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ABSTRACT 

Collaborative problem solving in computer-supported 

environments is of critical importance to the modern workforce. 

Coworkers or collaborators must be able to co-create and navigate 

a shared problem space using discourse and non-verbal cues. 

Analyzing this discourse can give insights into how consensus is 

reached and can estimate the depth of their understanding of the 

problem. This study uses Coh-Metrix, a natural language 

processing tool that measures cohesion, to analyze participant 

discourse from a recent multi-modal learning analytics study where 

novice programmers collaborated to use a block-based 

programming language to instruct a robot on how to solve a series 

of mazes. We significantly correlated thirty-five Coh-Metrix 

indices from the transcripts of dyads' discourse with collaboration, 

learning gains, and multimodal sensor values. We then fit a variety 

of machine learning classifiers to predict collaboration using the 

indices generated by Coh-Metrix as features. This study paves the 

way for real-time detection of (un)productive interactions from 

multimodal data and could lead to real-time interventions to 

support collaborative learning.   

Keywords 

Collaboration, computer-supported collaborative work, multi-

modal learning analytics, Coh-Metrix. 

1. INTRODUCTION 
Collaborative problem solving with computer-based or computer-

supported environments has long been a focus of research on 

educational technologies [1] and is now seen as a 21st century 

learning objective of critical importance to the workforce [2]. 

Discourse of collaborators who co-create and navigate a shared 

problem space can give insights into how consensus is reached and 

the depth of their understanding. Because qualitative coding of 

transcripts or video is laborious and time-consuming, capturing and 

quantifying the quality of social interactions remains a challenge in 

the social sciences.  

Applied natural language processing can automate the analysis of 

large corpora of human language and is a foundational technique of 

educational data mining. Coh-Metrix [3], a tool originally 

developed to measure text difficulty, has been used to evaluate 

online discussion transcripts and intelligent tutoring system 

dialogue. By applying the tool to discourse from a collaborative 

problem-solving activity, we hypothesize that certain markers can 

indicate the quality of the collaboration and could be used to 

predict how well groups work together from their speech patterns. 

This paper uses Coh-Metrix to analyze participant discourse from a 

recent multi-modal learning analytics (MMLA) [7] study where 

novice programmers used a block-based programming language to 

program a robot to solve a series of mazes [4]. Preliminary results 

from this study indicate the importance of speech equity and 

talking time; however, the full transcripts of the discourse have not 

yet been analyzed. In this paper, we explore multiple indices from 

the transcripts that are correlated with collaboration, learning gains, 

and multimodal sensor values. We then explore ways of predicting 

collaboration using the indices generated by Coh-Metrix as features 

fed into a variety of machine learning classifiers. Finally, we 

discuss these results and conclude with future avenues for this 

research. 

2. LITERATURE REVIEW 
A few decades ago, computer-supported collaborative learning 

(CSCL) emerged as a statement against the over-individualization 

of educational technology, emphasizing that collaborative learning 

can be fostered by carefully designed computer-supported activities 

[5]. Collaboration analysis in computer-supported environments 

has explored what facets of collaborative processes are essential 

for successful problem-solving and learning [29] with a particular 

emphasis on what aspects of these analyses can be automated 

[30].When studying the process of collaboration, a ‘Joint Problem 

Space’ emerges that takes the form of a socially-negotiated 

knowledge structure that combines goal-setting, descriptions of the 

problem, and available actions [1]. This problem space can be 

understood through discourse analysis in conjunction with any 

other data collected on group behaviors.  

In the search for new tools to analyze and model interactions 

between collaborators [6], Multi-Modal Learning Analytics 

(MMLA) has emerged. Sensors continue to get cheaper and easier 

to use while providing rich streams of data which can be used in 

conjunction to track and assess collaboration [7]. Data from 

multiple high frequency sensors can triangulate difficult to measure 

constructs and enhance overall predictive performance [31]. 

Analyzing features engineered from sensor data as well as dyadic 
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discourse provides a deeper view of the joint problem space, which 

includes nonverbal communication, posture, eye gaze, and arousal, 

among other possible metrics. 

Coh-Metrix is an online tool that measures 106 linguistic features 

related to text easability, cohesion, lexical sophistication, syntactic 

complexity, and readability [3]. To differentiate between coherence 

and cohesion, the developers of this tool view cohesion as a quality 

of the text or discourse that can be directly measured, while 

coherence is in the mind of the reader [8]. The Coh-Metrix indices 

generally indicate the presence or absence of cohesive cues that tie 

the text together and make it easier or harder to understand. The 

tool focuses on local and overall text cohesion versus global 

cohesion [9]. 

Coh-Metrix has mainly been used in analyzing text readability and 

writing quality but has been applied successfully to other domains 

as well. Its indices have been used to detect lying in online 

discourse with one group member specified as sender and other as 

the receiver [10]. Tutor dialogue in AutoTutor was compared to 

naturalistic dialogue with a human tutor using Coh-Metrix to see 

how the dialogues differed on cohesion indices [11]. Indices for 

cohesion were also used to train affect detectors for AutoTutor 

users with the intention of developing real-time affect detectors 

based on cohesion [12]. The tool has also been used with online 

discussion transcripts to classify online discourse for levels of 

cognitive presence, and a classifier using Coh-Metrix features 

outperformed a similar algorithm using bag-of-words features [13]. 

Rarely do Coh-Metrix studies use transcripts of oral dialogue or 

assume participants are both novices (i.e. the task is not an expert-

novice tutoring scenario.) Additionally, these indices have been 

sparingly used in MMLA research. In an MMLA study on a similar 

collaborative task, verbal coherence positively correlated with 

learning gains and significantly differed by condition [14]. 

Researchers then used language metrics to predict learning gains 

via support vector machine (SVM). Initial work from this current 

study has indicated that amount of talking and equity of talk time 

may be important indicators of good collaboration [15] but this 

discourse has not been analyzed in-depth yet. 

3. RESEARCH QUESTIONS 
This study attempts to answer the following research questions 

(RQs): 

RQ1: Are Coh-Metrix indices derived from transcripts of discourse 

between co-located partners related to the quality of their 

collaboration and learning gains? 

RQ2: Are Coh-Metrix indices different across experimental 

conditions? 

RQ3: Are Coh-Metrix indices associated with MMLA measures 

(e.g., Joint visual attention, physiological synchrony, 

nonverbal behaviors) that were previously significantly 

correlated with collaboration quality? 

RQ4: What Coh-Metrix indices are most meaningful for estimating 

a group’s collaboration? 

RQ5: Can Coh-Metrix indices be used to train supervised machine 

learning algorithms to predict collaboration quality? 

4. METHODS 

4.1 The Study 
Participants with no self-reported prior programming or robotics 

knowledge (“novices”) were paired randomly with an unknown 

partner and tasked with programming a robot to solve a series of 

increasingly complex mazes in 30 minutes. During the activity, 

mobile eye-trackers recorded participant gaze data, bracelets 

captured electrodermal activity, and a motion sensor collected 

movement and position data. A 2x2 study design was employed to 

test two different collaboration interventions: an informational 

intervention that described the benefits of collaborating on tasks 

and a visualization intervention that graphically plotted relative 

verbal contributions from each participant from the previous 30 

seconds. The informational intervention is the primary on discussed 

here as the other did not result in significant differences in 

dependent measures. All participants gained knowledge of basic 

programming skills according to a pre-post survey (t = 6.18, p < 

0.001) and a 7 percentage point increase in collaboration quality 

was associated with a 2 percentage point increase in code quality 

when controlling for gender and prior education (p < 0.001). For 

more details of experimental design and overall results, see Table 1 

and [4]. Figure 1 shows a typical image of the experiment in 

progress.  

4.2 Participants 
Forty-two dyads completed the study and the first sessions each 

researcher conducted were removed to improve overall fidelity (N = 

40 groups). Participants were drawn from an existing study pool at 

a university in New England in the United States. 62% of 

participants reported being students at the university of various 

levels, with ages ranging from 19 to 51 years old with a mean age 

Table 1. Summary of measures from study. 

Independent Measures Process Data Dependent Measures 

Control Condition: no intervention 

Treatment Condition: informational 

intervention orally delivered by researcher 

prior to beginning of main portion of 

study. 

Eye-tracking: Joint visual attention by 

dyads on different areas of interest, 

amounts of time looking at areas of 

interest 

Electrodermal activity: differences 

between individuals, synchrony measures, 

rates of change 

Movement and posture: proximity, 

alignment, bimanual coordination, total 

movement, leaning, synchrony measures 

Expert ratings of collaboration 

Task performance measures 

Survey gains 
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Figure 1. Experimental setup from the study. 

of 27 years. 60% of participants identified as female. Participants 

were paid $20 per 90-minute session of the study. 

4.3 Procedure 
Prior to the main activity, participants signed informed consent 

paperwork and took a 5-minute pre-survey pertaining to simple 

programming tasks. Once the survey was complete, sensors were 

applied to the participants and calibrated while the function of each 

sensor was explained.  

Next, participants were shown a tutorial video explaining how to 

write code in Tinker, a block-based environment designed for use 

with the sensors and motors on the robot. Participants were then 

given 5 minutes to write a simple program to move the robot 

forward past a red line on the table in front of them. After the 

completion of this tutorial activity, participants were shown a 

second tutorial video that explained more advanced features of the 

programming environment like setting threshold sensor values for 

triggering commands and using conditional statements. A reference 

sheet was also provided to participants that summarized the content 

of both tutorial videos. 

At this point, groups in the Intervention condition were read a 

summary of several research findings relevant to collaboration such 

as the importance of equity of speech time in high quality 

collaboration. Dyads in the Control group were given no such 

information after completing the tutorial (N = 20 groups in each 

condition). 

Dyads then had 30 minutes to write code to guide their robot 

through a series of increasingly complex mazes. Participants did 

not know the arrangement of the mazes ahead of time and were 

prompted to write code that could solve any simple maze. Once the 

robot completed a maze twice successfully, the next one was 

provided by the researcher. During this portion of the activity, 

predetermined hints were provided to groups at 5-minute intervals 

to ensure common pitfalls identified in pilot resting were avoided. 

Following the completion of this portion, the post-survey was 

administered, demographic data was collected, sensors were 

removed, and participants were paid and debriefed. 

4.4 Dependent Measures 
Dyads’ collaboration was evaluated live by the researcher 

conducting the session. Quality of collaboration was assessed on 

nine different scales derived from Meier, Spada, and Rummel’s 

work on assessing collaboration in CSCL [16]: sustaining mutual 

understanding, dialogue management, information pooling, 

reaching consensus, task division, time management, technical 

coordination, reciprocal interaction, and individual task orientation. 

Each scale was on a -2 to 2 scale, and all scales were added 

together to generate an overall collaboration rating for dyads. 

Multiple researchers conducted sessions of the study and thus 

coded dyads’ behavior. Researchers double coded 20% of the 

sessions from videos collected during the session and achieved an 

inter-rater reliability of α = 0.65 (75% agreement). 

Learning of computational skills (identifying a bug in block-based 

code, anticipating the output of a code segment, describing how to 

do a task with pseudocode, etc.) was assessed individually via pre- 

and post-tests with four questions each. These measures were 

adapted from [17, 18]. Researchers coded a subset of the responses 

to 100% agreement based on their demonstrations of understanding 

of computational thinking principles then coded the remaining 

surveys with the developed rubric. 

4.5 Data Pre-Processing 
Data collected by the eye-trackers, wristbands, and motion sensors 

each needed to be processed individually prior to merging for 

analysis. See Reilly, Ravenell, and Schneider for details on the 

processing of the Kinect motion sensor data [15] and Dich, Reilly, 

and Schneider for use of the electrodermal activity data from the 

Empatica E4 bracelet [19]. Four different physiological synchrony 

measures were calculated for movement and electrodermal (EDA) 

data: Signal Matching (SM), Instantaneous Derivative Matching 

(IDM), Directional Agreement (DA) and Pearson’s Correlation 

(PC). SM was calculated as the differences in area between the 

plots of the team members’ EDA, IDM calculates how closely the 

slopes of the physiological signal curves match, DA identifies 

whether individuals’ signal data increase or decrease at the same 

time, and PC looks for a linear relationship between EDA data of 

both participants. For details on the calculation of these measures, 

see [19].  

For use in this study, the eye-tracking data was summarized in two 

different ways: The proportion of time both participants were 

looking at the same spot (joint visual attention, see [20]) and the 

proportion of time spent looking at various areas of interest around 

the room (the computer screen, the maze, the robot, etc.) as 

determined by the fiducial markers placed on all objects in the 

experiment. 

Audio recordings of sessions were transcribed using multiple 

iterations of assignments to Amazon Mechanical Turk workers 

until it was suitable for analysis. Transcripts were formatted via 

Python to match the requirements of Coh-Metrix and were sent to 

the Institute for Intelligent Systems at the University of Memphis 

for analysis. All analyses in this study were done in Python using 

the scikit-learn package [25]. 

5. RESULTS 

5.1 RQ1: Correlations with Collaboration 
Indices positively correlated with our rating of collaboration 

include more dialogue between partners (as measured by the 

number of sentences and words uttered), the use of adverbs, the 

CELEX word frequency (how often content words appear in 

sentences), and the familiarity of content words used. Deep 

cohesion (the use of causal connectives to signify causal 

relationships) and increased temporality (cues about temporality 

and tense) were also significantly positively correlated with 

collaboration. Additionally, the Coh-Metrix L2 readability score 

(use of simple grammar that an English language learner could 
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more easily parse) was also positively correlated. An appendix with 

definitions of all indices discussed here is provided at the end of 

this paper (also available in Appendix A of [3]). Significant 

correlations are listed in Table 2. 

Table 2. Indices correlated with collaboration (red indicates 

negative correlation). 

Index Value (p-value) Description 

DESSC 

DESWC 

DESPL   

DESWLsy 

DESWLsyd 

DESWLlt 

DESWLltd 

0.51 (0.0087) 

0.735 (<0.0001) 

0.51 (0.0087) 

-0.27 (0.023) 

-0.36 (0.019) 

-0.41 (0.0081) 

-0.17 (0.016) 

Descriptive indices that 

describe the number and 

length of paragraphs, 

sentences, and words 

PCNARz 

PCNARp 

PCDCz 

PCTEMPz 

PCTEMPp 

PCCNCz 

PCCNCp 

0.53 (0.0042) 

0.55 (0.0023) 

0.476 (0.039) 

0.53 (0.0068) 

0.52 (0.0064) 

-0.41 (0.028) 

-0.48 (0.0063) 

Text easability principal 

component scores 

LDTTRc 

LDTTRa 

LDVOCD 

-0.76 (<0.0001) 

-0.76 (>0.0001) 

-0.25 (0.047) 

Lexical diversity (unique 

words per total number of 

words) 

CNCCaus 

CNCLogic 

CNCADC 

0.45 (0.037) 

0.49 (0.042) 

0.36 (0.036) 

Incidence of connectives 

SMINTEr 0.40 (0.044) 
Ratio of intentional particles 

to intentional verbs 

SYNNP -0.43 (0.0012) 
Number of modifiers per 

noun phrase, mean 

DRPVAL -0.33 (0.020) 
Agentless passive voice 

density, incidence 

WRDNOUN 

WRDADV 

WRDPRP2 

WRDFRQc 

WRDFRQa 

WRDAOAc 

WRDFAMc 

WRDCNCc 

WRDIMGc 

WRDHYPv 

WRDHYPnv 

-0.43 (0.0016) 

0.47 (0.028) 

-0.68 (0.0005) 

0.43 (0.0004) 

0.16 (0.038) 

-0.28 (0.048) 

0.52 (0.0008) 

-0.46 (0.0063) 

-0.51 (0.007) 

-0.49 (0.0047) 

-0.44 (0.0020) 

Word information (part of 

speech category, syntactic 

categories) 

RDL2 0.36 (0.023) Coh-Metrix L2 Readability 

 

Indices negatively correlated with collaboration include the mean 

number of syllables per word, the number of nouns, the lexical 

diversity (unique number of total words), and hypernymy for nouns 

and verbs (using specific words instead of general ones.) Features 

that indicate the difficulty of understanding text are generally 

negatively correlated with collaboration, such as modifiers per 

noun phrase (complex syntax places higher demands on working 

memory), agentless passive voice, and the ratio of intentional 

particles to intentional verbs (a higher ration indicates more 

inference is needed to understand the text.) Indices for specificity of 

content words are also negatively correlated, such as concreteness 

and imageability (how easy it is to create a mental image of the 

word.) 

5.2 RQ1: Correlations with Learning Gains 
The magnitude of participant learning gains on the pre-post survey 

was also correlated significantly with several Coh-Metrix indices. 

Unlike collaboration, learning gain is positively correlated with 

lexical diversity (r = 0.41, p = 0.041) which indicates that use of 

specific language may aid learning of computer science principles. 

On the other hand, learning gain is negatively correlated with 

pronoun incidence (r = -0.44, p = 0.041) and referential cohesion (r 

= -0.34, p = 0.049) indicating that use of vague, overlapping 

language by the dyad is associated with lower gains on the survey. 

5.3 RQ3: Differences by Condition 
Differences between the Control and Intervention conditions could 

also be seen in their discourse during the activity. According to 

paired t-tests, groups in the Control condition had fewer words (t = 

-3.4, p = 0.0019), fewer adverbs (t = -2.30, p = 0.029), fewer 

sentences (t = -2.17, p = 0.038) and shorter paragraphs (t = -2.17, 

p = 0.038) than those in the Intervention condition. Additionally, 

the Control condition discourse had higher lexical diversity than the 

Intervention condition (LDTTRc: t = 2.93, p = 0.0065; LDTTRa: t 

= 3.03, p = 0.0049) which was shown above to be negatively 

correlated with collaboration. 

With respect to the differences between groups that saw a 

visualization intervention that plotted relative verbal contributions 

from each participant, only the L2 Readability score differed 

significantly between conditions (t = -2.16, p = 0.039). As this 

intervention did not result in significant differences in our outcome 

measures, it makes sense that the impact on our Coh-Metrix indices 

is also minimal. 

5.4 RQ4: Correlations with MMLA Values 
We also explored whether any dyad-level features engineered from 

our sensor data might correlate with the Coh-Metrix indices that 

were previously seen to be significantly related to collaboration. 

Out of 30 features from our Kinect, eye-tracking, and EDA data, 

four were significantly correlated with three or more indices shown 

in Table 2. Correlation coefficients for these four features are 

shown in Figure 2. 

From our eye-tracking data, the amount of time participants spent 

looking together at neither the maze nor the computer (aoi_0) was 

significantly negatively correlated with word length (r = -0.42, p = 

0.034), lexical diversity (r = -0.40, p = 0.042), and syntactic 

complexity (r = -0.39, p = 0.049). Those three indices were also 

negatively correlated with collaboration. The amount of time 

participants spent looking at the maze and robot but not the 

computer (aoi_5) was positively associated with second person 

pronouns (r = 0.65, p < 0.001) and L2 readability (r = 0.39, p = 

0.047) but negatively related to word length (r = -0.42, p = 0.034), 

word diversity (r = -0.47, p = 0.016), and use of the passive voice 

(r = -0.40, p = 0.046). This also follows a similar pattern to our 

correlations with collaboration. 

The directional agreement (DA) of the dyad is calculated as the 

proportion of time where EDA for both participants was increasing 

or decreasing at the same time (in other words, it is a measure of 
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Figure 2. Correlation coefficients (top) and p-values (bottom) 

for select MMLA features. 

physiological synchrony). Higher DA was positively associated 

with the number of words used (r = 0.44, p = 0.021), narrativity (r 

= 0.48, p = 0.012), temporality (r = 0.55, p = 0.003), word 

frequency (r = 0.46, p = 0.017), word familiarity (r = 0.45, p = 

0.017), and L2 readability (r = 0.57, p = 0.002). DA was 

significantly negatively associated with lexical diversity (r = 0.44, 

p = 0.021), syntactic complexity (r = -0.41, p = 0.033), word 

concreteness (r = -0.45, p = 0.018), imageability of content words 

(r = -0.50, p = 0.007), and hypernymy (r = -0.56, p = 0.002). The 

directions of these correlations also fit with what we observed.  

The Instantaneous Derivative Matching (IDM) of the Kinect 

movement data is calculated as the proportion of time where 

movement of both dyad members is either increasing or decreasing 

at a similar rate. IDM of movement was positively associated with 

narrativity (r = 0.50, p = 0.006), word familiarity (r = 0.45, p = 

0.015), and L2 readability (r = 0.42, p = 0.023). Movement IDM 

was negatively correlated with word length (r = -0.41, p = 0.026), 

lexical diversity (r = -0.53, p = 0.003), syntactic complexity (r = -

0.46, p = 0.012), the number of nouns used (r = -0.44, p = 0.018), 

word concreteness (r = -0.57, p = 0.001), imageability of content 

words (r = -0.57, p = 0.001), and hypernymy (r = -0.37, p = 0.049). 

Again, these correlations are of similar magnitude and direction as 

those seen in our results from collaboration. 

5.5 RQ5: Predicting Collaboration 
In order to explore how we might be able to use the Coh-Metrix 

indices to predict quality of collaboration, we classified dyads in 

terms of their collaboration ratings using a variety of typical 

machine learning classifiers. All 106 Coh-Metrix indices were used 

as features to classify the 40 groups. Missing values were imputed 

with their column means and all features were normalized prior to 

their use. 

We first separated our participants into two groups based on the 

median value of group collaboration. We trained a Naïve Bayes 

classifier, a support vector machine (SVM), and a Random Forest 

(RF) model [21] on our entire data. NB usually works well with 

text data [26], SVM excels at binary classification [27], and RF 

along with other tree-based classifiers have been used successfully 

in the EDM community with a wide variety of educational datasets 

[28]. These algorithms were also selected as they are 

computationally rapid to implement once tuned and may be used in 

a real-time nature during a future intervention. The alpha, loss, and 

penalty used by SVM as well as the number of estimators, 

maximum depth, and criterion function for RF were selected by 

grid search with 5-fold cross-validation (CV). To address issues of 

overfitting with a small sample size, we report both training 

accuracy as well as the highest average accuracy achieved by our 5-

fold cross-validation. 

As shown in Table 2, the Random Forest model outperformed both 

Naïve Bayes and SVM on the binary classification median split 

task. While the 100% train accuracy of the RF is surely due to 

overfitting, the high CV accuracy. All algorithms were able to 

outperform random assignment by large margins. We next 

separated out participants into four groups based on the quartile 

values of group collaboration. Our three models were fit with the 

same procedure and once again RF outperformed both other 

algorithms on the training data. When looking at validation results, 

however, the RF and SVM classifiers performed identically. 

Simpler models may avoid the overfitting issues leading to the 

reported 100% training accuracy. 
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Table 2. Accuracy of classifiers. 

 
Median 

Split Train 

Median 

Split CV 

Quartile 

Split Train 

Quartile 

Split CV 

Naïve 

Bayes 
0.88 0.74 0.81 0.51 

SVM 0.88 0.75 0.84 0.53 

Random 

Forest 
1.00 0.84 1.00 0.53 

 

To gain more insight into how these classifiers made their 

assignments, we investigated which features the RF model for the 

quartile split problem was ranking as most important for making 

assignments. Figure 3 plots the eleven most important features for 

our classification problem. Beyond that point, the feature 

importance rankings are too similar to derive insight. It is 

important to note that importance here is agnostic of whether these 

features correspond to good or bad collaboration; they are simply 

the most meaningful for deciding between them. Second person 

pronoun incidence (WRDPRP2) and lexical diversity (LDTTRc, as 

measured by the type-token ratio [22]) are the most important 

features. Word count (DESWC), sentence count (DESSC), 

incidence of negation expressions (DRNEG), text easability 

(PCDCp), and verb phrase density (DRVP) also rate highly. Many 

of these features were previously seen to be significantly correlated 

with collaboration, but verb phrase density and the incidence of 

negations appear here in our analyses for the first time. 

 

Figure 3. Feature importances for the quartile split Random 

Forest model. 

6. DISCUSSION 
In general, our findings indicate that our strongest collaborating 

dyads communicated more in terms of amount of words and 

sentences as well as the length of each utterance before the other 

participant would interject. In addition, these groups used more 

abstraction when referring to content words and terms and 

employed basic words and grammar to convey meaning is a direct 

fashion. They avoided using the passive voice or pronouns while 

reaching a consensus on a simple shared set of words to describe 

the task and their actions. While synonyms and extraneous 

modifiers were not used by strong collaborators, adverbs were used 

to define particular actions the robot needed to perform, and the use 

of logical, causal, and temporal connectives indicates a value to 

explicitly linking actions across space and time to meet the desired 

outcome. These indices of cohesion jointly allow collaborators to 

negotiate a shared problem space regardless of English language 

proficiency or level of education. 

To ground the above findings, here is an example of a low 

collaborating dyad’s discourse regarding programming the robot 

for a new maze: 

A: So let's, we can do, no, yeah, we can put up, if yeah and if it's 

that then it goes this.  
B: Then we add, turn right.  
A: Yeah it will go right and then it will take for, wait for 10 

seconds and then take a left. Also take a left.  
B: Yeah, go, go forward. Go forward. Left, then we go straight.  
A: Let’s go forward. Left and then right. Then left and right. 

In contrast, this is dialogue from a high collaborating group at a 

similar point in the activity: 

C: So let's try changing this value to...greater than the second "If 

Do".  
D: Okay. I just want to see if, oh, what did I do there, I just want 

to see if that what difference that makes.  
C: Perfect. All right, are you ready?  
D: Yep. Nope, all right.  
C: Okay so, we've got it going forward and turning right so at 

least the right works. That one's correct now. 
D: Now... if we change this number so let's go back to the 

widget.  
C: Okay, okay. I think I've got it, so we needed to turn so when 

we got it turn right, we need to maybe check to if it turns left or 

right needs to be "greater than". 

In the second dyad’s discourse, more complete yet simple grammar 

and explicit markers of turn-taking result in a much fuller discourse 

that is easier to track. Their use of causal language and conditionals 

and implies a greater grasp of the content of the activity. 

The importance and effects of cohesion are typically much higher 

for low-knowledge readers, with this relationship dubbed the 

“reverse cohesion effect” in discourse literature [23]. As none of 

our participants had any prior knowledge of robotics or computer 

programming, the importance of cohesion in participant discourse 

is likely to be crucial in similar educational settings. Reading skill 

and young age can also interact with this effect but these issues 

were not confounders in our study due to the use of oral dialogue 

and our population being solely adults. 

As far as how the Treatment and Control groups differed, the 

Control groups typically communicated less (fewer sentences with 

shorter exchanges), used less adverbs, and had a higher lexical 

diversity (which was shown to be negatively correlated with 

collaboration). This difference shows that even simple verbal cues 

delivered as an intervention prior to an activity can have a positive 

association with collaboration by fostering more cohesive 

communication. The effect size of an informational intervention 

such as this on collaboration might be effectively used as a baseline 

when comparing more elaborate interventions in similar activities 

in the future. It is also reassuring to see the low effect on the Coh-

Metrix indices from the visualization intervention condition that 

had no effect on collaboration. This validates our strategy of using 
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these indices without coding scheme to assess collaboration quality 

in a variety of different experimental conditions. 

Comparing average learning gains on the pre-post survey to the 

Coh-Metrix indices is difficult for several reasons. First, the survey 

was done at the individual level and by only using the mean change 

we ignore when participants unequally learned during the task. 

Second, gains may be susceptible to ceiling effects where high 

gains are not seen due to high performance on the pre-test. Third, 

the dyads were instructed to program the robot to solve mazes and 

thus their conversation revolved around that task. The activity 

certainly utilized the computer science principles that were assessed 

in the survey, but the discussion was not as specific as a tutor 

dialogue regarding programming.  

Despite these issues and challenges, several Coh-Metrix indices 

reveal what types of markers in the discourse can signal learning 

taking place. While lexical diversity was negatively associated with 

collaboration, it appears to be beneficial for learning. Knowing and 

applying more terms for phenomena or problem-solving strategies 

may aid participants transfer their knowledge from the 

experimental task to the post-survey. Additionally, too much 

referential cohesion may make ideas difficult to separate out of 

context and thus more challenging to use in isolation on test 

questions. 

It is worth noting that features engineered from all three of our 

MMLA sensors provided insight into how to assess collaboration 

using the Coh-Metrix indices identified as significantly related to 

collaboration. When joint visual attention fell outside of the 

tabletop or laptop (aoi_0), this could generally be interpreted as 

participants looking at each other (as relatively little time was spent 

with both participants simultaneously looking at the facilitator, the 

same spot on the wall, or anything unrelated to the task). The 

proportion of time spent doing this negatively correlated with word 

length, lexical diversity, and syntactic complexity (all of which are 

markers of poor collaboration). Eye contact is positively associated 

with problem solving and facilitates conceptual understanding in 

group settings [24] so this result triangulates established literature 

findings. Joint visual attention being more focused on the maze and 

robot instead of the laptop (aoi_5) correlated positively with 

second person pronoun use and readability while negatively 

correlating with word length, word diversity, and use of the passive 

voice. This can be interpreted as dyads communicating with each 

other more effectively by looking at the physical problem space and 

talking through the steps needed to solve the problem versus 

spending more time in the programming interface editing code. 

Two of our measures of synchrony (directional agreement for EDA 

and instantaneous derivative matching for motion) are positively 

associated with indices deemed good for collaboration and 

negatively correlated with indices seen to be negatively related to 

collaboration. By focusing on these four features from our 

multimodal data, we might be able to automatically assess 

collaboration during trials, which could be used to provide 

formative feedback and design new interventions based on these 

measurements. 

Finally, we used supervised machine learning algorithms in hopes 

of being able to detect and intervene while dyads are working 

together. The relative feature importances from our Random Forest 

classifier also shed light on what indices are most useful for 

assessing collaboration. Second person pronoun incidence, number 

of words, and lexical diversity appeared in our correlations with 

collaboration, while verb phrase density and the incidence of 

negations did not appear in our previous results. The emergence of 

negation in this model will need to be studied more thoroughly. 

Increased incidence of negation expressions may signal discord 

between the participants that could hinder the joint construction of 

meaning en route to problem solving. It is possible that the 

relationships between these features and collaboration are nonlinear 

and are thus not detected as readily by simple correlational 

analyses. Additionally, the overfitting of the models may be due to 

the lack of regularization of model complexity. With the range of -

2 to 2 for the collaborative scoring, it might be more appropriate to 

fit a regression model instead of classifying the scores. 

This preliminary work has several limitations that must temper the 

results. The small sample size of 40 groups leads to overfitting of 

our classifiers and may interfere with the ability of some of the 

Coh-Metrix algorithms to function. The designers recommend 

using a carpus of roughly 300 texts of 300 words each to study text 

easibility [3]. While the length of our transcripts exceeds these 

recommendations, it is unclear what effect our sample may have on 

this novel use of Coh-Metrix. We collected no reading level 

demographic data on our participants, nor did we ask for whom 

was English a first language. Additionally, this preliminary work 

does not address the important issue of how does communication 

(and thus collaboration) differ when participants have very 

different expressive language capabilities.  

The developers of Coh-Metrix intended these indices to be the 

“low-hanging fruit” of computational linguistics, choosing to use 

simple metrics instead of complex computational linguistic models 

[3]. While this will likely be valuable for developing real-time 

dynamic interventions that can’t be slowed down by 

computationally expensive operations, we need to compare these 

results to more complex models and other natural language 

processing methods. Future work will also explore “driver-

passenger” models that investigate emergent leadership behavior 

and uneven talk time in the discourse as well as the role of eye 

contact in the quality of collaboration. 

7. CONCLUSION 
This research paves the way for real-time detection of 

(un)productive interactions from multimodal data, potentially 

facilitating the development of fail-soft real-time interventions to 

support collaborative learning. While Coh-Metrix is only available 

currently as an online service, similar analytical platforms can be 

run locally [9] and could offer advice based on specific issues 

detected in the discourse rather than general distribution of talk 

time. These indices of cohesion and easibility have proven to be 

versatile and serve as effective features for estimating the rough 

quality of dyadic discourse with regard to collaboration quality. 
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10. Appendix: Coh-Metrix Indices 
 

Index Description Index Description 

DESSC Sentence count, number of sentences CNCLogic Logical connectives incidence 

DESWC Word count, number of words CNCADC Adversative and contrastive connectives incidence 

DESPL Paragraph length, number of sentences, mean SMINTEr Ratio of intentional particles to intentional verbs 

DESWLsy Word length, number of syllables, mean SYNNP Number of modifiers per noun phrase, mean 

DESWLsyd Word length, number of syllables, standard deviation DRVP Verb phrase density, incidence 

DESWLlt Word length, number of letters, mean DRNEG Negation density, incidence 

DESWLltd Word length, number of letters, standard deviation DRPVAL Agentless passive voice density, incidence 

PCNARz Text Easability PC Narrativity, z score WRDNOUN Noun incidence 

PCNARp Text Easability PC Narrativity, percentile WRDADV Adverb incidence 

PCDCz Text Easability PC Deep cohesion, z score WRDPRP2 Second person pronoun incidence 

PCTEMPz Text Easability PC Temporality, z score WRDFRQc CELEX word frequency for content words, mean 

PCTEMPp Text Easability PC Temporality, percentile WRDFRQa CELEX Log frequency for all words, mean 

PCCNCz Text Easability PC Word concreteness, z score WRDAOAc Age of acquisition for content words, mean 

PCCNCp Text Easability PC Word concreteness, percentile WRDFAMc Familiarity for content words, mean 

LDTTRc Lexical diversity, type-token ratio, content word lemmas WRDCNCc Concreteness for content words, mean 

LDTTRa Lexical diversity, type-token ratio, all words WRDHYPv Hypernymy for verbs, mean 

LDVOCD Lexical diversity, VOCD, all words WRDHYPnv Hypernymy for nouns and verbs, mean 

CNCCaus Causal connectives incidence RDL2 Coh-Metrix L2 Readability 
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