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ABSTRACT
Misconceptions have been an important area of study in
STEM education towards improving our understanding of
learners’ construction of knowledge. The advent of large-
scale tutoring systems has given rise to an abundance of
data in the form of learner question-answer logs in which
signatures of misconceptions can be mined. In this work, we
explore the extent to which collected expert misconception
diagnoses can be generalized to held-out questions to add
misconception semantics. We attempt this generalization
by way of a question-answer neural embedding trained on
chronological sequences of learner answers. As part of our
study, we collect natural language misconception diagnoses
from math educators for a sampling of student answers to
questions within four topics on Khan Academy. Drawing
inspiration from machine translation, we use a multinomial
logistic regression model to explore how well the expert mis-
conception semantics, in the form of bag-of-words vectors,
can be mapped onto the learned embedding space and inter-
polated. We evaluate the ability of the space to generalize
expert diagnoses using three levels of cross-fold validation in
which we measure the recall of predicted natural language di-
agnoses across rater, topics, and questions. We find that the
embedding provides generalization performance substantially
beyond baseline approaches.

1. INTRODUCTION
The notion of mapping out abstract spaces of student learn-
ing and development has been around for ages, with Zone of
Proximal Development [23] serving as a canonical example
of defining the area of topics a student could learn with help
from peers and the topics beyond. Work in Educational Data
Mining has explored mapping out learning spaces taking the
form of tree structures [4] or concept nodes in a directed
graph [11], often used to represent prerequisite relationships.
Other work has mapped out progress points within a course
and their relationship to classical psychometric measures of
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ability [1]. In this work, we build on the idea of conceiving a
space of learning as an embedding, or set of continuous vec-
tors, with parts of the space indicative of different states of
understanding and misconception [14]. We learn this embed-
ding from sequences of millions of answers to exercises from a
popular STEM tutoring system, then recruit qualified experts
to diagnose a sampling of common wrong answers, providing
natural language semantics to associate with question an-
swers at their respective locations in the embedding. To test
if the embedding generalizes these short form diagnoses, we
use linear interpolation of the learned vector space to predict
the words used in held-out diagnoses, holding out by expert,
problem type, and question in cross-validation experiments.
Successful predictive generalization in this task has implica-
tions for surfacing automatically generated misconception
hypotheses to both teachers and computer tutors.

2. RELATED WORK
The theory of mathematical misconceptions described by
Piaget [16], and considered by Smith, diSessa, and Roschelle
[19] is one of continually developing partial understandings.
Analysis of learner responses, rather than only correctness,
may reveal aspects of their understandings. In the age of
big data and computation, several modern approaches have
brought different perspectives to the analysis of misconcep-
tions. Feldman et al. [5] generated plausible production
rules that could have produced the common wrong answers
observed in student responses to addition questions in 11
elementary schools. In the vein of KC model or Q-matrix im-
provement [22], Liu, Patel, & Koedinger [6] explored adding
KCs symbolizing buggy production rules to problem steps
whose correct answer could be arrived at in spite of applying
the buggy production. They found that the inclusion of this
item-level misconception tagging improved the overall fit of
their AFM model and the validity of the learned individual
student parameters. Most complimentary to our work is the
work of Michalenko, Lan, & Baraniuk [8], who did not study
misconceptions in common wrong answers, but rather miscon-
ceptions found in the text of long open response text, using
skip-grams and other embedding methods. Their approach is
complementary to ours in that it cannot be applied to short,
numeric answers in isolation. Inversely, our approach, which
extends the embedding context across questions, is driven
by questions that generate common wrong answers across
students, which would exclude direct applicability to long
answer response text.
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2.1 Buggy Rules
In the cognitive theories underlying the design of intelligent
tutoring systems [2], there are rules that produce correct and
consistent answers, and efforts have been made towards cat-
aloging collections of buggy rules that could instead produce
incorrect answers. These buggy rules could represent miscon-
ceptions that students often have during the learning process
[3]. This large collection of buggy rules is often referred to
as a bug catalog [20]. As a student moves through a problem
set, the bug catalog enables tutoring systems to tag, track,
and respond to a path of answers the student provides.

Past research efforts to classify these buggy rules also include
the manual labeling of misconceptions by experts [7], the ex-
ploration of cluster relationships between the wrong answers
[15], and approaches that take into account the frequency
of student misconceptions [21]. These efforts lay the foun-
dation for automated approaches which utilize these buggy
rules to generate targeted guidance messages specific to each
incorrect answer [18].

2.2 Use of Skip-grams
Skip-gram models were originally applied to the embedding
of words based on a large corpus of text (e.g. Wikipedia or
a large archive of news articles). Once trained, the represen-
tational (hidden) layer of these models was shown to encode
distributed concepts in the form of syntactic (e.g., bee is
to bees as goose is to geese) as well as semantic relation-
ships (e.g., Einstinen is to scientist as Picasso is to painter)
[10]. While conventionally applied to language in its debut,
skip-grams have been applied to non-linguistic data from
education. University courses were embedded from sequences
of enrollments [13] to find course similarities outside of what
could be inferred from catalog descriptions. Questions within
the ASSISTments tutoring platform were embedded based
on sequences in which problems were answered in order to
predict the skill of untagged questions [12]. Skip-grams and
other embedding models have been applied to standard natu-
ral language in educational contexts, such as the learning of
vector representations of open response text and correlating
vector representations with the presence or absence of hand
coded misconceptions[8].

3. TUTOR DATA SET
Our dataset of anonymized student answer logs comes from
Khan Academy, an online STEM tutoring platform. As
described in our previous work [14], Khan Academy catego-
rizes student responses by exercise, a broad skill similar to
those seen in ASSISTments Skill Builder sets; by problem
type, a problem template; and finally by seed, one of two
hundred values per problem type which uniquely identifies
a template instantiation. Each log entry also contains an
anonymous user ID and timestamp, which we use to group
and chronologically sort student answers for model training.

We used the same exercise selection process as in [14] to nar-
row our focus to exercises with sufficient data and concerning
topics that would likely surface interesting misconceptions
for educators to analyze and describe. This involved consult-
ing a subject matter expert in mathematical education [17]
and verifying the correctness of the log entries by forming a
sample set of questions and manually accessing their respec-
tive web pages on Khan Academy. At the conclusion of this

filtering process, we identified four suitable exercises to use
in our experiments:

1. “Surface Areas” (SA)

2. “Slope from an equation in slope intercept form” (SESI)

3. “Area of quadrilaterals and polygons” (AQP)

4. “Adding and subtracting fractions” (ASF)

Table 1 shows statistics for each exercise.

SA SESI AQP ASF
Problem Types 6 2 2 7
Seeds 38 20 50 40
Students 105,659 33,603 58,239 179,263
Unique Incor-
rect Answers

55,126 6,912 17,998 46,516

Total Incorrect
Answers

619,045 112,390 298,356 873,916

Table 1: Descriptive statistics of exercises used to
train the skip-gram models.

A second dataset was collected as part of this study, which
consisted of natural language diagnoses of common wrong
answers from our chosen exercises. These diagnoses were
written by mathematics educators, with each diagnosis ex-
plaining the misconception that was potentially responsible
for the incorrect answer. We collected misconception diagno-
sis labels using an online survey platform.1 We describe the
collection of these data in Section 4.2.

4. METHODOLOGY
In this section, we describe the techniques employed to com-
plete three primary methodological tasks:

1. Generate learned question answer embeddings from
student answer logs

2. Generate bag-of-words representations of the semantic
data contained in educator diagnoses of the miscon-
ceptions associated with the incorrect student answers
from (1.)

3. Compute a model that generalizes semantic diagnoses of
wrong answers based on regression from the continuous
vectors of (1.) to the semantic representations from
(2.)

Figure 1 depicts the full data processing and machine learning
pipeline that we implemented to complete these tasks, using
both the answer event logs and the misconception diagnoses
as inputs and outputting natural language diagnoses for
held-out question answers.

4.1 Embedding Student Answers
As described in Section 2, machine learning models origi-
nally intended to model natural language have recently been
applied to a number of other domains, including education.
Motivated by the success of these efforts, we used a skip-gram
neural network model to learn representations of student an-
swers. A representation in our setting, or embedding, is a
vector in a high-dimensional space that is learned by a skip-
gram model. We use the same strategy as in [14] to encode
each student answer in a token containing its seed and the

1https://qualtrics.com
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Figure 1: The pipeline used to model student an-
swers, teacher diagnoses, and their correlation.

frequency rank of the student’s response within that seed.
For example, if a student were to answer a question generated
from seed x01b with the most frequently occurring incorrect
answer to that question, their answer would be represented
by the token x01b_1.

A skip-gram model is a two-layer neural network (one hidden
layer) that analyzes a corpus of token sequences to learn
continuous vector representations for each of these tokens.
Vectors are trained with the goal of predicting the context
of each token. For example, x01b_2 would have s03c_4 in
its context if students often provide incorrect responses to
those questions in succession. The loss function (Eq. 1)
for the training process, described in [10], seeks to optimize
the log-likelihood of the tokens in context given a specific
input token. S represents the set of input sequences for
the model, each corresponding to a student’s sequence of
responses to a given exercise. c represents the window size,
a hyperparameter of the model that specifies the width of
a token’s context when learning its representation, and T
represents the number of tokens in sequence s.

C = −
∑
s∈S

1

T

T∑
t=1

∑
−c≤j≤c

j 6=0

logP (wt+j |wt) (1)

We use the negative sampling variant for training the skip-
grams as introduced in [10], which replaces the final term of
the form log P (wO|wI) in Equation 1 with

log σ
(
v′TwO

vwI

)
+

k∑
i=1

Ewi∼Pn(w)

[
log σ

(
−v′Twi

vwI

)]
(2)

Above, σ represents the sigmoid function. Roughly, this
formulation seeks to include the weights of k randomly chosen
negative samples, i.e., tokens wi that do not occur within

the context of the target token wO, in the backpropagation
process. Unlike the original hierarchical softmax formulation,
negative sampling has the advantage of only adjusting pairs
of weights in the underlying network during backpropagation.

4.2 Collecting Teacher Diagnoses
We collected expert-generated semantic misconception diag-
nosis data through a questionnaire designed and run on the
Qualtrics platform. Qualtrics recruited survey participants
and compensated them on our behalf at a rate of $30 per
participant. We had Qualtrics recruit participants who:

• Are working as a mathematics educator for students
who are in grades 5–12 or undergraduates

• Have at least two years of prior teaching experience

The number of problem types and seeds within each exercise
included in the survey is shown in Table 2. For each seed,
we formed a batch of the five most frequently submitted
incorrect answers to present to survey participants.

Exercise # Prob. Types # Seeds
Slope from an Equation
in Slope Intercept Form

2 17

Adding and Subtracting
Fractions

5 18

Surface Areas 6 36
Area of Quadrilaterals
and Polygons

2 18

Table 2: Wrong answer exercises, problem types,
and seeds for which expert diagnoses were sought

Each survey participant was provided with initial instruc-
tions, excerpted in Figure 2. Next, they were shown three
randomly selected answer batches. For each batch, the survey
respondent was presented with a screenshot of the original
question as it appeared on Khan Academy, the text of the
five incorrect student answers, and text boxes to write a brief
misconception diagnosis for each answer. An example Khan
Academy question and the associated diagnoses we collected
are shown in Figure 3.

Respond with a general label-phrase that describes the
most likely error or misconception related to the incorrect
answer.
• Avoid references to specifics of the question (e.g., do

not say “additive inverse is 4, not −4”).

• Your label or phrase should be general enough such that
it could potentially be applied to other incorrect an-
swers. Therefore, you may duplicate labels and phrases
as you see appropriate.

• Avoid abbreviations (e.g., use “y intercept” instead of
“yint”).

Example Responses

Question: Solve 3x− 4 = 20

Student Answer: 5
1

3
Example Label-Phrase: opposite of additive inverse

Figure 2: An excerpt of the instructions presented
to survey participants providing expert diagnoses

Alternatively, we could have asked experts to create miscon-
ception labels out of terms drawn from a fixed taxonomy,
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Answer Misconception Diagnosis
17/20 Added 5 + 12 instead of 5− 12.
−17/20 Added 5 + 12 instead of 5−12. And

used incorrect sign.
−7/20 Has incorrect sign. Should be +.

2/5 Did not use common denominator.

Figure 3: A sample Khan Academy question and
corresponding misconception labels

rather than to compose these labels from scratch and with-
out explicit guidance. However, the terms in this taxonomy
would inevitably reflect our own biases and assumptions and
may prevent experts from accurately describing their obser-
vations. Instead, we allowed a broad vernacular, but also
asked experts to review their labels at the end of the survey
to encourage them to be consistent in their language.

We found that the quality of survey responses varied dra-
matically within our dataset and developed a procedure to
identify and retain only misconception labels that were suit-
able for further analysis. We manually excluded all responses
where an attempt at a label was clearly not present, such
as “idk.” Next, we retained diagnoses only from experts who
wrote labels with an average length of 20 characters or more.
This process left us with 570 unique diagnoses covering 14
of the 15 problem types and 64 of the 89 seeds.

4.3 Processing Teacher Diagnoses
After collecting expert misconception diagnoses through the
survey platform, we performed data pre-processing to even-
tually represent each label in bag-of-words form. Many
diagnoses contained references to specific numbers found in
the instantiation of the question. We chose not to give every
numerical quantity its own token but rather to replace each
contiguous mathematical expression with the token numN,
representing the N th contiguous expression appearing in the
diagnoses for each seed. Numbers used to describe general
misconception rules, e.g. the factor of 1/2 used in computing
the area of a triangle, were hand-identified and allowed to
be represented in original form. This helps to prevent our
models from incorrectly identifying correlations that are co-
incidental (two question instances happen to use the same
random quantity) rather than structural.

Next, we stripped punctuation, removed stopwords, and per-
formed word stemming. Finally, we manually removed some
of the most common tokens that we deemed uninformative
and which could have resulted in trivially easy prediction
due to their frequency, such as student, tried, and used.
Each processed expert diagnosis is represented as a bag-of-
words vector, where an element of the vector indicates the
number of occurrences of a term from a global vocabulary.
Where we had multiple expert labels available for a single
incorrect student answer, we concatenated the two labels
and constructed a bag-of-words representation of the result.

Crossfold Type
Evaluator Prob Type Seed

T
ra

in
in

g

Folds 19 14 64
Data Points 302 296 314
Evaluators 18 19 19
Exercises 4 4 4

Prob Types 14 13 14
Seeds 61 59 63

T
e
st

Data Points 17 24 5
Evaluators 1 3 1
Exercises 2 1 1

Prob Types 2 1 1
Seeds 3 5 1

Table 3: Statistics for different cross validation
schemes. Entries are rounded averages across folds.

4.4 Mapping Answer Vectors to Diagnoses
With both embeddings of student responses and expert-
generated diagnoses in hand, we could explore the extent to
which the continuous vector representation of an incorrect an-
swer is related to a semantic description of the misconception
underlying that answer. We trained a multinomial logistic
regression model to calibrate this correspondence that uses a
vector embedding of an incorrect student answer to predict
the words in the expert’s diagnosis of that answer. The
regression takes as input an m-vector representing a student
answer, where m is the dimensionality of the skip-gram em-
bedding space (a hyperparameter of the model). The model
produces as output an n-vector, where n is the size of the
teacher misconception diagnosis vocabulary. Because of the
regression’s use of softmax, this n-vector forms a probability
distribution across all terms used in the teacher diagnoses.
The ith element of the vector expresses the predicted proba-
bility that the ith term of the diagnosis vocabulary applies
to the student answer.

5. RESULTS
Here, we describe our results and methodology for evaluating
the representations produced by a skip-gram model by using
logistic regression and the expert-generated misconception
diagnoses. We performed a search over the hyperparameters
of the skip-gram algorithm and then compared the predictions
generated by our machine learning pipeline to two baselines.

5.1 Skip-Gram Model Evaluation
Recall from Figure 1 that we use logistic regression to train
a model identifying correlations between embeddings of stu-
dent answers and semantic explanations of the underlying
misconceptions responsible for incorrect answers. The model
surfaces correlations by taking a vector representation as
input and producing a probability distribution over the vo-
cabulary of terms used by educators in their misconception
diagnoses as output.

Using the semantic data collected from educators as ground
truth, we evaluated the insights generated through logistic
regression when using vectors produced by different skip-
gram models as input. We performed a standard leave-
one-out cross-validation (CV) procedure on the educator
data. We then evaluated the quality of a model’s predicted
misconception tags for student answers in the remaining fold
using recall at N , where the value of N for each prediction
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is equal to the number of terms used in the original expert
label for the relevant incorrect answer. This is defined as:

R =

∣∣∣T̂N ∩ T
∣∣∣

|T | (3)

where T is the set of terms contained in an educator’s mis-
conception diagnosis for an answer, T̂N is the set of terms
corresponding to the N largest entries in the probability
distribution produced by the logistic regression when given
an embedding of the answer as input, and N = |T |.

We performed three leave-one-out cross-validations using
each of the following to determine the fold segmentation:

1. Evaluator : The ID of the educator who produced the
misconception diagnosis.

2. Problem Type: The ID of the template used to generate
a question.

3. Seed : The unique identifier of an instantiated question.

Descriptive statistics concerning the train and test splits for
each scheme are summarized in Table 3.

5.2 Results of Hyperparameter Search
We trained over 750 skip-gram models using different combi-
nations of hyperparameters and then ran each model through
the cross-validation procedure described above. The hyper-
parameters we varied were:

1. Vector Size: The number of elements in the vector
representations learned by the skip-gram model

2. Window Size: The width of each token’s context, i.e.,
the number of surrounding tokens to consider in the
loss function defined in Equation 1.

3. Min Count : The minimum number of times a token
occurs in the training set to be included in the model.

4. Training Epochs
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Figure 4: Distribution of average recall under the
different cross-validation schemes.

Figure 4 shows the distribution of recall results achieved
by all the models under each scheme. We also examined
the distribution of hyperparameters among the ten models
that achieved the highest average recall at N under each
cross-validation type. We found that this metric was not
sensitive to the hyperparameter values among the top ten
models for all CV types. Within each CV type, all models
produced scores within 0.0x of one another. Table 4 shows the

hyperparameters that produced the best performing models,
measured by average recall, for all CV types.

Evaluator Problem Type Seed
Vector Size 60 100 100

Window Size 15 40 8
Min Count 10 15 5

Training Epochs 20 20 20

Table 4: The best skip-gram hyperparameter com-
binations under each cross validation scheme.

5.3 Diagnosis Generalization by Best Models
We compared the recall achieved by predicting the words
in the diagnoses using the best skip-gram embeddings and
logistic regression to the recall achieved by two baseline
prediction schemes. For each incorrect student answer, all
of the methods predict N terms, where N is the number
of terms contained in the original expert diagnosis of the
underlying misconception for that answer. This ensures we
can fairly measure each prediction scheme by recall at N .
The two baselines were:

1. Random: Generate a random sample of N terms from
the vocabulary formed by the expert misconception
diagnoses in the training set.

2. Frequency : Predict the N terms that appear most
frequently in the diagnoses from the training set.

Evaluator Problem Type Seed

CV Type
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Figure 5: Average recall achieved by different pre-
diction schemes for each cross-validation type.

The average recall at N achieved by the predictions generated
through each baseline scheme, as well as that of our own ap-
proach, is shown in Figure 5. As expected, a frequency-based
approach outperforms a random approach in all three cross-
validation types. In addition, the embedding-based approach
significantly outperforms the frequency-based approach in all
three cases by nearly 100%. The results show that between
18% and 27% of words in held-out diagnoses were recovered.
This improvement over baseline suggests a moderate corre-
spondence between the regularities learned in the embedding
and semantics used to describe misconceptions.

Recall increased with the size of the training set, with Seed
having the largest training set and Evaluator having the
smallest. Other factors may also contribute to these results.
First, we chose Khan Academy exercises spanning a diverse
selection of mathematical concepts, and the diagnoses for

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 346

I I I I 

---



misconceptions that arise in one domain (e.g., fractions) may
use very different diagnosis terms than the terms used for mis-
conceptions in another domain (e.g., surface area). Therefore,
there are likely cases where the training set doesn’t contain
the proper terms to express the misconception diagnoses
in the test set. Moreover, different educators used different
taxonomies and terms when constructing their misconception
diagnoses, which means a model may not be able to accu-
rately predict the diagnoses provided by an educator that
isn’t well represented in the training data set, which appears
to be the situation that arises in Evaluator cross-validation.

6. DISCUSSION
Should the 27% recall that we achieved in predicting the
terms of held out misconception diagnoses be considered a
good score? There are not prior results in this particular
area with which to compare to a state of the art. However,
this technique of linearly translating from one space (an-
swer embedding) to another (diagnosis bag-of-words) is akin
to machine translation from one language’s embedding to
another. Looking at the accuracy reported in the original
linear machine translation paper [9], a translation accuracy
of 10% was achieved between English and Vietnamese and
24% translated the other way. Therefore, we could consider
27% a comparable score to past NLP translation benchmarks
and a performance level that may produce diagnoses that
expert teachers could consider and potentially act on.

A limitation of our approach was that, as discussed in Section
4.2, our survey allowed experts to write open-ended miscon-
ception diagnoses which resulted in low frequency of some
words and thus a more challenging downstream prediction
task. A future study could restrict the terms available for
use in expert labels or have them simultaneously negotiate
a shared taxonomy. Finally, the student response sequences
used as input for the skip-gram models were partitioned by
Khan Academy exercise due to us wanting to focus on a
limited number of topic areas. This may have lead to missing
misconception signatures that manifest or generalize across
exercises.
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