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Abstract 

Researchers are often interested in testing the effectiveness of an intervention on multiple outcomes, 

for multiple subgroups, at multiple points in time, or across multiple treatment groups. The resulting 

multiplicity of statistical hypothesis tests can lead to spurious findings of effects. Multiple testing 

procedures (MTPs) are statistical procedures that counteract this problem by adjusting p-values for 

effect estimates upward. While MTPs are increasingly used in impact evaluations in education and 

other areas, an important consequence of their use is a change in statistical power that can be 

substantial. Unfortunately, researchers frequently ignore the power implications of MTPs when 

designing studies. Consequently, in some cases, sample sizes may be too small, and studies may be 

underpowered to detect effects as small as a desired size. In other cases, sample sizes may be larger 

than needed, or studies may be powered to detect smaller effects than anticipated. This paper presents 

methods for estimating statistical power, for multiple definitions of statistical power and presents 

empirical findings on how power is affected by the use of MTPs. 
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1. Introduction 

In education research and in many other fields, researchers are often interested in testing the 

effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points in 

time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis tests can 

lead to spurious findings of effects. Multiple testing procedures (MTPs) are statistical procedures that 

counteract this problem by adjusting p-values for effect estimates upward. When not using an MTP, 

the probability of false positive findings increases, sometimes dramatically, with the number of tests. 

When using an MTP, this probability is constrained to an acceptable level, regardless of the number 

of tests. 

MTPs are increasingly used in impact evaluations in education. For example, the Institute for 

Education Sciences (IES), the primary research arm of the U.S. Department of Education, published 

a technical methods report on multiple testing that recommends MTPs as one of several strategies for 

dealing with the multiplicity problem (Schochet, 2008). In addition, IES’s What Works 

Clearinghouse, which reviews and summarizes thousands of education studies, applies a particular 

MTP, the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995) to studies’ statistically 

significant findings when effects are estimated for multiple measures or groups (U.S. Department of 

Education, 2014). The use of MTPs is also gaining more attention due to recent press about a so-

called reproducibility, or replication, crisis in many areas of research, for which the testing of 

multiple hypotheses plays a role.
1
 

                                                      
1 For example, Christensen & Miguel (2016) provide evidence of replication problems in economics research and discuss the contributing 

factors, which include multiple hypotheses testing. 
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However, an important consequence of MTPs is a change in statistical power that can be 

substantial. That is, the use of MTPs changes the probability of detecting effects when they truly 

exist, compared with the situation when the multiplicity problem is ignored. Unfortunately, while 

researchers are increasingly using MTPs, they frequently ignore the power implications of their use 

when designing studies. Consequently, in some cases sample sizes may be too small, and studies 

may be underpowered to detect effects as small as a desired size. In other cases, sample sizes may be 

larger than needed, or studies may be powered to detect smaller effects than anticipated. 

Researchers typically worry that moving from one to multiple hypothesis tests and thus 

employing MTPs results in a loss of power. However, that need not always be the case. Power is 

indeed lost if one focuses on individual power --- the probability of detecting an effect of a particular 

size or larger for each particular hypothesis test, given that the effect truly exists. However, in studies 

with multiplicity, alternative definitions of power exist and in some cases may be more appropriate 

(e.g., see Westfall, Tobias, & Wolfinger, 2011; Bretz, Hothorn, & Westfall, 2011; Dudoit, Shaffer, & 

Boldrick, 2003; Chen, Luo, Liu, & Mehrotra, 2011; and Senn & Bretz, 2007). For example, when 

testing for effects on multiple outcomes, one might consider 1-minimal power: the probability of 

detecting effects of at least a particular size (which can vary by outcome) on at least one outcome. 

Similarly, one might consider ½-minimal power: the probability of detecting effects of at least a 

particular size on at least ½ of the outcomes. Also, one might consider complete power: the power to 

detect effects of at least a particular size on all outcomes. The choice of definition of power depends 

on the objectives of the study and on how the success of the intervention is defined. It also affects the 

overall extent of power. 
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Education researchers are likely most inclined to focus on individual power because it 

matches current practice and because they often are interested in effects on each of multiple 

outcomes (or for each of multiple subgroups, points in time or treatment groups). However, other 

definitions of power (discussed often in medical research literature) may be important to consider in 

some cases, either in place of or in addition to individual power. Imagine, for example, a pilot or 

“proof on concept” phase of testing a new education program. Perhaps this program would be 

deemed successful enough for modifications and replication if it has a statistically significant impact 

(of at least a specified size) on at least one of a few primary outcomes. In this case, the researchers 

may want to focus on 1-minimal power. On the other hand, consider a randomized control trial 

(RCT) that will be used to determine whether an expensive eduation program will scaled up. Funders 

of the program may require evidence of statistically significant impacts (of at least a specified size) 

on all primary outcomes of interest in order to scale up the program. In this case, complete power 

would be important to estimate. 

This paper does not advocate that decisions about programs should directly hinge on p-

values. Rather, it reflects that decisions often do in practice, and it suggests that a focus on individual 

power may be insufficient for the objectives of some studies. At the same time, even if individual 

power is a preferred focus, it can be useful to compute and present other power definitions as well. 

An underpowered study, with respect to individual power may prove to have a high probablility of 

detecting at least one true impact. A sufficiently powered study with respect to indivual power may 

have a low probability to detect all true impacts. This is valuable information to share. 

This paper fills an important gap in the existing literature on designing impact studies in 

education and social policy. The literature and tools on statistical power are extensive but do not take 
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multiplicity into account (e.g., Dong & Maynard, 2013; Spybrook et al., 2011; Raudenbush et al., 

2011; Hedges & Rhoads, 2010). Also, the literature on the multiple testing problem in these fields 

does not provide clear guidance for estimating power, nor does it explore power under alternative 

definitions. 

This paper presents methods for estimating statistical power, for multiple definitions of 

statistical power, when applying any of five common MTPs --- Bonferroni, Holm, single-step and 

step-down versions of Westfall-Young, and Benjamini-Hochberg. It also provides R code so that 

researchers can implement the power estimation methods in their studies. The paper also presents 

empirical findings on how power is affected by the use of MTPs. The extent to which studies are 

underpowered or overpowered varies with circumstances particular to those studies, including: the 

definition of power, the number of tests, the proportion of tests that are truly null, the correlation 

between tests, the 2'sR  of baseline covariates, and the particular MTP used to adjust p-values. The 

paper explores all of these factors and discusses the implications for practice. 

To contain the scope of the paper, it focuses on multiplicity that results from estimating 

effects on multiple outcomes.
2
 The paper also focuses on a single, simple research design and 

analysis plan that education studies often use in practice: a multisite, RCT with the blocked 

randomization of individuals, in which effects are estimated using a model with block-specific 

intercepts and with the assumption of constant effects across blocks. However, as will be discussed at 

                                                      
2Note that there are different guidelines for when to adjust for multiple outcomes in education studies. For example, Schochet (2008) 

recommends organizing primary outcomes into domains, conducting tests on composite domain outcomes, and applying multiplicity corrections 

to composites across domains. The What Works Clearinghouse applies multiplicity corrections to findings within the same domain rather than 

across different domains. This paper would apply to either case. In this paper, the word “outcome” refers to either a single outcome or an outcome 

domain, and the paper focuses on any situation in which an analyst would apply adjustments to account for multiple outcomes. 
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the end of the paper, the power estimation methods presented can easily be extended to other 

modeling assumptions and other study designs. 

The remainder of the paper proceeds as follows: Section 2 provides an overview of multiple 

testing, beginning with a motivating example The section provides some intuition of the multiple 

testing problem, summarizes how MTPs address the multiple testing problem, and discusses features 

of the MTPs in this paper that affect power. Section 3 then gives a brief overview of a 

methodological approach for estimating power and provides an example of how researchers can 

carry out power estimation under multiplicity. Section 4 presents empirical findings for a variety of 

realistic scenarios. Finally, Section 5 provides a summary of the empirical findings and 

recommendations for practice and next steps. A detailed description of the MTPs in this paper can be 

found in Appendix A in the online supplemental materials. R code implementing the power 

estimation methodology can be found in Appendix B in the online supplemental materials. Also, 

power comparisons with other sources that validate the accuracy of the power estimation 

methodology can be found in Appendix C in the online supplemental materials. 

2. Overview of Multiple Testing 

2.1 A Motivating Example from Education 

This section begins with a realistic example to which the paper will refer throughout in order 

to illustrate various concepts. Suppose that researchers are designing a multisite, blocked trial in 

which they plan to investigate the effects of a mentoring program on three confirmatory outcomes 

related to social and emotional development --- measures of social competence, emotional 
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competence and self-regulation.
3
. For each outcome, an impact with an effect size of at least 0.125 

standard deviations would be policy relevant. 

In their study, each school is a site -- and a block for randomization. They successfully recruit 

20 schools, and within each school they randomly assign 50 students to the program and control 

groups in equal proportion.
4
 That is, one half of the students in each school are assigned to the 

mentoring program and one half are assigned to “business as usual.” The researchers estimate the 

statistical power to detect effects on each outcome given their sample size, desired effect size of 

0.125 and assumptions about their estimation model. They plan to estimate effects using a model 

with block-specific intercepts (for each of the sites or schools) and with the assumption of constant 

effects across blocks (sites or schools). By including baseline measures of the outcome and school 

intercepts in their model, they assume that the explanatory power of baseline measures, the 2R , is 0.5 

for all three impact models. The researchers also specify a statistical significance level (discussed 

further below) of 0.05. They estimate that their statistical power, the same for each outcome in this 

example, is 80%. 

The researchers realize, however, that they have a multiple testing problem, and they want to 

address the problem and understand the consequences for statistical power before finalizing their 

study design and analysis plan. They want to focus on individual power because stakeholders will 

                                                      
3 Because these outcomes are within a single domain of social and emotional development, it is assumed that the What Works 

Clearinghouse would apply multiplicity corrections to the findings. 

4
 Note that multisite RCTs tend to be at least this large. For example, Weiss et. al. (forthcoming), which summarizes data from 

15 multisite RCTs of educational and training programs, report that these RCTs, the number of sites ranges from 9 to 300, the 

average number of individuals per site ranges from 11 to hundred, and the total number of individuals ranges from 3000 to 

100,000.  
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want to understand the effectiveness of the intervention with respect to each of the three primary 

outcomes. However, they also know that the funder of the program would consider the mentoring 

program a success and will likely continue supporting the program if it leads to improvements on at 

least one of the outcomes. Therefore, the also want to estimate 1-minimal power. The remainder of 

this paper helps the researchers understand choices for addressing their multiple testing problem and 

the consequences for statistical power, for all possible definitions. 

2.2 The Multiple Testing Problem 

This paper focuses on the frequentist framework of hypothesis testing, as it is currently the 

prevailing framework in education and social policy research. Under this framework, the treatment 

and control groups in an RCT are considered random samples from a defined population (assumed to 

be the same across all blocks under the assumed design). Following the Rubin-Neyman 

counterfactual framework (Neyman, 1923; Rubin, 1974, 2006),  0iY m  is the thm of M  outcomes 

for individual i  when not exposed to the treatment, and  1iY m  is the thm of M  outcomes for 

individual i  when exposed to treatment.
5
 In the above motivating example, 3.M   Then the 

population average treatment on the thm  outcome, given by 

       1 0 ,i im E Y m E Y m    (1) 

is considered to be fixed. Researchers often express the average treatment effect in standard deviation 

units --- as an effect size. The effect size parameter for the 
thm  outcome is given by 

                                                      
5 While this paper focuses on multiplicity of treatment effects estimated in RCTs, the lessons also apply to other analyses that rely on 

statistical significance. 
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 
 
 

,
Y

m
ES m

m




  (2) 

where  Y m  is the standard deviation of the thm  outcome.
6
 

In the frequentist framework, one typically tests a null hypothesis of no effect, 

   0 :  0,H m ES m   against an alternative hypothesis of    1 : 0H m ES m   for a two-sided test 

or    1 : 0 H m ES m  or    1 :  0H m ES m   for a one-sided test. For the purposes of computing 

power researchers specify an alternative hypothesis of at least a particular effect size (ES). In the 

above example, the researchers specified an ES of 0.125 A significance test, such as a two-sided or 

one-sided t-test, is then conducted, and one obtains a test statistic given by 

 
 

  
,

ES m
t m

SE ES m
  (3) 

from which a raw p-value is computed. Here, the term “raw” is used to distinguish this p-value from 

a p-value that has been adjusted for multiple hypothesis tests, as discussed below. The raw p-value is 

the probability of a test statistic being at least as extreme as the one observed, given that the null 

hypothesis is true. For a two-sided test, which is the focus of this paper going forward, the raw p-

value for the thm  test is 

                    2*Pr   . Pr   Pr  thp m T m t m m p m T m t m p m T m t m       This 

expression means we use our knowledge of the sampling distribution of the t-statistic, and we 

identify where our observed test statistic falls in that distribution when it is centered around zero .  
                                                      

6It is assumed here that the standard deviation is the same in both counterfactual settings. 
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When testing a single hypothesis under this framework (such effects are being assessed on 

just one outcome, so that 1)M  , researchers typically specify an acceptable maximum probability 

of making a Type I error, .  A Type I error is the probability of erroneously rejecting the null 

hypothesis when it is true. The quantity   is also referred to as the significance level. If 0.05  , 

then the null hypothesis is rejected if the p-value is less than 0.05, and it is concluded that the 

intervention had an effect because there is less than a 5% chance that this finding is a false positive. 

When one tests multiple hypotheses under this framework (such that 1M  ) and one 

conducts a separate test for each of the hypotheses with 0.05,   there is a greater than 5% chance 

of a false positive finding in the study. If the multiple tests are independent, the probability that at 

least one of the M  null hypothesis tests will be erroneously rejected is 1Pr(none of the null 

hypotheses will be erroneously rejected)  1 1
M

   . Therefore, in the above motivating example 

in which the researchers are estimating effects on three outcomes, if these outcomes are assumed 

independent, the probability of at least one false positive finding is 14%. If the researchers were 

instead estimating effects on five independent outcomes, the probability of at least one false positive 

finding is 23%. This Type I error inflation for independent outcomes demonstrates the crux of the 

multiple testing problem. In practice, however, the multiple outcomes are at least somewhat 

correlated, which makes the test statistics correlated and reduces the extent of Type I error inflation. 

Nonetheless, any error inflation can still make it problematic to draw reliable conclusions about the 
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existence of effects. As introduced above, to counteract the multiple testing problem, MTPs adjust p-

values upward.
7
 The sections that follow will describe how the MTPs do so. 

Recall that the power of an individual hypothesis test is the probability of rejecting a false 

null hypothesis of at least a specified size. If raw p-values are adjusted upward, one is less likely to 

reject the null hypotheses that are true (meaning there is truly no effect of at least a specified size), 

which reduces the probability of Type I errors, or false positive findings. Reducing this probability is 

the goal of MTPs. But if raw p-values are adjusted upward, one is also less likely to reject the null 

hypotheses that are false (meaning there truly is an effect of at least a specified size). Therefore, all 

MTPs reduce individual power (the power of separate hypothesis tests for each outcome) compared 

with the situation when no multiplicity adjustments are made or the situation when there is only one 

hypothesis test. 

MTPs also reduce all other definitions of power compared with the situation when no 

multiplicity adjustments are made --- but not necessarily compared with the situation when there is 

only one hypothesis test. For example, 1-minimal power, the probability of detecting effects (of at 

least a specified size) on at least one outcome --- after adjusting for multiplicity --- is typically 

greater than the probability of detecting an effect of the same size on a single outcome. This increase 

may or may not occur with other definitions of power (e.g., the probability of detecting a third, half, 

or all false null hypotheses), which will be investigated and discussed in Section 4. 

                                                      
7Alternatively, MTPs can decrease the critical values for rejecting hypothesis tests. For ease of presentation, this paper focuses only on the 

approach of increasing p-values. 
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So far, we see that if the researchers in the motivating example ignore their multiplicity of 

hypothesis tests, the probablility that they will have at least one false positive finding is greater than 

5% and possibly (althought unlikely) as high as 14% if the three test statistics are independent of one 

another. (This will be discussed further below.) Therefore, the researchers realize they need to adjust 

their p-values upwards. They are now concerned about the implications for their statistical power. 

The next two sections explain some choices of MTPs for p-value adjustment and the implications for 

all definitions of power. 

2.3 Using MTPs to Protect Against Spurious Impact Findings 

The MTPs that are the focus of this paper fall into two different classes. The first class 

reframes Type I error as a rate across the entire set or “family” of multiple hypothesis tests. This rate 

is called the familywise error rate (FWER; Tukey, 1953). It is typically set to the same value as the 

probability of a Type I error for a single test, or to  . MTPs that control the FWER at 5% adjust p-

values in a way that ensures that the probability of at least one Type I error across the entire set of 

hypothesis tests is no more than 5%. The MTPs introduced by Bonferroni (Dunn, 1959, 1961), Holm 

(1979), and Westfall and Young (1993) control the FWER. 

The second class of MTPs takes an entirely different approach to the multiple testing 

problem. MTPs in this class control the false discovery rate (FDR). Introduced by Benjamini and 

Hochberg (1995), the FDR is the expected proportion of all rejected hypotheses that are erroneously 

rejected. 

The two-by-two representation in Table 1 is often found in articles on multiple hypothesis 

testing. It helps to illustrate the difference between FWER and FDR. Let M  be the total number of 
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tests. Therefore, we have M  unobserved truths: whether or not the null hypotheses are true or false. 

We also have M  observed decisions: whether or not the null hypotheses were rejected, because the 

p-values were less than  . In Table 1, ,  , A B C , and D  are four possible scenarios: the numbers of 

true or false hypotheses not rejected or rejected. 0M  and 1M  are the unobservable numbers of true 

null and false null hypotheses. R  is the number of null hypotheses that were rejected, and M R  is 

the number of null hypotheses that were not rejected. 

In Table 1, B  is the number of erroneously rejected null hypotheses, or the number of false 

positive findings. Therefore, the FWER is equivalent to Pr( 0)B  , the probability of at least one 

false positive finding. Recall the examples above about Type I error inflation when testing for effects 

on independent outcomes in the case that   is set to 0.05 and no MTPs are applied. The Type I error 

was almost 10% when testing effects on two independent outcomes and 23% when testing effects on 

five independent outcomes. These Type I error rates both correspond to the FWER. The goal of 

MTPs that control the FWER is to bring these percentages back down to 5%. 

Also in Table 1, the FDR is equal to 
B

E
R

 
 
 

 but is defined to be 0 when 0,R   or when no 

hypotheses are rejected. As is frequently noted in the literature (e.g., Shaffer, 1995; Schochet, 2008), 

the FWER and FDR have different objectives. Control of the FWER protects researchers from any 

spurious findings and so may be preferred when even a single false positive could lead to the wrong 

conclusion about the effectiveness of an intervention. On the other hand, the FDR is more lenient 

with false positives. Researchers may be willing to accept a few false positives, B , when the total 

number of rejected hypotheses, R , is large. Note that under the complete null hypothesis that all M  

null hypotheses are null, the FDR is equal to the FWER, because when referring back to Table 1 we 
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have  0
B

FWER P R E FDR
R

 
    

 
. However, if any effects truly exist, then FWER FDR . 

As a result, in the case where there is at least one false null hypothesis (at least one true effect at least 

as large as a specified effect size), an MTP that controls the FDR at 5% will have a Type I error rate 

that is greater than 5%. 

Note that MTPs may provide either weak or strong control of the error rate they target. An 

MTP provides weak control of the FWER or the FDR at level   if the control can only be 

guaranteed when all nulls are true, or when the effects on all outcomes are zero. An MTP provides 

strong control of the FWER or FDR at level   if the control is guaranteed when some null 

hypotheses are true and some are false, or when there may be effects on at least some outcomes. Of 

course, strong control is preferred.
8
 

2.4 Common MTPs in Education Research and Their Impact on Power 

The five MTPs included in this paper were chosen because they are common in research in 

education and other social policy areas. An intuitive overview of each procedure, expressions 

defining the calculations involved, and references for more details, including proofs of the MTPs’ 

properties, can be found in Appendix A. The goal of the discussion here is to briefly summarize the 

features of the MTPs that affect statistical power. 

The first feature of an MTP that affects its statistical power is whether it controls the FWER 

or the FDR. Recall that the Bonferroni, the Holm, and both Westfall-Young MTPs control the 

                                                      
8It is beyond the scope of this paper to provide technical details as to how the MTPs achieve strong or weak control, but proofs of these 

properties can be found in, for example, Ewens and Grant (2005) and Benjamini and Hochberg (1995). 
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FWER, while the Benjamini-Hochberg MTP controls the FDR. MTPs that control the FDR adjust p-

values upward less than MTPs that control the FWER. Consequently, MTPs that control the FDR 

will typically have more power than FTPs that control the FWER. However, as discussed earlier, a 

disadvantage of MTPs that control the FDR is that they are more lenient with false positives than 

MTPs that control the FWER. 

A second feature of an MTP that affects its statistical power is whether it is “single-step” or 

“stepwise.” Single-step procedures adjust each p-value independently of the other 

p-values. For example, the Bonferroni MTP multiplies all raw p-values by M . Therefore, one 

p-value adjustment does not depend on other p-value adjustments, only on the number of tests. In 

contrast, stepwise procedures first order raw p-values (or test statistics), and then adjust according to 

the order of the tests. The adjustments depend on null hypotheses already rejected in previous steps. 

For example, the Holm MTP --- the stepwise counterpart to the Bonferroni MTP --- orders raw p-

values from smallest to largest. The procedure then multiplies the smallest p-value by M , the second 

smallest p-value by M-1, and so on, but also enforces that each adjusted p-value is greater than or 

equal to the previous adjusted p-value and that it is not greater than one. (For more details, see 

Appendix A.) Overall, stepwise MTPs allow for less adjustment than single-step MTPs in later steps, 

and therefore preserve more power. The Bonferroni and one of the Westfall-Young MTPs are single-

step; the Holm and Benjamini-Hochberg MTPs and the other Westfall-Young MTP are stepwise. 

Note that stepwise procedures may be “step-up” or “step-down.” Examples of both are included in 

the five MTPs studied in this paper, as described in Appendix A. 

In the discussion that follows, the following shorthand is employed, which includes 

information on whether the MTPs are single-step or stepwise: BF-SS for Bonferroni (SS = single-
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step), HO-SD for Holm (SD = step-down), WY-SS and WY-SD for Westfall-Young single-step and 

step-down, and BH-SU for Benjamini-Hochberg (SU = step-up). 

Finally, a third feature of an MTP that affects its statistical power is whether or not it takes 

into account the correlation of test statistics. The Bonferroni and Holm procedures strongly control 

the FWER when the multiple tests’ statistics are correlated, but they adjust p-values more than is 

necessary in that case. The truth of this assertion can be seen if one considers the scenario in which 

all tests are perfectly correlated. Then one would not need to adjust p-values in order to control the 

FWER (because there would be essentially just one outcome), yet the p-values would be increased 

substantially, to an extent depending on M. Along with the Bonferroni and Holm MTPs, the 

Benjamin-Hochberg MTP also does not take correlations into account.
9
 

In contrast, both of the Westfall-Young MTPs rely on the estimation of the joint distribution 

of test statistics when the “complete null hypothesis” (that there are not effects on any of the 

outcomes) is true. This joint distribution of the test statistics is estimated from the study’s data. For 

example, permutations of the treatment indicator can be used to estimate impacts when the 

association between treatment status and the outcome is broken. Random permutations of the 

research group assignments are conducted a large number of times, resulting in a distribution of test 

statistics under the complete null. Because the actual data are used to generate this null distribution, 

correlations among the test statistics are captured. Then observed test statistics can be compared with 

                                                      
9The Benjamini-Hochberg procedure was originally shown to control the FDR for independent test statistics. However, Benjamini and 

Yekutieli (2001) showed that it also controls the FDR for true null hypotheses with “positive regression dependence.” This condition is satisfied 

for most applications in practice. 
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the distribution of test statistics under the complete nullhypothesis.
10

 Again, for more details, see 

Appendix A. The main point is that by taking the correlations into account, one can make p-value 

adjustments that are not overly conservative, and thus better preserve power. 

Table 2 summarizes the essential features of the MTPs. Empirical findings on how much 

these factors affect each definition of power are presented in Section 4. 

How should researchers in the hypothetical example take MTPs into account when designing 

their study? Since a single false positive finding could lead to the wrong conclusion about the 

mentoring program’s effectiveness, they decide that controlling the FWER is preferable to 

controlling the FDR since the FDR is more lenient with false positives. Among the MTPs discussed 

that control the FWER, they think they want to chose the one that preserves the most power. They 

expect the test statistics associated with the impact estimates for their three outcomes to be correlated. 

In fact, based on prior research, they assume that the correlation between all pairs of their outcomes 

is 0.5. Therefore, they think it might be worthwhile to use the Westfall-Young MTP, which takes 

these correlations into account. But what are the power implications for their study? And are they 

correct that the Westfall-Young MTP is optimal and worth the extra trouble given that it can be more 

complicated to implement than other MTPs? In particular, they wonder if the Holm MTP, which is 

much simpler to implement but preserves more power than Bonferroni since it is a stepwise 

procedure, may suffice. The next section describes how they can estimate their statistical power for 

all MTPs. 

                                                      
10Instead of using test statistics, the Westfall-Young MTPs can alternatively compare raw p-values with the estimated joint null distribution 

of p-values. 
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3. Estimating Power in Studies of Impacts on Multiple Outcomes 

This section of the paper summarizes a methodological approach for estimating power when 

investigating impacts on multiple outcomes and when using one of the MTPs presented above. It 

then provides an illustrative example of how researchers can use the estimation approach to guide the 

design of a study. It describes how to think about some of the needed assumptions, some of which 

are different from those needed to estimate the power of studies focused on a single outcome. 

As noted above, the power estimation methodology described here focuses on studies in 

which multiplicity is due to having multiple outcomes. It also focuses on studies in which one is 

using a randomized trial with the blocked randomization of individuals, in which effects are 

estimated using a model that has block-specific intercepts and that assumes constant effects across 

blocks. 

3.1 Overview of Power Estimation Methods 

For this RCT design and these assumptions of focus, the model for estimating impacts on the 

thm  of M  outcomes is given by: 

   
 

     
1 1

,
i i

K mJ

i i j j k k i

j k

Y m m T Block m C m r m  
 

      (4) 

where, for individual i ,  iY m  is the 
thm  outcome; iT  is the treatment indicator; 

ij
Block  is an 

indicator of whether individual i  belongs to the thj  block;  
ikC m  is the 

thk  individual-level 
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covariate; and  ir m  is the residual, normally distributed with mean zero and variance  2 m .
11

 

The coefficient  m  is the treatment effect on the thm  outcome, as defined in (1) using the 

counterfactual framework. 

In this model, the standard error of the treatment effect estimate,  ˆ m  is given by 

  
    
 

2 2
Y 1

ˆ ,
1 j

m R m
SE m

T T Jn








 (5) 

where  2
Y m  is the pooled outcome variance of the thm  outcome;

12
  2R m  is the proportion of the 

variance in the thm  outcome that is explained by the baseline covariates (including the block 

indicators); T  is the proportion of the sample within each block that is assigned to the treatment 

group; J  is the number of blocks and jn  is the number of individuals within each block (Bloom, 

2006). 

When expressing the estimated treatment effect as an effect size, as defined in the previous 

section, the standard error of the effect size estimate is given by 

    
 

 
 

21
.

1

ˆ

Y

j

m
SE ES m SE

m

R m

T T Jn





 
   

 






 (6) 

                                                      
11 The assumption of normally distributed residuals is not needed to estimate impacts. Without normality, all the MTPs except Westfall-

Young control the FWER or FDR asymptotically. The Westfall-Young MTP guarantees strong control of the FWER under non-normality 

(Westfall & Troendle, 2008). 

12Here it is assumed that the variance of the outcome is the same in both the treatment and control groups. 
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For convenience, let     . Q m SE ES m To estimate  Q m , known values are inserted 

for , T J , and jn , and all other parameters in (6) are replaced by sample estimates. Then, when 

testing the thm  null hypothesis,   0ES m  , the test statistic for a t-test is given by 

 
 
 ˆ

.
ES m

t m
Q m

  (7) 

When the null is true,  t m  has a t -distribution with mean zero and degrees of freedom df . 

For our assumed model in (4),    * 1jdf m Jn g m   , where  *g m  is the total number of 

baseline covariates included in the model for the thm  outcome, including the block indicators such 

that    *g m K m J  . 

As mentioned above, in evaluations, researchers typically design studies so that they will 

have sufficient statistical power to detect, with a p-value less than  , at least the smallest effect that 

would be meaningful for the program under study. This is the effect size when focusing on standard 

deviation units, as is the case here. If the thm  hypothesis is false such that  ES m  is greater than or 

equal to a specific effect size (ES), then  t m  has a t -distribution with mean    / ,ES m Q m  and 

again degrees of freedom df . 

When 1M  , one can define a set of M  null hypotheses and M  alternative hypotheses. 

The set of null hypotheses is   0ES m   for all m . This set defines the complete null hypothesis 

(referred to as 0)H  that there are not effects on any of the outcomes. The set of two-sided alternative 
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hypotheses focused on a specified effect size (referred to as 1H ), is    ES m ES m  for 

1, ,m M  , where the MDES may vary for each outcome. 

Under the complete null hypothesis, 0H , the set of test statistics for all M  hypothesis tests, 

which can be written collectively as 0t , have a multivariate t -distribution with means of zero, 

degrees of freedom equal to the vector df , and correlation matrix ρ . Under the set of specific 

alternative hypotheses, 1H , the set of test statistics, which can be written collectively as 1t , have the 

same multivariate t -distribution --- except that the means are equal to the vector /ES Q . 

Thus, the following are the essential insights for estimating power when adjusting for 

multiple hypothesis tests due to estimating effects on multiple outcomes: 

1. When one assumes a correlational structure for the test statistics, the joint null 

distribution of the test statistics for the M  tests is known. 

2. When one specifies an ES for each outcome and when one can identify   ˆ(Q m SE

(m)) for each outcome, as we have above, the joint alternative distribution of the test 

statistics for the M  tests is also known. 

3. Therefore, the test statistics 0t  and 1t  can be generated (i.e., simulated) with statistical 

software. That is, one can generate a large number of test statistics under 0H  and under 

1H , as if the study had been conducted a large number of times. For example, one may 

simulate test statistics that correspond to results from 10K draws from the assumed 

population. Doing so results in a matrix of 10K rows and M  columns for both 0t  and 
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1t . Additionally, 0t  and 1t  can be converted to 10K x M  matrices of p-values, 0p  and 

1.p  

Once 0t  and 1t , as well as 0p  and 1p , have been generated, any of the MTPs can be 

implemented in order to obtain a 10K x M  matrix of adjusted p-values. 

For example, since each row of 1p  contains, for a single sample, the raw p-values that one 

could obtain for M effect estimates when there are true effects equal to the ESs specified under 1H , 

these p-values can be easily adjusted using the Bonferroni, Holm, or Benjamini-Hochberg MTPs. 

Recall from Section 2 that for these MTPs, only the raw p-values are needed to make the 

adjustments. The adjustments are repeated in every row of the matrix, or for all 10K samples from 

the assumed population, resulting in a new matrix of p-values corresponding to any given MTP: 

, , or   .BF SS HO SD BH SU  p p p  

It is more complicated to obtain p-values adjusted by the Westfall-Young single-step and 

step-down MTPs. As described in Section 2, in this MTP, observed test statistics (or 

p-values) can be compared with the distribution of test statistics (or p-values) under the complete null 

hypothesis. In the implementation for this paper, test statistics were used. Therefore, both 0t  and 1t  

are used to obtain adjusted p-values. That is, to adjust p-values for one data sample, one row of 1t  is 

compared with all rows in 0t . 

For each MTP, the resulting 10K x M  adjusted p-values can then be compared with a 

specified value of   and null hypothesis rejections can be recorded. Doing so results in a 10K x 

M  matrix of hypothesis rejection indicators from which all definitions of power can be computed: 
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 Individual power for the thm  outcome is the proportion of the 10K rows in which 

the thm  null hypothesis was rejected (the mean of the thm  column of indicators).
13

 

 d -minimal power is the proportion of the 10K rows in which at least d  of the M  

null hypotheses were rejected.
14

 

 Complete power is the proportion of the 10K rows in which all of the null 

hypotheses were rejected based on the raw p-values rather than adjusted p-values.
15

 

The reason that complete power is based on raw p-values is that the probability of 

all tests having a raw p-value less than   when the null hypothesis is true is less 

than the probability that any single test would have a p-value less than   by 

chance (Koch & Gansky, 1996; Westfall et al., 2011).
16

 

In effect, the power estimation approach laid out above relies on simulation, but rather 

than (first) simulating a large number of datasets, (second) carrying out impact analyses on 

                                                      
13 Individual power may also be referred to as “marginal power” (e.g., Senn & Bretz, 2007). One can also focus on “average power,” the 

mean individual power of all false null hypotheses (e.g., Dudoit, Shaffer, & Boldrick, 2003; Bretz, Hothorn & Westfall, 2011). 

14 Note that others refer to 1-minimal power simply as “minimal power” (e.g., Maurer & Lellein, 1988; Chen, Luo, Liu, & Mehrotra, 2011; 

Westfall, Tobias, & Wolfinger, 2011), “disjunctive power” (e.g., Bretz, Hothorn, & Westfall, 2011), or “any pair” power (Ramsey, 1978). Chen, 

Luo, Liu, & Mehrotra (2011) use the terminology of “r-power” for what is refered to here as d-minimal power for d>1. 

15 Complete power has also been referred to as “conjunctive power” (Bretz, Hothorn, & Westfall, 2011) and “all pairs power (Ramsey, 

1978).” 

16
 Complete power does not in itself require unadjusted tests. The above approach for not adjusting tests 

assumes that all tests must to be statistically significant in order to claim impacts on all outcomes. 
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each simulated dataset, and (third) adjusting the resulting p-values from each analysis, the 

approach skips to the third step, saving lots of effort and computing time.
17

 

Note that this approach of simulating test statistics builds on work by Bang, Young, & 

George (2005), who use simulated test statistics to identify critical values based on the distribution of 

the maximum test statistics. Their approach produces the same estimates as the approach described 

here for the single-step Westfall-Young MTP. Chen et al. (2011) derived explicit formulas for d-

minimal powers of stepwise procedures and for complete power of single-step procedures, but only 

for up to three tests. The approach presented here is more generally applicable, as it can be used for 

all MTPs, for any number of tests, and for all definitions of power discussed in the present paper. 

To check that the power estimates obtained from the methodological approach just described 

are correct, three validation analyses were conducted. First, for the design of interest (a blocked 

RCT) and the assumed model (with constant effects across all blocks and with block dummies 

included in the intercept), estimates of individual power for a single hypothesis test were compared 

with those computed in PowerUp! (Dong & Maynard, 2013, Table RBD2-c). The comparisons, 

which match closely, can be found in Appendix C, Table C.1. Second, assuming a single block, 

individual power estimates after adjusting with the Bonferroni, Holm, and Benjamini-Hochberg 

MTPs were compared with power-estimation results in Schochet (2008). Power estimates for 

Westfall-Young MTPs are not found in this paper. Results of these comparisons, which also match 

closely, can be found in Table C.2. For the third validation exercise, a selection of results obtained 

                                                      
17When the power estimation methodology is coded in R (as shown in online Appendix B), all power estimates for all MTPs other than the 

Westfall-Young MTPs take less than one minute. Power estimates for Westfall-Young MTPs take a few minutes — depending on the number of 

samples, processing power, and degree of parallelization available. 
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from the methodology described above --- for all definitions of power examined in this paper --- 

were compared with power estimates obtained from Monte Carlo data simulations. In these 

simulations, 2,000 samples were generated according to the assumed study design and model. In 

each data sample, M regression models specified as in (4) were fit, and M  effect estimates and 

corresponding raw p-values were computed and adjusted. Then each definition of power was 

computed the same way as described above.
18

 Table C.3 shows comparisons between power 

estimates obtained with these data simulations and results obtained with the approach above, which 

skips straight to the simulation of test statistics. Again, the comparisons are extremely close. 

Together, the three validation exercises demonstrate the accuracy of the methodology proposed in 

this paper. 

3.2 Estimating Power in the Motivating Example 

Recall that in the motivating example, researchers are planning a multisite trial to investigate 

the effects of a mentoring program on three confirmatory outcomes --- measures of social 

competence, emotional competence and self-regulation. They have recruited 20 schools (the sites, or 

blocks) and randomly assigned 50 students within each school to either the program or control group 

(50% to each group). They plan to use the model specified in (4) to estimate effects, and assume an 

2R  of 0.5 for all three impact models. Based on prior research, they assume that the correlation 

between all pairs of their outcome measures and that the correlation between all pairs of test statistics 

is 0.5. (Further discussion of this assumptions is provided below). 

                                                      
18 For a discussion of using simulation for power calculations, see Westfall et. al. (2008) and Arnold et. al. (2011). Also, see Westfall et. al. 

(2011) for a discussion of the SAS macro %simpower, which uses Monte Carlo simulation to estimate statistical power when testing the 

equivalency of a series of unadjusted means when adjusting p-values using a MTPs not discussed in this paper. 
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Their desired ES for each outcome is at least 0.125. They are interested in estimating 

individual power - because they want to understand impacts on each particular outcome -- as well as 

1-minimal power because the funder would consider the mentoring program a success if there is an 

impact on at least one outcome. 

If the researchers ignore the fact that they will make adjustments for multiplicity, they would 

estimate that the study has individual power of 80% for each outcome, given their assumptions. To 

illustrate how the power computation works, this example focuses on estimation of 1-minimal power 

when using the Westfall-Young MTP. Further calculations are presented in Section 4, which will 

provide information about all the power estimation goals of the researchers in the motivating 

example. 

First, the researchers generate 1t . Therefore, they simulate a 10K-row x 3-column matrix of 

test statistics following a multivariate t -distribution with correlation matrix 

1 0.5 0.5

0.5 1 0.5 ,  and means equal to

0.5 0.5 1

 
 
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for all m , and      * 1 20 50 21 1jdf m Jn g m       = 1,978 for all m . They then convert 

each test statistic in their 10K x 3 matrix to a p-value. The resulting matrix of p-values ( 1)p  is a 

simulation of raw, or unadjusted, p-values that would be obtained by estimating impacts 10K times 

(in 10K samples from the target population). Next, the researchers adjust the three p-values in each of 

the 10K rows, following the Westfall-Young procedure, as described in the previous section. Finally, 

since they focus on 1-minimal power, their statistical power is the proportion of the 10K rows in 

which at least one of three p-values is less than 0.05. 

They find that 1-minimal power --- the probability of detecting at least one true effect with 

effect size 0.125 or greater --- is 88% if such effects actually exist on all three outcomes. That is, if 

there are impacts of a magnitude at least as large as a 0.125 effect size on all three outcomes, they 

have an 88% chance of a statistically significant effect estimate for at least one of them. This is better 

than the typical 80% standard. With 1-minimal power set at 80%, the researchers’ minium detectable 

effect size (MDES) - the smallest true effect size that their study can detect with statistical 

significance
19

 - is smaller than the ES of 0.125; it is 0.111. Alternatively, they can include 16 sites 

with 50 individuals instead of 20 sites with 50 individuals to achieve at least 80% power for an 

MDES of 0.125. 

3.3 Notes About the Assumptions 

Before embarking on power calculations, the researchers in the example above had to decide 

on the number of outcomes for which they would adjust for multiplicity, the MTP they would use to 

                                                      
19 For a discussion of minimum detectable effects (MDEs), which are expressed in outcomes’ units, and MDESs, which are expressed in 

standard deviation units, see, for example, Bloom (1995), Schochet (2005), and Bloom (2006). 
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make those adjustments, and the definition of power that best fit with the objective of their study. 

They also made a set of assumptions for each outcome that corresponded to those they would have 

made if they had only had one outcome. That is, they assumed the number of blocks; the number of 

individuals within blocks;
20

 the proportion of individuals assigned to the treatment group; the 

explanatory power of baseline covariates, including block indicators ( 2R ); and an ES. In the above 

example, the researchers assumed the same 2R  and the same ES for all outcomes. However, these 

two may often vary by outcome in practice. 

In addition, the researchers must make some new types of assumptions that only come into 

play when estimating power that accounts for multiplicity adjustments. First, they must assume the 

correlations between the test statistics. These  M pairwise correlations are equal to the  M pairwise 

correlations between the residuals in the M impact models. If there are no covariates in the impact 

models or if the 2'sR  of the covariates are equivalent in all impact models, then the correlations 

between the test statistics are equal to the correlations between the outcomes. However, having 

different 2'sR  across the impact models reduces the correlations between the residuals and therefore 

between test statistics.
21

 Models of outcomes that are highly correlated are more likely to have 

residuals that are highly correlated because baseline covariates will tend to have similar 2'sR . The 

gaps between the correlations between outcomes and the correlations between residuals --- and 

therefore the test statistics --- may be wider for moderately or weakly correlated outcomes. In any 

                                                      
20When the number of individuals per block is not the same within each block, then nj is assumed to be the harmonic mean of the numbers 

of individuals per block (Bloom, 2006). 

21For example, one of the multiple outcomes may have a baseline covariate with a high 𝑅  while another may have a baseline covariate with 

a smaller 𝑅 . Also, block dummies may explain more variation in some outcomes than in others. 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 29 

case, the upper bounds of correlations between the test statistics are the correlations between the 

outcomes. 

The second new assumption that must be considered when estimating power that takes 

multiplicity adjustments into account is the proportion of outcomes on which there are truly impacts 

of at least the size of the researchers’ desired ESs, or, equivalently, the number of truly false null 

hypotheses. There is one scenario in which this assumption does not matter, which is the scenario 

when one focuses on individual power and uses a single-step MTP. In this case, when adjusting a p-

value for a single test, the information from other tests is disregarded. For all other scenarios, 

however, this assumption can be an important one. 

Researchers may be inclined to assume that there will be effects on all outcomes, as 

hypotheses of effects probably drive the selection of outcomes in the first place. And when 

estimating power for a single hypothesis test, power is only defined when a true effect exists. 

However, as will be shown in the next section, if the researchers are incorrect and there turn out not 

to be effects on all outcomes, the probability of detecting the effects that do actually exist can be 

diminished, sometimes substantially. 

It is important to point out that under the assumption that there are not truly effects on every 

outcome under study, the definitions of the d-minimal powers (e.g., 1-minimal power, 1/3-minimal 

power, etc.) and of complete power become fuzzy. For example, 1/3-minimal power is defined as the 

probability of detecting effects (of a specified size or larger) on at least 1/3 of the total outcomes (M), 

regardless of the number of outcomes with actual effects. That is, 1/3-power is not defined as the 

probability of detecting effects among the M outcomes on which the effects truly exist. Therefore, 
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while power is technically defined based on false nulls, the definition is loosened here and includes 

the probability of erroneous rejections of false nulls (which are controlled to occur at no more than 

5% for those MTPs that control the FWER). This fuzziness of definition is needed because the 

researcher would only ever define power based on the total number of tests. Moreover, if the d-

minimal powers are defined only based on truly false nulls, then their levels could increase when the 

proportion of false nulls decreases. Complete power has the same issue. If there are truly only effects 

on two of the three outcomes, then complete power is not the probability of rejecting just two false 

null hypotheses. In this case, complete power is undefined. 

4. Empirical Findings on How Various Factors Affect Power 

This section uses the power estimation approach in Section 3 to investigate how power varies with 

the many factors that affect it in studies that adjust for multiplicity due to testing for effects on 

multiple outcomes. Sticking with the example of a blocked RCT with 20 blocks of 50 individuals, in 

which half are assigned to the treatment group, in which the targeted ES is 0.125 for all outcomes on 

which there are effects, and in which effects will be estimated with the model in (4), the following 

factors are varied as described below: 

● The number of outcomes. This number is equivalent to the number of hypothesis 

tests, and is specified to be 3, 6, 9, or 12. 

● The definition of power. The following definitions are considered: individual 

power (for each individual outcome, the probability of detecting a true effect as 

large as the specified ESs); 1-minimal power, 1/3-minimal power, and 2/3-
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minimal power (across all outcomes with true effects as large as the specified ESs, 

the probability of detecting at least 1, 1/3, and 2/3 respectively); and complete 

power (the probability of detecting effects as large as the specified ESs for all 

outcomes) 

● The MTP used. Each of the five MTPs discussed in Section 2 is explored. 

● The correlations between the test statistics. 

● The explanatory power of the covariates ( 2 'R s ). It is well known that higher 

2'sR  are associated with more power. The point of varying the 2'sR  here is to 

investigate how they affect the relative power when comparing the different 

MTPs with each other and with the situation when no adjustments are made. 

The benchmark 2'sR  are 0.5 for all outcomes, and they are lowered to 0.1 for 

comparison. The 2'sR  are assumed to be the same for all outcomes; therefore 

the correlations between the test statistics equal the correlations between the 

outcomes. 

● The proportion of outcomes on which there are truly impacts at least as large as 

the specified ESs. This proportion is of course unknown to researchers, but as 

discussed above, it is an assumption that needs to be considered. 

4.1 Findings for Individual Power 

Figure 1 presents estimates of individual power for 20 blocks of 50 individuals, assuming 

an ES of 0.125 and an 2R  of 0.5 for all outcomes. With this set of assumptions, individual power 
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for a single hypothesis test (or for the situation when no multiplicity adjustments are made) is 80%. 

Plot (a) in the figure presents estimates when the correlation between all pairs of outcomes is low, 

0.2, and plot (b) in the figure presents estimates when this correlation is high, 0.8. 

Along the top X-axis in both plots, the number of outcomes is varied (3, 6, 9, or 12) and along 

the bottom X-axis, the MTP’s are varied within each number of outcomes. The shadings of the dots 

(as explained in the legend at the bottom of the page) indicate the proportion of the outcomes on 

which there are truly effects. Within each column, the darkest-shaded dot indicates individual power 

when there are truly effects on all three outcomes, the medium-shaded dot indicates individual power 

when there are truly effects on 2/3 of the outcomes, and the lightest-shaded dot indicates individual 

power when there are truly effects on just 1/3 of the outcomes. Note that for the single-step MTPs 

there is just one dot, because as discussed earlier, the proportion of outcomes with true effects does 

not affect power when using single-step MTPs. 

Figure 1, plot (a) shows that compared with individual power when conducting just one 

hypothesis test (80%), after adjusting for multiplicity individual power can be --- but is not 

necessarily --- substantially lower. As expected, the extent of power loss depends on the number of 

outcomes and the MTP used. For stepwise MTPs, the extent of power loss also depends on the 

proportion of outcomes with true effects at least as large as 0.125 standard deviations. (This is seen 

by the lighter shaded points of each color corresponding to an MTP.) However, even if one were to 

assume that only 1/3 of the outcomes truly have effects, the stepwise MTPs still improve upon their 

single-step counterparts. This improvement can be seen by comparing HO-SD with BF-SS and WY-

SD with WY-SS. 
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As expected, Benjamini-Hochberg (BH-SU), which controls the FDR, results in the least 

power loss compared with the situation when no adjustments are made. This MTP’s power 

advantage over the other MTPs that control the FWER is more pronounced when there are more 

hypothesis tests. With as many as 12 hypothesis tests, the individual power is 75% in the case that 

there are truly effects on all outcomes. (This is seen with the darkest purple point under 12 tests in 

plot (a).) While power drops off considerably when there are truly effects on just 2/3 or 1/3 of the 

outcomes (the medium and light purple points), the power that remains after adjusting with BH-SU 

is substantially greater than the power that remains after adjusting with any of the other MTPs 

(seen by comparing the medium shaded purple point to medium shaded points of colors for other 

stepwise MTPs, and to the only point for non-stepwise MTPs, and making similar comparisons 

with the light shaded points). 

A lesson here is that when there are a large number of hypothesis tests, BH-SU is greatly 

preferred for preserving individual power. With this many hypothesis tests, using BH-SU, and 

thereby controlling the FDR, may also make sense --- with as many as 12 tests, researchers may be 

willing to tolerate an increased likelihood of a false positive finding because BH-SU is designed to 

produce false positive findings only along with many true positive findings. On the other hand, with 

a small number of tests, BH-SU may not make sense even though it results in the best power, 

because an erroneous rejection could alter the conclusions about an intervention’s effectiveness. 

Of the MTPs that control the FWER, the stepwise procedures (HO-SD and WY-SD) perform 

almost equivalently when the correlation between the test statistics is low (0.2), as in plot (a). When 

the test statistics are highly correlated (0.8), as shown in plot (b), WY-SD results in more power than 

HO-SS. In addition, when test statistics are highly correlated, WY-SD produces a level of individual 
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power that is much closer to BH-SU, compared with the situation when test statistics are modestly 

correlated. In sum, to limit the probability of a false positive finding across a set of tests and to 

maximize individual power, the WY-SD MTP, which takes the correlation of test statistics into 

account, may be worth the added computational complexity when the correlation between tests is 

large. However, HO-SD, which is much simpler and which can be directly computed from raw p-

values, is also a good choice for controlling the FWER when the correlation between test statistics is 

not high (as shown in plot (a)). 

Figure 2 presents the same plots as Figure 1 but in these plots, the 2R  for all outcomes is 

lowered from 0.5 to 0.1, while all other assumptions remain the same. In this case, power for a single 

hypothesis test is lowered from 80% to 67%, as seen by the dashed horizontal line in the plots. The 

main lesson of the plots in Figure 2 is that regardless of the MTP used, a lower 2R  increases the 

power losses relative to the situation when only one hypothesis test is conducted or when no 

adjustments are made. This increased power loss can be seen in the greater distances between the 

dots and the dashed horizontal lines in Figure 2 compared with Figure 1. 

4.2 Findings for 1-Minimal, 1/3-Minimal, and 2/3-Minimal Power 

Figures 3 and 4 present estimates of 1-minimal power: the probability of detecting at least 

one true effect at least as large as the specified ESs. The plots in these figures are similar to those 

already presented except that now along the top X-axis, the correlation between test statistics is 

varied, from 0 to 0.9. In Figure 3 the number of tests is held constant at three, and in Figure 4 the 

number of tests is held constant at six. All other assumptions are the same as in earlier plots. The 

benchmark power level obtained when testing just one hypothesis is again 80%. 
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Figure 3 demonstrates that with three uncorrelated false nulls, the probability of rejecting at 

least one of them is substantially greater than the benchmark power level. This is seen in the 

darkest shaded points in the first set of vertical lines for all MTPs. As the correlation increases 

(moving from left to right across the upper X axis), this probability declines but still remains at or 

above the benchmark of 80%, regardless of the MTP used, unless the correlation is as high as 0.9 

and an MTP other than one of the WY options is used. When just two out of three of the null 

hypotheses are actually false (meaning there are true effect sizes of at least 0.125), as seen by the 

medium-shaded points, the probability of rejecting at least one null (of three, not two, as discussed 

earlier) is higher than the 80% benchmark when the correlation is 0.5 or less. It is only when just 

one of the three null hypotheses is actually false, as seen by the light-shaded points, that there is a 

substantial loss of power compared with the benchmark. 

A comparison of Figure 4 (focused on six tests) with Figure 3 (focused on three tests) shows 

that, regardless of the proportion of null hypotheses that are truly false and regardless of the MTP 

used, 1-minimal power improves with more tests. As shown in Figure 4, with six tests, even when 

just 1/3 of them are actually false, 1-minimal power is not far from the 80% benchmark. This result 

does not imply that researchers should test for effects on a large number of outcomes to improve their 

chances of finding impacts. Rather, researchers should focus on the primary outcomes among which 

at least one needs to have a statistically significant finding in order for there to be policy implications. 

Both Figures 3 and 4 also show that the choice of MTP matters much less when focusing on 

1-minimal power. All MTPs result in similar power levels when the test statistics have a low or 

moderate correlation. When test statistics are highly correlated, the Westfall-Young MTPs are 

preferred, and the simpler single-step version is sufficient. 
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Figure 5 focuses on 1/3-minimal power while holding the number of tests fixed at six, and 

Figure 6 focuses on 2/3-minimal power while holding the number of tests fixed at six. Recall that 

1/3-minimal power (or 2/3-minimal power) is the probability of detecting effects of a specified size 

or larger on at least 1/3 (or 2/3) of the total number of outcomes (M), regardless of the number of 

outcomes with actual effects. With 1/3-minimal power, the trends are similar to those observed for 1-

minimal power. However, the proportion of outcomes with true effects matters more and the choice 

of MTPs matters more. There can still be improvements over the benchmark when correlations are 

low and effects exist on all outcomes. With 2/3-minimal power, the story is quite different. Figure 6 

shows that if researchers need to detect effects on at least four of six outcomes after adjusting for 

multiplicity, then the probability of detecting those effects is substantially less than 80% for most 

correlations and MTPs. 

4.3 Findings for Complete Power 

Figure 7 presents results for complete power --- the probability of statistically significant 

effect estimates of impacts for all outcomes on which there are truly effects. Recall from earlier that 

when focusing on complete power, p-values are not adjusted. Therefore, Figure 7 does not have 

different results for different MTPs. The X-axis in Figure 7 is the correlation between the test 

statistics. For each correlation, the figure shows the probability of rejecting all of two, three, four, 

five, or six null tests. As shown in the legend, the darkest dot is for two tests and the lightest dot is for 

six tests. 

The primary lesson of Figure 7 is that if researchers follow current standard practice and only 

estimate power for a single hypothesis test (so that their assumed power is 80%) and if the success of 
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the intervention under study requires evidence of effects on all of multiple tests, then their study is 

probably substantially underpowered. The extent to which the study is underpowered depends on the 

number of hypothesis tests and the correlation between the tests. Take for example the study 

assumptions in the plot and a correlation of 0.5 between all pairs of test statistics. This corresponds to 

the assumptions in our motivating example. If the researchers in this example needed to detect effects 

on all three of three outcomes, and effects truly exist on all three, then the probability of detecting all 

three effects is 60%. In order to increase this probability to 80%, they would need to increase the 

number of blocks from 20 of 50 individuals to 28 of 50 individuals. Otherwise, they would have to 

be able to assume ESs on all outcomes of 0.148 instead of 0.125. 

4.4 Implications for the Motivating Example 

Recall that the researchers in the motivating example wanted to ensure that they have sufficient 1-

minimal power. They also wanted to maximize individual power. They were leaning towards using 

the Westfall-Young MTP because it takes the correlation between their test statistics (assumed to be 

0.5 between all pairs) into account, but they wondered if the Holm MTP, which is far simpler to 

implement would result in sufficient power. 

If they use the Westfall-Young MTP, the probability to detect at least one effect with statistical 

significance at the 0.05 level is 88%, as was shown in Section 3.2 above. This assumes that there are 

effects of at least 0.125 standard deviations on all three outcomes. If there are actually only effects on 

two of the three outcomes, the probability to detect at least one of them is 82%, and if there is 

actually only an effect on one of the outcomes, the probability of detecting it is 66%. If they use the 
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Holm MTP instead, their levels of minimal power are almost the same as when using the Westfall-

Young MTP. The levels are 87%, 81% and 66%, depending on the number of true effects. 

If they use the Westfall-Young MTP, their individual power -- the probability of detecting a 

statistically significant effect size of at least 0.125 on each of their outcomes (which in the motivating 

example is the same for all outcomes) is 76%, 71% or 66%, respectively, depending on whether there 

are truly effects on all three, just two or just one of the outcomes. If they use the Holm MTP instead, 

their individual power drops somewhat - to 73%, 68% or 66%, respectively. 

The implicaitons for the researchers’ final design (the number of sites they recruit or perhaps an 

adjustment to the number of primary outcomes of interest) and for their analysis plan (which MTP to 

use) depend on (1) their level of confidence in whether there will actually be effects on their primary 

outcomes of interest; and (2) how much they weigh a focus on individual power against a focus on 1-

minimal power. (For illustration purposes, this is assuming they have complete confidence in their 

assumptions about the correlation between test statistics and the 2 'R s ). If there are indeed impacts 

on all three outcomes, they have a high probability of detecting effects on at least one of them, 

satisfying the funder’s priorities. At the same time, while their power to detect effects on each 

particular outcome is less than the 80% norm, it is still pretty good (at 76% with Westfall-Youg and 

73% with Holm). They will be better off with Westfall-Young, but not by much. To be most 

conservative, assuming an impact on just one of their three outcomes, the researchers may want to 

increase their sample to include 27 sites. In this case, they have an 80% chance of detecting the single 

effect of at least 0.125 standard deviations (and 1-minimal and individual power are identical). If 
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they cannot add more sites than 20, they would have to settle for a minimum detectable effect size of 

0.145 instead of 0.125 to achieve 80% power (using either the Westfall-Young MTP or Holm MTP). 

5. Discussion 

This section summarizes the empirical findings on how various factors affect statistical power 

when adjusting for multiplicity due to estimating effects on multiple outcomes in a blocked 

randomized trial. It then provides some general recommendations for practice and concludes with 

next steps. 

5.1 Summary of Findings 

With Respect to Number of Outcomes 

When researchers are considering the number of outcomes across which they will make 

multiplicity adjustments, the implications depend on (1) which definition of power makes sense for 

their study and (2) which MTP they use. If the researchers are focusing on individual power, which is 

standard practice in education, then having more outcomes will lead to a decrease in power. This 

decrease may not be very substantial with the Benjamini-Hochberg MTP, which controls the FDR, 

but power drops off much more dramatically with all other MTPs when additional outcomes are 

added. If researchers are focusing on complete power (the power to detect effects at least as large as 

the ESs on all outcomes), then having more outcomes also leads to a loss of power. In this case, the 

amount of power lost depends on the correlation between the tests. The same is true to a lesser extent 

for power to detect a majority of effects (e.g., 2/3-minimal power). If researchers are focusing on 1-
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minimal power, the probability of detecting at least one effect increases with the number of 

outcomes. 

With Respect to Correlations Between Test Statistics 

The correlations between test statistics have nontrivial implications for all types of power. 

These correlations, which are the pairwise correlations of the residuals in the individual regression 

models, have an upper bound of the pairwise correlations between the outcomes and will be lower 

when the baseline covariates in the models have different 2's.R  For individual power-of-multiple-

hypothesis tests, the loss of power compared with the situation when there is just one hypothesis test 

is greater with higher correlations between test statistics. Higher correlations between tests also mean 

that the Westfall-Young MTPs, which take dependencies in the data into account, are worth 

implementing to maximize power when controlling the FWER. The step-down version in particular 

maximizes power the most. Next, 1-minimal power and 1/3-minimal power are maximized with 

independent tests and typically decrease with higher correlations between tests --- except when the 

proportion of nulls that are false is small. For 2/3-minimal power, the impact of the correlation varies 

with the MTP used and the proportion of nulls that are false. Finally, complete power improves 

substantially with higher correlations between test statistics. 

With Respect to the Proportion of Outcomes with True Effects 

Strong hypotheses of effects probably influence researchers’ selection of outcomes. It may 

therefore seem unnecessary to assume true effects on only a subset of outcomes. However, the 

empirical findings in the section above show that if researchers make a mistake and there are not 
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truly effects on all outcomes, there can be substantial consequences for detecting those effects that 

actually do exist. 

With Respect to the 
2 'R s  of Baseline Covariates 

Finally, while it is well known that higher 2'sR  are associated with greater power, it tends 

also to be the case that higher 2'sR  provide some protection against power losses from multiplicity 

adjustments (compared with power when estimating effects on one outcome). Higher 2'sR  may also 

diminish the power gains of 1-minimal and 1/3-minimal power, due to a ceiling effect. 

5.2 Recommendations for Practice 

The following recommendations for practice are based on the findings in this paper: 

1. Prespecify all hypothesis tests and prespecify a plan for making multiplicity 

adjustments. 

This paper has demonstrated that if one plans to use MTPs to adjust for multiple tests, the 

change in statistical power can be substantial. Therefore, it seems essential to plan ahead and take the 

consequences of the intended adjustments into account when designing one’s study. Otherwise, in 

some cases, sample sizes may be too small, and studies may be underpowered to detect effects as 

small as a desired size. In other cases, sample sizes may be larger than needed, or studies may be 

powered to detect smaller effects than anticipated. 

2. Think about the definition of success for the intervention under study and choose a 

corresponding definition of statistical power. 
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The prevailing default in education studies --- individual power --- may or may not be the 

most appropriate type of power. In some cases, it may provide misleading estimates of the 

probability that researchers will be able to find sufficient evidence that an intervention was 

successful. If the researchers’ goal is to find statistically significant estimates of effects on all 

primary outcomes of interest, then even after taking multiplicity adjustments into account, estimates 

of individual power can grossly understate the actual power required --- complete power. On the 

other hand, if the researchers’ goal is to find statistically significant estimates of effects on at least 

one or on a small proportion of outcomes, then their power may be much better than anticipated. 

They may be able to get away with a smaller sample size, or they may be able to detect smaller ESs. 

The choice of power definition may not be a simple one. First, it may not be easy to define 

the success of an intervention. Even when it is easy, aligning the definition of success with a 

definition of power may not always be. For example, even if a program would be considered 

successful should an effect of a specified size be found for at least one outcome, researchers may still 

want sufficient individual power because they want to know the probability of detecting effects on 

each particular outcome. 

It may be best for researchers to estimate and share power estimates for multiple power 

definitions. For example, consider the case in which a sample size is fixed. The probability of 

detecting statistically significant effects (at least as large as specified ESs) may be unacceptably low. 

While complete power may be a goal in this case, it may be valuable for researchers to also be able to 

say that it is still tenable to achieve a high probability of detecting effects on at least half of the 

outcomes. 
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3. Consider whether it is more appropriate to control the FWER or the FDR. 

Even though the Benjamini-Hochberg MTP, which controls the FDR, generally results in the 

most power, it may not necessarily be the best MTP to use. An MTP that controls the FDR is more 

lenient with false positives. Researchers may tolerate a few false positives when testing for effects on 

a large number of outcomes. However, when investigating effects on a small number of outcomes, a 

single false positive is more likely to lead to the wrong conclusion about an intervention’s 

effectiveness. Therefore, with a small number of outcomes, controlling the FWER is likely to be 

preferable. 

If researchers determine that it makes sense to control the FDR, they should use the 

Benjamini-Hochberg MTP. When controlling the FWER, the Westfall-Young step-down MTP 

generally results in the most power. However, if there will be a low or moderate correlation between 

outcomes or if the study will use a 1-minimal definition of power, the Holm MTP or the single-step 

Westfall-Young MTP may suffice. 

4. Consider the possibility that there may not be impacts on all outcomes. 

For the reasons summarized in Section 5.1, it is important to incorporate this possibility when 

estimating power. 

5. Take all of the above into account in the design phase of a study to estimate power, 

sample size requirements, or MDESs. 

Working through recommendations (1) to (4) is not a linear process. Each affects the others. 

For example, using a 1-minimal definition of power will allow researchers to consider more 
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outcomes without any power loss, whereas other definitions of power may mean that they want to be 

very parsimonious in selecting their primary outcomes. Also, the Benjamini-Hochberg MTP may be 

preferable for a large number of outcomes, but a 1-minimal definition of power may mean that the 

Benjamini-Hochberg MTP is too dangerous, as the elevated chance of a false positive finding may 

not be tolerable when success rests on just one statistically significant effect. 

5.3 Next Steps 

This paper focused on a blocked RCT in which effects are estimated using a model with 

block-specific intercepts and with the assumption of constant effects across blocks. Extensions to 

other analysis assumptions and designs should be straightforward. They would simply involve 

defining     , Q m SE ES m which is a function of the standard error of the effect estimator in the 

regression model used. Then, once we know  Q m  and an assumption for the correlations between 

test statistics, we can generate those test statistics and use them to empirically estimate all definitions 

of power for all MTPs. 

This paper also focused on studies investigating effects on multiple outcomes. A next step for 

this research is to extend the methodology to estimate power when multiplicity adjustments are 

needed due to estimating effects on multiple subgroups, at multiple points in time, or across multiple 

treatment groups. 

Finally, the R code that implements the power estimation method in Section 3 (see Appendix 

B) only allows a user to estimate power for a specified sample size and for specified ESs. Another 
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next step will be to develop code that allows users to enter a desired level of power and then return 

either a sample size or MDESs. 
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Table 1 Numbers of Hypothesis Types and Decisions 

 Observed Decisions  

Unobserved Truths Number not rejected Number rejected Total 

Number of true null hypotheses A B M0 

Number of false null hypotheses C D M1 

Total M-R R M 
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Table 2 Summary of Features of MTPs 

 Controls FWER or FDR Single-Step or Stepwise Accounts for Correlation Between 

Tests 

Bonferroni (BF-SS) FWER Single-step No 
Holm (HO-SD) FWER Stepwise No 
Westfall-Young (WY-SS) FWER Single-step Yes 
Westfall-Young (WY-SD) FWER Stepwise Yes 
Benjamini-Hochberg (BH-SU) FDR Stepwise No 
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Figure 1. Individual Power, by Number of Outcomes, Adjustment Procedure, Proportion of 

Outcomes with Effects, and Pairwise Correlations Between Test Statistics: 20 Sites of 50 

Individuals Each, R
2
 = 0.5, and Effect Size = 0.125 for All Outcomes on Which There Are 

Effects. 
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Figure 2. Individual Power, by Number of Outcomes, Adjustment Procedure, Proportion of 

Outcomes with Effects, and Pairwise Correlations Between Test Statistics: 20 Sites of 50 

Individuals Each, R
2
 = 0.1, and Effect Size = 0.125 for All Outcomes on Which There Are 

Effects. 
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Figure 3. 1-Minimal Power, by Adjustment Procedure, Proportion of Outcomes with Effects, and 

Pairwise Correlations Between Test Statistics: Three Outcomes, 20 Sites of 50 Individuals Each, 

R
2
 = 0.5, and Effect Size = 0.125 for All Outcomes on Which There Are Effects. 
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Figure 4. 1-Minimal Power, by Adjustment Procedure, Proportion of Outcomes with Effects, and 

Pairwise Correlations Between Test Statistics: Six Outcomes, 20 Sites of 50 Individuals Each, R
2
 

= 0.5, and Effect Size = 0.125 for All Outcomes on Which There Are Effects. 
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Figure 5. 1/3-Minimal Power, by Adjustment Procedure, Proportion of Outcomes with Effects, 

and Pairwise Correlations Between Test Statistics: Six Outcomes, 20 Sites of 50 Individuals 

Each, R
2
 = 0.5, and Effect Size = 0.125 for All Outcomes on Which There Are Effects. 
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Figure 6. 2/3-Minimal Power, by Adjustment Procedure, Proportion of Outcomes with Effects, 

and Pairwise Correlations Between Test Statistics: Six Outcomes, 20 Sites of 50 Individuals 

Each, R
2
 = 0.5, and Effect Size = 0.125 for All Outcomes on Which There Are Effects. 
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Figure 7. Complete Power, by Number of Outcomes and Pairwise Correlations Between Test 

Statistics: 20 Sites of 50 Individuals Each, R
2
 = 0.5, and Effect Size = 0.125 for All Outcomes on 

Which There Are Effects. 


