used is to visualize the neuron activa-
tions. Karpathy et al. [7] provide a detailed analysis of the
behaviors of recurrent neural network using character level
models and find some cells are responsible for long range
dependencies like quotes and brackets. They break down
the errors and partially explain the improvements of using
LSTM. We use and extend their methods, providing a detail
analysis of the behaviors of LSTM in the knowledge tracing
setting.

3. EXPERIMENT
To investigate the DKT model, we perform a number of
analyses based upon the activations within the recurrent
neural network. We also explore different training proto-
cols and clustering of the activations to help elucidate what
is learned by the DKT model.

3.1 Experiment setup
In our analyses, we use the “ASSISTmentsData 2009-2010
(b) dataset” which is created by Xiong et al. after removing
duplicates [15]. Like Xiong et al., we also use LSTM units
for analysis in this paper. Because we will be visualizing
specific activations of the LSTM, it is useful to review the
mathematical elements that comprise each unit. An LSTM
unit consists of the following parts, where a sequence of in-
puts {x1, x2, ..., xT } ∈ X are ideally mapped to a labeled
output sequence {y1, y2, ..., yT } ∈ Y. The prediction goal is
to learn weights and biases (W and b) such that the model
output sequence ({h1, h2, ..., hT } ∈ H) is as close as possible
to Y:

ft = σ(Wf · [ht−1, xt] + bf) (1)

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

Here, σ refers to a logistic (sigmoid) function, · refers to
dot products, ∗ refers to element-wise vector multiplication,
and [,] refers to vector concatenation. For visualization pur-
poses, we log the above 6 intermediate outputs for each input
during testing and concatenate these outputs into a single
“activation” vector, at = [ft, it, C̃t, Ct, ot, ht]. In the DKT
model, the output of RNN, ht is connected to an output
layer yt, which is a vector with the same number of ele-
ments as skills. We can interpret each element in yt as an

Figure 1: First two components of T-SNE of the
activation vector for first time step inputs. Numbers
are skill identifiers, blue for correct input, orange for
incorrect input

283 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

0

-2
2221

-4

-6

-8

-10

-6 -5

41
110

101 38 36

3 #0
is10il0 1~ 57

86 76
6 43

10~~~

-4

3ffi34
1Sgll9.li£8~

~8 24
108 117

43

24 107 n0~00 03

8696~~"k:01is 46 22

8~"lmw~134 74 32

41 77 76 l 27

-3 -2 -1

-

0

Figure 2: The prediction changes for one student, 23 steps, correct input is marked blue, incorrect input is
marked orange

estimate that the student would answer a question from each
skill correctly, with larger positive number denoting that the
student is more likely to answer correctly and more negative
numbers denoting that the student is unlikely to respond
correctly. Thus, a student who had mastered all skills would
ideally obtain an yt of all ones. A student who had mastered
none of the skills would ideally obtain an yt of all negative
ones.

Deep neural networks usually work in high dimensional space
and are difficult to visualize. Even so, dimensionality re-
duction techniques can help to identify clusters. For exam-
ple, Figure 1 plots the first two reduced components (using
t-SNE [10]) of the activation vector, at, at the first time
step (t = 0) for a number of different students in the AS-
SISTmentsData. The numbers in the plot are skill identi-
fiers. We use color blue to denote a correct response and
the color orange to denote an incorrect response. From re-
ducing the dimensionality of the at vector for each student,
we can see that the activations show a distinct clustering
between whether the questions were answered correctly or
incorrectly. We might expect to observe sub-clusters of the
skill identifiers within each of the two clusters but we do
not. This observation supports the hypothesis that correct
and incorrect responses are more important for the DKT
model than skill identifiers. However, perhaps this lack of
sub-clusters is inevitable because we are only visualizing the
activations after one time step—this motivates the analysis
in the next section.

3.2 Skill relations
In this section, we try to understand how the prediction
vector of one student changes as a student answers more
questions from the question bank. Figure 2 plots the predic-
tion difference (current prediction vector - previous predic-
tion vector) for each question response from one particular
student (steps are displayed vertically and can be read se-
quentially from bottom to top). The horizontal axis denotes
the skill identifier and the color of the boxes in the heatmap
denote the change in the output vector yt. The initial row
in the heatmap (bottom) is the starting values for yt for the
first input. As we can see, if the student answers correctly,
most of the yt values increase (warm color). When an in-
correct response occurs, most of the predictions decreases
(cold color). This makes intuitive sense. We expect a num-
ber of skills to be related so correct responses should add
value and incorrect responses should subtract value. We
can further observe that changes in the yt vector diminish if
the student correctly or incorrectly answers a question from
the same skill several times repeatedly. For example, ob-
serve from step 14 to step 19, where the student correctly
answers questions from skill #113—eventually the changes
in yt come to a steady state. However, occasionally, we can
also notice, a correct response will result in decreases in the
prediction vector (observe step 9). This behavior is diffi-
cult to justify from our experience, as correctly answering a
question should not decrease the mastery level of other skills.
Yeung et al. have similar findings when investigating single
skills [16]. Observe also that step 9 coincides with a tran-
sition in skills being answered (from skill #120 to #113).
Even so, it is curious that switching from one skill to an-

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 284

"'
"'

6
6

0
I

1
2

4

1
2

2

1
2

0

1
1

8

1
1

6

1
1

4

1
1

2

1
1

0

1
0

8

1
0

6

1
0

4

1
0

2

1
0

0

9
8

9

6

9
4

9

2

-
-

9
0

8

8

8
6

8

4

8
2

8

0

7
8

7

6

7
4

7

2

7
0

6

8

6
6

.!!!.

6
4

6

2

:s.:
6

0

en
5

8

5
6

5

4

5
2

5

0

4
8

4

6

4
4

4

2

4
0

3

8

3
6

3

4

3
2

3

0

2
8

2

6

2
4

2

2

2
0

1

8

1
6

1

4

1
2

1

0

8 6 4 2

C
')

C
')

C
')

C
')

C
')

C
')

C
')

C
')

C
')

C
')

C
')

C
')

C
'
)
C

'
)
0

0
0

0
0

0
0

0
0

,
-
,
-
,
-
,
-

,-
,-

,-
,
-
,
-
N

N
N

N
N

N
N

N
N

~

~

~

,
-
,
-
,
-
,
-

,
-

,
-

,
-

,
-
,
-
,
-
,
-
,
-
,
-
,
-

,
-

,
-
,
-
,
-

N
,-C

)O
')C

()
r---

co
i.n-

-.::r-
e0

(\J-
,
--

o
m

-
cor----:-co

1.cf
~

C"f
N

-
,
--

C
)

N

N

N

111>1s p
u

e Jeq
w

n
u

 d
a

is

Figure 3: Activation vector changes for 100 contin-
uous correctness of randomly picked 3 skills

Figure 4: Activation vector difference of randomly
picked 3 skills through time

other would decrease values in yt even when the response
is correct. From this observation, one potential way to im-
prove the DKT model could be adding punishment for such
unexpected behaviors (for example, in the loss function of
the recurrent network).

3.3 Simulated data
From the above analysis, we see from step 14 to step 19, the
student correctly answers question from skill #113 and the
changes in yt diminish—perhaps an indication that the vec-
tor is converging. Also, from Figure 2, we see that for each
correct input, most of the elements of yt increase by some
margin, regardless of the input skill. To have a better un-
derstanding of this convergence behavior, we simulate how
the DKT model would respond to an Oracle Student, which
will always answer each skill correctly. We simulate how
the model responds to the Oracle Student correctly answer-
ing 100 questions from one skill. We repeat this for three
randomly selected skills.

We plot the convergence of each skill using the activation
vector at reduced to a two-dimensional plot using t-SNE
(Figure 3). The randomly chosen skills were #7. #8, and
#24. As we can see, each of the three skills starts from a
different location in the 2-D space. However, they each con-
verges to near the same location in space. In other words,
it seems DKT is learning one “oracle state” and this state
can be reached by practicing any skill repeatedly, regard-
less of the skill chosen. We verified this observation with
a number of other skills (not shown) and find this behav-
ior is consistent. Therefore, we hypothesize that DKT is
learning a ‘student ability’ model, rather than a ‘per skill’
model like BKT. To make this observation more concrete, in
Figure 4 we plot the euclidean distance between the current
time step activation vector, at, and the previous activations,
at−1, we can see the difference becomes increasingly small
after 20 steps. Moreover, the euclidean distance between
each activation vector learned from each skill becomes ex-
tremely small, supporting the observation that not only is
the yt output vector converging, but all the activations in-
side the LSTM network are converging. We find this be-
havior curious because it means that the DKT model is not
remembering what skill was used to converge the network
to an ‘oracle state.’ Remembering the starting skill would
be crucial for predicting future performance of the student,
yet the DKT model would treat every skill identically. We
also analyzed a process where a student always answers re-
sponses incorrectly and found there is a similar phenomenon
with convergence in an anti-oracle state.

Figure 5 shows the skills prediction vector after answering
correctly 20 times in a row. We can see the predictions of
most skills are above 0.5, regardless of the specific practice
skill used by the Oracle Student. Now, we can safely say
that the DKT model is not really tracking the mastery level
of each skill, it is more likely learning an ‘ability model’ from
the responses. Once a student is in this oracle state, DKT
will assume that he/she will answer most of the questions
correctly from any skill. We hypothesize that this behav-
ior could be mitigated by using an “attention” vector during
the decoding of the LSTM network [13]. Self attention in
recurrent networks decodes the state vectors by taking a
weighted sum of the state vectors over a range in the se-
quence (weights are dynamic based on the state vectors).
For DKT, this attention vector could also be dynamically
allocated based upon the skills answered in the sequence,
which might help facilitate remembering long-term skill de-
pendencies.

3.4 Temporal impact
RNNs are typically well suited for tracking relations of in-
puts in a sequence, especially when the inputs occur near
one another in the sequence. However, long range depen-
dencies are more difficult for the network to track [13]. In
other words, the predictions of RNN models will be more im-
pacted by recent inputs. For knowledge tracing, this is not
a desired characteristic. Consider two scenarios as shown
below: For each scenario, the first line is the skill numbers
and the second line are responses (1 for correctness and 0 for
incorrectness). Both two scenarios have the same number of
attempts for each skill (4 attempts for skill #9, 3 attempts
for skill #6 and 2 attempts for skill #24). Also, the ordering
of correctness within each skill is the same (e.g., 1, 0, 0, 0

285 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

4 0

3
lo9g

i!76 11
2 2215 12 7 2

23
1jj 6 0 3 24 1412

11 5
1

25 15 10 2 4
0

8 4 4 5

-1
7 'JJ 5

6 13 21 1211 0 7
-2 109 8

-2 0 2 4 6 8 10

- skill#? skill #8 - skill#24

0 20 40 60 80 100

- skill#? skill #8 - skill#24

Figure 5: Prediction vector after 20 steps for skill #7, #8, #24

Figure 6: DKT predictions from two different stu-
dents. The blue line is the prediction of correctness
from DKT. The red line is the actual response cor-
rectness(1 or 0).

for skill #9).

Scenario #1
Skill ID 6 6 9 9 9 9 24 24 6
Correct 1 1 1 0 0 0 0 0 1

Scenario #2
Skill ID 9 9 9 9 6 6 6 24 24
Correct 1 0 0 0 1 1 1 0 0

For models like BKT, there is a separate model for each skill.
Thus, the relative order of different skills presented has no
influence, as long as the ordering within each skill remains
the same. In other words, for each skill the ordering of cor-
rect and incorrect attempts remains the same, but different
skills can be shuffled into the sequence. For BKT, it will
learn the same model from these two scenarios, but it may
not be the case for DKT. The DKT model is more likely to
predict incorrect response after seeing three incorrect inputs

in a row because it is more sensitive to recent inputs in the
sequence. This means, for the first scenario, first attempt
of skill #24 (in bold) will be more likely predicted incorrect
because it follows three incorrect responses. For the second
scenario, first attempt of skill #24 (in bold) is more likely to
be predicted correct. Thus the DKT model might perform
differently on the given scenarios.

Figure 6 gives two typical excerpts from the real dataset for
two students. In the top example, after several correct in-
puts, the DKT model has a high probability of predicting
the next item correct, regardless of the skill (70%). Simi-
larly, in the bottom example, after several incorrect inputs,
the DKT model has a low probability of predicting the next
item correct (8%), regardless of the skill. That means, if a
student has mastered an easy skill previously but then fails
three attempts of more difficult exercises, the DKT would
predict that the student would also fail the already mastered
skill. We are only giving two samples here due to limited
space, but this kind of behavior is universal across students,
which we will talk more next. Again, we hypothesize that
this behavior could be mitigated by using an“attention”vec-
tor that allows the DKT to use the whole weighted history
as additional inputs.

Table 1: Area under the ROC curve

PFA BKT DKT
DKT
(spread)

DKT
(untrained)

09-10 (a) 0.70 0.60 0.81 0.72 0.79
09-10 (b) 0.73 0.63 0.82 0.72 0.79
09-10 (c) 0.73 0.63 0.75 0.71 0.73
14-15 0.69 0.64 0.70 0.67 0.68
KDD 0.71 0.62 0.79 0.76 0.76

Table 2: Square of linear correlation (r2) results

PFA BKT DKT
DKT
(spread)

DKT
(untrained)

09-10 (a) 0.11 0.04 0.29 0.15 0.25
09-10 (b) 0.14 0.07 0.31 0.14 0.26
09-10 (c) 0.14 0.07 0.18 0.14 0.15
14-15 0.09 0.06 0.10 0.08 0.09
KDD 0.10 0.05 0.21 0.17 0.17

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 286

1/)
1/)

1/)

.-i
O

0

.-i
O

0

.-i
O

0

]
•

a
124

124
124

122
122

122
120

120
120

118
118

118
116

116
116

114
114

114
112

112
112

110
110

110
108

108
108

106
106

106
104

104
104

102
102

102
100

100
100

98
98

98
96

96
96

94
94

94
92

92
92

90
90

90
88

88
88

86
86

86
84

84
84

82
82

82
80

80
80

78
78

78
76

76
76

74
74

74
72

I'-
72

co
72

""'
70

70
70

C\J
68

:1;
68

:1;
68

:1;
66

=

66
66

64
~

64
~

64
~

~6
(fJ

62
CfJ

62
60

60
CfJ

58
58

58
56

56
56

54
54

54
52

52
52

so
so

so
48

48
48

46
46

46
t ~

44
44

44
I

I
'

C
f)

42
42

42
'SI"

40
40

40
38

38
38

36
36

36
I
~

~
34

34
34

l...._
"l

l
(0

O

'l

32
32

32
30

30
30

28
28

28
26

26
26

n
l!)

(/J

l
l!)

(/J

24
24

24
'SI"

Q
.

'SI"
Q

.
22

22
22

E

E

Q
)

Q
)

20
20

20
~

~
18

18
18

16
16

16
~

~
~

:i:

14
14

14
(/)

12
12

12
10

10
10

8
8

8

I
\

l!)

6
6

6
'SI"

I §
4

4
4

2
2

2

0
0

0
l!)

O

'l
N

N

N

'SI"

l!)

Cl
Cl

Cl
C?

co
(0

'SI"

C\J
co

(0

'SI"
C\J

Q)
Q)

Q)
0

C?
0

ui
ui

ui
ci

ci
ci

ci
ci

ci
ci

ci

S
8!l!l!qeqoJd

S
8!l!l!qeqoJd

Khajah et al. also alluded to this recency effect in [8]. In
this paper, we examine this phenomenon in a more quan-
titative way. We shuffle the dataset in a way that keeps
the ordering within each skill the same, but spreads out the
responses in the sequence. This change should not change
the prediction ability of models like BKT. The results are
shown in Table 1 and Table 2 using standard evaluation cri-
teria for this dataset. All results are based on a five-fold
cross validation of the dataset. When comparing DKT on
the original dataset to the “spread out” dataset ordering, we
see that the relative ordering of skills has significant nega-
tive impact on the performance of the model. From these
observations, we see the behaviors of DKT is more like PFA
which counts prior frequencies of correct and incorrect at-
tempts other than BKT and the design of the exercises could
have a huge impact on the model (For example, the arrange-
ments of easy and hard exercises).

3.5 Is the RNN representation meaningful?
Recurrent models have been successfully used in practical
tasks like natural language processing [3]. These models
can take days or even weeks to train. In a recently pub-
lished paper, Wieting et al. [14] argue that RNNs might not
be learning a meaningful state vector from the data. They
show that a randomly initialized RNN model (with only Wo

and bo trained) can achieve similar results to models where
all parameters are trained. This result is worrying because
it may indicate that the RNN performance is due mostly
to simply mapping input data to random high dimensional
space. Once projected into the random vector space linear
classification can perform well because points are more likely
to be separated in a sparse vector space. The actual vector
space may not be meaningful. We perform a similar exper-
iment in training the DKT model. We randomly initialize
the DKT model and only train the last linear layer (Wo and
bo) that maps the output of LSTM ht to the skill vector, yt.
As shown in Table 1 and Table 2, the untrained recurrent
network performs similarly to the trained network.

4. CONCLUSION AND FUTURE WORK
In this paper, we dive deep into the Deep Knowledge Trac-
ing model. We have visualized and analyzed the behaviors
of DKT through time using dimensionality reduction of the
activations vector, at. We have also analyzed the temporal
sequence behavior of DKT using qualitative and quantita-
tive analyses. We find that the DKT model is most likely
learning an ‘ability’ model, rather than tracking each indi-
vidual skill. Moreover DKT is significantly impacted by the
relative ordering of skills presented. We also discover that
a randomly initialized DKT with only the final linear layer
trained achieves similar results to the fully trained DKT
model. In other words, the DKT model performance gains
may stem from mapping input sequences into a random high
dimensional vector space where linear classification is easier
because the space is sparse. This is a worrying conclusion be-
cause it means the underlying recurrent representation may
not be reliable nor semantically meaningful. Several miti-
gating measures are suggested in this paper, including the
use of a loss function that mitigates unwanted behaviors and
the use of an attention model to better capture long term
skill dependencies. We leave evaluation of these suggestions
to future work in the educational data mining community.

5. REFERENCES
[1] Cho, K., Van Merriënboer, B., Gulcehre, C.,

Bahdanau, D., Bougares, F., Schwenk, H., and Bengio,
Y. 2014. Learning phrase representations using rnn
encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 .

[2] Corbett, A. T., and Anderson, J. R. 1994. Knowledge
tracing: Modeling the acquisition of procedural
knowledge. User modeling and user-adapted
interaction, 4, 4, 253–278.

[3] Devlin, J., Chang, M. W., Lee, K., and Toutanova, K.
2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv
preprint arXiv:1810.04805

[4] Feng, M., Heffernan, N. T., and Koedinger, K. R.
2006. Addressing the testing challenge with a
web-based e-assessment system that tutors as it
assesses. In Proceedings of the 15th international
conference on World Wide Web, 307–316.

[5] Graves, A., Wayne, G., and Danihelka, I. 2014. Neural
turing machines. arXiv preprint arXiv:1410.5401 .

[6] Hochreiter, S., and Schmidhuber, J. 1997. Long
short-term memory. Neural computation, 9, 8,
1735–1780.

[7] Karpathy, A., Johnson, J., and Fei-Fei, L. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078

[8] Khajah, M., Lindsey, R. V., and Mozer, M. C. 2016.
How deep is knowledge tracing? arXiv preprint
arXiv:1604.02416

[9] Krizhevsky, A., Sutskever, I., and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information
processing systems, 1097–1105.

[10] Maaten, L. V. D., and Hinton, G. 2008. Visualizing
data using t-sne. Journal of machine learning
research,9, (Nov, 2008), 2579–2605.

[11] Pavlik Jr, P. I., Cen, H., and Koedinger, K. R. 2009.
Performance factors analysis–a new alternative to
knowledge tracing. Online Submission.

[12] Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami,
M., Guibas, L. J., and Sohl-Dickstein, J. 2015. Deep
knowledge tracing. In Advances in Neural Information
Processing Systems, 505–513.

[13] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
2017. Attention is all you need. In Advances in Neural
Information Processing Systems, 5998–6008.

[14] Wieting, J., and Kiela, D. 2019. No training required:
Exploring random encoders for sentence classification.
arXiv preprint arXiv:1901.10444 .

[15] Xiong, X., Zhao, S., Van Inwegen, E. G., and Beck,
J. E. 2016. Going deeper with deep knowledge tracing.
In International Educational Data Mining Society .

[16] Yeung, C. K., and Yeung, D. Y. 2018. Addressing two
problems in deep knowledge tracing via
prediction-consistent regularization. In Proceedings of
the Fifth Annual ACM Conference on Learning at
Scale.

287 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

