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ABSTRACT
Clustering of educational data allows similar students to be
grouped, in either crisp or fuzzy sets, based on their similari-
ties. Standard approaches are well suited to identifying com-
mon student behaviors; however, by design, they put much
less emphasis on less common behaviors or outliers. The ap-
proach presented in this paper employs fuzzing clustering in
the identification of these outlier behaviors. The algorithm
is an iterative one, where clustering is applied, outliers iden-
tified, the data restricted to the outliers, and the process
repeated. This approach produces a clustering that is crisp
between each iteration and fuzzy within. It arose as a con-
sequence of trying to cluster student progress trajectories in
an adaptive learning platform. Included are results from ap-
plying the repeated fuzzy clustering algorithm to data from
multiple courses and semesters at the University of Central
Florida, (N=5,044).

1. INTRODUCTION
Personalization holds the promise of making learning more
engaging and effective for students. Each student can receive
personalized feedback and guidance based on their interac-
tion with the learning material and their current needs and
goals. Key to being able to provide this is an understand-
ing of the full range of learning behaviors that students can
exhibit, and the driving forces behind them. Truly personal-
ized learning needs to understand not just the most common
behaviors, but also those that are more atypical or outliers.

A variety of techniques have been employed to uncover stu-
dent behaviors in different learning contexts [22]. Cluster-
ing is a common approach with a considerable range in both
the applications and the algorithm employed [25]. Appli-
cations have included adapting question delivery, promoting
group-based collaboration, and the characterization of atyp-
ical student behavior.

This work presents a clustering approach to automatically
detect and quantify the range of behaviors, including the

Figure 1: Student progress trajectories. The gray
lines show the trajectories for all 5,044 students at
UCF. The colored lines highlight several individual
trajectories.

outliers, that are evident in student progress data, in order
to provide feedback to instructors on their student’s behav-
iors. This goal throws up two restrictions on our approach.
First, the clustering of behaviors must be fully automated.
Not all instructors will have the required knowledge to make
decisions such as picking the parameters of the clustering al-
gorithm. Therefore these decisions need to be handled by
the algorithm. Second, the output from the clustering must
be readily interpretable by an instructor, including both un-
derstanding what makes a cluster a cluster, but also easily
understand the differences between clusters. These two re-
strictions provide a means of measuring the ultimate effec-
tiveness of the algorithm and the quality of the clusters that
it produces.

In [11], the authors examined student progress data against
time for an online course delivered at the University of Cen-
tral Florida (UCF) through the Realizeit adaptive learning
platform. The course was self-paced with students free to
set their rate of progress. While most set a steady, consis-
tent pace over the 15-week term, some students set a very
different pace. These outliers roughly fall into two cate-
gories: students who race ahead of the rest, and those who
fall behind, leaving all their learning to the last minute.

Figure 1 provides an understanding of the challenges when
clustering these progress trajectories. The x-axis represents
time in days, and the y-axis is progress measured as the per-
centage of concepts mastered. The progress trajectories for
5,044 students across 51 online course instances in 9 terms
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at UCF are shown in gray. Each line represents a single stu-
dent. Patterns are difficult to distinguish, but the consistent
trajectory of most students through their course is evident
along the diagonal. Five progress trajectories (colored lines)
have been singled out to highlight the range of possible be-
haviors. The challenge in clustering this data comes from
the fact that clustering algorithms, by design, attempt to
group the data into as few clusters as possible and therefore
put much less emphasis on outliers. They seek the most
common patterns. Our goal is to find both common and
outlier behaviors.

Our approach draws inspiration from He et al. [16, 17] who
used clustering to search for hidden communities in social
networks. In their work, they first used clustering to discover
the most apparent communities. They then decreased the
weights on the edges in the social network that represented
these communities. Repeating the clustering uncovers pre-
viously hidden communities. Our approach, repeated fuzzy
clustering (RFC) uses a similar technique where clustering
is applied, outliers identified, the data restricted to the out-
liers, and the process repeated. The purpose of this paper
is to describe and demonstrate the RFC algorithm.

Algorithmic clustering methods are essentially “blind” in
that there is no linguistic functioning in their process. The
categories identified are impervious to shared characteris-
tics that ground themselves in cultural beliefs. However, the
linguistic and algorithmic categorization processes do have
common intersections. Linguistically, Rosch, [23, 24], de-
scribed this as prototype theory where through any number
of cultural and societal processes what is the best represen-
tational icon of a category is formed by our preconceived
notions. Adaptive learning provides diverse paths to suc-
cess, many of which may not align with our preconceived
notions of what constitutes successful or unsuccessful behav-
ior. Clearly, clustering algorithms have assumptions built
into them a priori but once built are not influenced by pre-
conceptions. The questions we ultimately wish to address
involves whether or not the clustering of student trajecto-
ries can provide a foundation for category characteristics
through the multiple lenses of methods, education, linguis-
tics, and prototype theory and should they make educational
sense how can we use them to improve learning? [20].

2. APPROACH
Here we provide an outline of the RFC algorithm. In the
following subsections, we provide the specifics on our imple-
mentation of each function, although it is possible to alter
these to suit other needs or implementations. The algorithm
proceeds by first grouping students using fuzzy clustering
for a range of values of k (the number of clusters) - lines
5→ 7. Validity indices are calculated for each solution, and
the most appropriate number of clusters is chosen - line 8.
The algorithm then proceeds by identifying outliers and re-
moving them from the data. The algorithm then reapplies
the clustering creating a more compact solution. This part
of the process repeats until the algorithm identifies no new
outliers - line 10. The data is then limited to the previously
identified outliers on this loop - lines 11 → 12. The whole
process then repeats with the data filtered to the outliers.

There are three parameters to the algorithm: kmax is the

Algorithm Repeated Fuzzy Clustering

1: D is the student data
2: Outliers = All students
3: i = 0
4: while |Outliers| > tol & i < M do
5: for k in 1 : kmax do
6: Fk = FuzzyCluster (k,D)

Vk = V alidityIndices (Fk)
7: end for
8: Select k using V
9: i = i+ 1

10: FCi = RefineClustering (Fk)
11: Outliers = IdentifyOutliers (FCi, D)
12: D = D \Outliers
13: end while

maximum number of clusters to consider at each repetition;
tol is limit on the number of outliers that must be present
for the algorithm to repeat; M is the maximum number of
repetitions. There are four functions within the algorithm
where choice is possible. These enable the tailoring of the
algorithm to specific needs or implementations. The choices
here can lead to the introduction of additional parameters.

2.1 Fuzzy Clustering
Fuzzy clustering is used to determine the grouping of stu-
dents within a loop. The choice of fuzzy, as opposed to crisp,
is because it provides a membership value for each student in
each cluster. This is relied upon to determine outliers, S2.4.
In this implementation fuzzy k-means [10] is used, although
it would be possible to use any other fuzzy clustering algo-
rithm in its place [14]. An effect of using fuzzy clustering in
our approach is that the algorithm produces crisp divisions
between loops and fuzzy divisions within.

2.2 Validity Indices
Validity indices provide a quantitative measure of cluster
validation. Their calculation is a fundamental part of the
clustering process and provides guidance when deciding on
k, the number of clusters. There is a huge range of cluster
validity indices [2] with a large subset focused on fuzzy clus-
tering [26]. In this implementation, we use the six available
in the FClust R package [12]. These include the Silhou-
ette index [19], Fuzzy silhouette index [5], Partition coeffi-
cient [3], Modified partition coefficient [8], Partition entropy
[4],and Xie and Beni index [27]. For each clustering solu-
tion, we record the value of k recommended by each validity
index. The final value of k is the mode of these recommen-
dations. In the case of two possible values for k, we chose
the smallest.

2.3 Refining Clusters
Refining the clustering solution is an optional step that en-
hances the compactness of the final clusters on each loop.
Given a solution, outliers once identified are removed from
the data. The clustering procedure is then rerun with the
same value of k to derive a tighter clustering solution that
better represents that data and students that remain. This
process repeats as required until a stable solution emerges
and no outliers are present.
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Figure 2: Radviz of membership for a solution with
k = 6. Outliers are shown in blue. (a) Outliers as
identified by (1). (b) Outliers as identified by (2).

2.4 Identifying Outliers
Identifying outliers is the most crucial step in the RFC al-
gorithm. This process places the split in the data for each
loop of the algorithm. Many strategies are possible with
the choice depending on the application and chosen clus-
tering procedure. [21], [15] and [13] all explore identifying
outliers as part of the k-means clustering process. This is
done for several reasons including creating more compact
clusters. These process generally rely on distance measures
to identify the outliers in the data.

The method presented here identifies outliers using the mem-
bership values from fuzzy clustering with two versions con-
sidered below. The rationale behind both of these approaches
is that they seek a solution which places observations mostly
within one or two clusters. Any observation split among
three or more clusters is an outlier. For an instructor hav-
ing a student predominately within only one or two clusters
should help simplify the task of interpreting their behavior.

The first and simplest version of identifying outliers uses
the maximum membership value mi and the sum of the two
highest membership values si for an individual observation
i. The condition classifies an observation as an outlier if the
values of mi or si fall below some limit. Equation (1) places
a limit of 1

2
on the value of mi and a limit on si that is

increases slowly from 1
2

with increasing number of clusters
k.

Outliers =

{
i | mi <

1

2
∨ si <

1

2
+

1

k

}
(1)

This condition will not work for k = 2 as si will always equal
1, and the condition on mi will never be satisfied. In this
case, one possible solution would be to place a stricter limit
on mi and drop condition on si.

The second approach makes use of the Radviz method of vi-
sualizing fuzzy cluster membership [18]. Radviz represents
each cluster by a dimensional anchor and distributes each
dimensional anchor evenly on a unit circle. Each observa-
tion corresponds to a point. The visualization connects each
point to each anchor by a spring whose stiffness corresponds

to that observation’s cluster membership for the associated
anchor. The position is where the spring’s tension is at its
minimum. Imagine each anchor pulls on a data point with
a strength equal to the cluster membership. The higher the
membership value, the stronger the pull and the closer the
data point to that anchor. The ordering of the anchors is
essential, and work has been completed to determine the
optimum position [9].

The advantage of this method is that it makes observations
which are evenly split among multiple clusters evident as
these will be close to the center of the visualization since
they get equally pulled in all directions. Observations that
are a member of a small number of clusters will generally be
further from the center. An example of a Radviz, created
using [1], from one stage of implementing the RFC algorithm
with six clusters, can be seen in Figure 2. In part (a), out-
liers, as defined by (1) with k = 6, are colored in blue and
are visible in the center of the graph.

An alternative to (1) is to use the position of each obser-
vation on the Radviz graph. Here outliers are defined as
being those at the center of the graph within some circle of
radius r and where xi and yi are the Cartesian coordinates
of the position of the observation i in the visualization. The
parameter r has a similar role to m in the fuzzy k-means
algorithm in that it controls the fuzziness of the clusters.
The larger r, the crisper the clustering.

Outliers =
{
i | x2i + y2i < r2

}
(2)

This method has the advantage of also working without
modification for the case where k = 2, as points become
spaced along a straight line. In this case, the condition 2
reduces to m < r + 1

2
. Figure 2(b) displays the outliers as

identified by (2) using r = 0.4. We can see a significant
overlap of points using both conditions.

3. EXPERIMENTAL RESULTS
3.1 Dataset
The data used to test the algorithm is from UCF’s use of the
Realizeit platform. The data encompasses N = 5044 stu-
dents across 51 online and blended course deliveries across
nine terms from 2015 to 2018. Both spring and fall terms
last 15 weeks and the summer term is 12 weeks. The courses
cover a range of disciplines including Psychology, Spanish,
College Algebra, various Computing courses, and Nursing.
UCF uses the platform in a variety of different contexts and
the student learning in the platform contributes a more sig-
nificant element of their final grade in some course than
others. The data only contains first-time students; repeat
students are filtered out.

3.2 Features
It is possible to define a distance metric for the progress
trajectories in their raw form and to use the RFC algorithm.
However, we can obtain more easily interpretable results for
an instructor by extracting features from the trajectories
that capture the key behavioral aspects. Through testing
and iteration the following six were selected:
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Figure 3: The center (mean) of each cluster on each
of the key features for the normalized UCF data.

• Start day - The first day on which the student made
progress.

• End day - The last day on which the student made
some progress. The day on which the student reached
their final % progress value.

• End % progress - The percentage of concepts mas-
tered by the student by the end of the course.

• Num days progress - The number of days on which
the student made progress.

• Max step - The single largest jump in progress on a
single day.

• Max days no progress - Between the start and end
day, the largest number of consecutive days on which
the student made no progress.

One weakness of the chosen features is that they are only ob-
servable after the course is finished making an early predic-
tion of behaviors difficult. Note that the trajectories do not
capture all activities completed by the student, just those
that increase their progress. For example, practices, revi-
sions, or assessments are not evident in this data.

3.3 Clustering
The RFC algorithm made use of the fuzzy k-means algo-
rithm with the fuzzy parameter set at m = 2. Note that the
data was normalized before using fuzzy clustering. We set
kmax = 10, M = 10, and tol = 0.05N ≈ 250. The algorithm
completed 5 loops and automatically produced 13 clusters
in total. The breakdown of clusters per loop and the weight
of each cluster is provided in Table 1. We use weight since
a student belongs only partially to any one cluster.

Table 1: Cluster and Loop weights W , % and devi-
ation from average δ.

Cluster W % δ
Total

W % δ̄
C1L1 1685.6 33.42 0.60

3244 64.31 0.57
C2L1 1558.4 30.90 0.55
C1L2 280.6 5.56 0.29

915 18.14 0.70
C2L2 125.3 2.48 1.25
C3L2 223.7 4.44 0.38
C4L2 285.3 5.66 0.87
C1L3 202.0 4.00 0.61

293 5.81 0.68
C2L3 91.0 1.80 0.75
C1L4 129.4 2.57 1.12

340 6.74 1.08
C2L4 210.6 4.18 1.04
C1L5 63.3 1.25 1.29

252 5.00 1.07C2L5 76.9 1.52 1.52
C3L5 111.8 2.22 0.44

The first loop captures the standard approach of applying
the fuzzy k-means algorithm once and stopping (if the refine-
ment step is excluded). It is the clusters on loop two to five
that are new, and it is here that we find the outlier behav-
iors that would be missed by the standard approach. Notice
that the number of students clustered on each loop generally
decreases as the loop count increases. Another point is that
these “outliers” account for over 30% of the students.

Figure 3 visualizes the center (mean of the normalized data)
of each cluster for each feature. Figure 4 displays the trajec-
tories belonging to each cluster with a membership greater
than 0.5. The students with the highest membership val-
ues for each cluster are shown in black, and these can be
taken as prototypes for each cluster to help interpretation.
Note that some of the trajectories in each cluster vary con-
siderably from the prototypes due to the fuzzy nature of
the clusters and likely have membership values close to 0.5.
The noise present in the clusters on the final loop suggests
that perhaps the algorithm stopped too early and allowing
additional loops could uncover new behaviors.

From an examination of these graphs, we can see that some
outlier behaviors are entirely different from the most com-
mon behaviors found on the first loop. There are certain
similarities in some cases but enough of a difference to make
them worthy of being categorized as separate behaviors.

The clusters found on loop one represent more successful
behaviors in that the students generally finish over 50% of
the concepts. The first that represents unsuccessful behavior
appears on loop two, with more appearing on later loops.
Below we provide notes on some of the individual behaviors.
A detailed analysis is beyond the scope of this paper.

• Students in cluster 1 on loop 4 (C1L4) master all the
concepts in a short period right at the start of the
course.

• C2L5 are the students who generally did too little too
late.

• C3L5 are students who start well but for some reason
stopped with about a month to go.
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Figure 4: The trajectories belonging to each cluster in the UCF data. The most representative (highest
membership values) members of each cluster are shown in black.

• C2L1 and C4L2 are similar in that they make their
progress is a small number of large steps. The differ-
ence is when in the course that progress takes place.

• C1L5 are students who have a long dormant period in
the middle of the course and leave everything to the
last minute.

As expected the clusters found on the early loops tend to
capture behaviors that are close to the “average,” whereas
later loops have clusters that are more different. We demon-
strate this by examining the cluster centers displayed in Fig-
ure 3. The deviation of a cluster center from the mean (solid
black line) is an indication of how far the behavior is from
the average. Table 1 provides this deviation, calculated as
the mean absolute difference, for each cluster and loop. We
see that in general later clusters capture more extreme be-
haviors. The cluster closest to the average is C1L2, but only
represents about 5.5% of the students. The cluster furthest
from the average is C2L5 and represents about 1.5% of stu-
dents. What makes these students stand out is their late
start time and low level of progress.

3.4 Comparison
To highlight the limitations of standard approaches, we ap-
plied both crisp and fuzzy k-means to the UCF dataset. In
summary, these algorithms produce a much smaller number
of clusters and do not capture the same range of outlier be-
havior as those captured by the RFC algorithm. Table 2
display the results from fuzzy k-means for various values of
the fuzziness parameter m. For each value of m, the table
provides the validity indices, the selected number of cluster
k, and the number of outliers based on (2). The value of
m = 2 is the default and corresponds to applying just one
loop of the RFC without refinement. We observe that we
get more clusters and fewer outliers as m → 1. Indeed the
validity indices suggest that m = 1.01 is the best solution

Table 2: Results of fuzzy k-means for various values
of m including the validity indices and number of
outliers.

m k SIL.F SIL PC PE MPC XB Out.
1.01 5 .58 .58 1.0 .00 1.0 .29 1
1.2 4 .59 .56 .94 .11 .92 .36 66
1.4 3 .58 .51 .83 .31 .75 .46 366
1.6 3 .60 .50 .73 .50 .59 .49 864
1.8 3 .62 .49 .63 .66 .44 .52 1438
2.0 2 .52 .44 .69 .48 .37 .54 1606

of those presented. However, with this solution, we only
get five clusters, and these contain high levels of noise and
are therefore can be challenging for instructors to interpret.
This low number of clusters does not accurately capture the
full range of behaviors apparent in the data.

With the solution improving as m → 1 the logical step to
take is to set m = 1 and perform simple crisp clustering
using the k-means algorithm. We performed this using the
NBClust R package [7] which provides a collection of 23 ap-
propriate validity indices to help with the choice of k. Of
these, 7 proposed 3 clusters, followed by 5 indices proposing
7 clusters. Both values lead to the same conclusion as we ar-
rived at with fuzzy clustering; that is, the number of clusters
does not adequately capture the full range of behaviors.

4. CONCLUSIONS AND FUTURE WORK
The RFC algorithm has allowed us to uncover outlier be-
haviors that are in some cases very different to the most
common behaviors found on loop 1, and in other cases ap-
pear visually similar but represent a very different type of
learning behavior. The behavioral clusters found here are
by no means an exhaustive list. Adjusting the parameters
of the algorithm, for example, by changing the parameters
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that control the fuzziness of the clustering, would possibly
allow more outlier behaviors to emerge.

The purpose of this paper was to describe and demonstrate
the RFC algorithm in its current form. Many possible im-
provements and extensions could be carried out. Once the
RFC algorithm has finished, it is possible that clusters on
a later loop could better capture a student that belongs to
some clusters on an earlier loop. One extension could be to
carry out a refinement process moving students from earlier
to later clusters. Potentially we can achieve further improve-
ments by including additional features that capture other
aspects of behaviors or by applying a weighting to features
that are considered more critical.

Lakoff [20] puts the clustering process this way, “Categoriza-
tion is not to be taken lightly. There is nothing more basic
than categorization to our thought, perception, action and
speech” ([20] pg. 5). Identifying these student trajectories
as either subordinate, superordinate of basic level create a
substantial educational responsibility in the adaptive learn-
ing environment where students have control time, pace and
feedback. If John Carroll [6] was correct in that learning is
a function of time spent and time needed then the question
is what resources do various student cohorts require. We
argue that the clustering process can help in the better un-
derstanding of what it will take to help larger numbers of
students become successful. As we explore these procedures
several questions emerge. If and when will the process be-
come excessively granular and dysfunctional how can these
processes be integrated into the educational environment?
Can these methods contribute to resolving achievement in-
equality? Finally, the question remains about whether the
clusters exhibit a categorical structure with meaningful pro-
totypes that respond to instructional interventions.
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[15] V. Hautamäki, S. Cherednichenko, I. Kärkkäinen,
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