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ABSTRACT 

In this work, we describe a new statistical method to improve the 

detection of treatment effects in interventions. We call our method 

TAME (Trained Across Multiple Experiments). TAME takes 

advantage of multiple experiments with similar designs to create a 

single model. We use this model to predict the outcome of the 

dependent variable in unseen experiments. We use the predictive 

accuracy of the model on the conditions of the experiment to 

determine if the treatment had a statistically significant effect. We 

validated the effectiveness of our model using a large-scale 

simulation study, where we showed that our model can detect 

treatment effects with 10% more statistical power than an 

ANOVA in certain settings. We also applied our model to real 

data collected from the ASSISTments online learning platform 

and showed that the treatment effects detected by our model were 

comparable to the effects detected by the ANOVA. 
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1. INTRODUCTION 
The goal of this paper is to develop a method that can more 

effectively detect treatment effects in randomized controlled 

experiments that are run inside online tutoring systems. Common 

methods for analyzing these experiments include existing 

statistical tests such as a T-Test, regression, and an Analysis of 

Variance (ANOVA). Although these analysis methods are 

typically used, there are disadvantages that must be considered. 

Grossman et al discuss several disadvantages of randomized 

controlled experiments [4]. One disadvantage is having a small 

sample size compared to the number of variables and it is unlikely 

that there will be an equal balance of variables in the control and 

treatment groups of the experiment. Another disadvantage is that a 

single study may not be able to infer the overall treatment effect 

on the entire population. The treatment may have different effects 

on different subpopulations, experiments settings may be different, 

and there may also be several different dependent measures to 

consider. There also may be a large number of experiments where 

the reported effects are false due to Type I error. 

We hope to ameliorate several of these issues by using a technique 

that combines data from several randomized controlled 

experiments in order to build a model to estimate the difference 

between conditions in experiments. Advantages of combining data 

from multiple experiments include increasing the sample size, and 

also reducing the variance for better confidence estimates [1]. 

Two major questions to consider when pooling experiments are 

discussed in [1]. The first question is, “Which experiments should 

be combined for analysis?”, and is considered “the most serious 

methodological limitation” [3]. Experiments should be combined 

if they have similar research questions, populations, experiment 

settings, intervention components, implementation, and dependent 

measures. In our paper we select experiments with the same 

dependent measures and study design format (A/B). 

The second question is how to combine experiments once they are 

chosen for inclusion. One method, called lumping, combines all 

the data into a single data set, ignoring the differences among the 

experiments. Another method called pooling, combines 

experiments into a single data set but adjusts for differences in 

experiments [1]. In our case, we have experiments that can have 

very different effect sizes. We applied the pooling method, but 

instead of applying standard meta-analysis techniques, we trained 

a linear model to predict the outcome measures. 

Our goal is to use our method called TAME (Trained Across 

Multiple Experiments) to more effectively detect treatment effects. 

We use data from multiple experiments to increase the power of 

the model, and to utilize linear regression to model subject 

outcomes for treatment effect detection. We hope that TAME 

would also reduce the bias of meta-analyses in efforts to improve 

the reliability of statistical results. 

The data we use comes from a data set previously collected and 

synthesized from twenty-two randomized controlled experiments 

run inside the ASSISTments online tutoring system [5]. These 

experiments were proposed by internal and external researchers on 

a large variety of topics. The student population consists of mostly 

middle-school students ranging from grades 6-8. All experiments 

had a single control group and a single experiment group (A/B 

study design) with at least 50 students in each group. A total of 

102,252 problems were attempted by 8,297 students across 22 

different experiments. 

We conducted a large-scale simulation experiment to compare the 

accuracy of TAME to the accuracy of an ANOVA under different 

experiment settings. To determine how well each method 

performed we looked at the chance of detecting an effect when 

there really is one (true positive) and the chance of not detecting 

an effect when there really is not one (true negative). This is 

conversely related to Type I and Type II errors. Our research 

questions are 1) Does TAME perform better than the ANOVA 

method? 2) Under what circumstances do TAME perform better? 
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2. TAME Model 
TAME borrows the idea of meta-analysis, where many 

experiments are used to report on generalized effects. The main 

concept of TAME is to first model the outcome measure in the 

absence of the condition assignment. Any other factors can still be 

used in the creation of the model. To do this, one must use data 

outside of the experiment of interest (the “test” experiment) to 

ensure that the model does not overfit to the test experiment. By 

training a model on a collection of similar experiments, it is less 

likely that the model will overfit to any given experiment. For the 

rest of this paper, we will refer to a group of similar experiments 

as an experiment group.  

For each experiment in an experiment group, we first train a linear 

model on all of the other experiments in the same group, using all 

factors in the data set except the condition assignments in the 

experiments. Note that the model used does not have to be a linear 

model and other types of models will work as well. Once a model 

is trained, it is applied to estimate the dependent measure of the 

test experiment. Then, we compute the residual value for each 

subject in the test experiment, which is the actual outcome 

measure minus the modeled outcome measure. Assuming that all 

other factors that may affect the outcome measures are accounted 

for in the model, the only cause of the residual values must be the 

condition assignments and noise. A two-tailed unpaired T-test is 

performed on the residual values of the samples from the control 

group and the treatment group in the test experiment to determine 

if there is a significant treatment effect. If the T-test reports that 

there are significant differences, we claim that the effect of the 

intervention was statistically significant. 

The sign of the residual matters for our usage of the model, which 

is contrary to most modeling approaches, where the absolute or 

squared residuals are analyzed. If the residual is positive, it means 

that the student overperformed the model due to some factors that 

the model does not account for. Those factors positively affect the 

student outcome measure and could be attributed to helpful 

interventions. If the residual is negative, it means that the student 

underperformed the model, which may be caused by harmful 

interventions. We believe the reason that our method will result in 

a better estimate of treatment effects is because training on all 

experiments except for one, without knowing the conditions of the 

experiment, will generate a less biased model than an ANOVA, 

which operates on a single experiment and includes the condition 

of the experiment while training the model. 

3.  SIMULATION EXPERIMENT 
Simulated data are often used in the EDM community as well as 

other research areas to validate models , such as [7]. One 

advantage of using simulated data is that the ground truth values 

are known, which make it possible to compare the learned values 

to the true values. Another advantage of using simulated data is 

that it gives us the ability to control for and test any combinations 

of parameters. To evaluate the effectiveness of our model, we ran 

a large scale simulation experiment to compare the accuracy of 

treatment effects detected by TAME to the accuracy of treatment 

effects detected by an ANOVA. For both methods, we used a 

between-subject ANOVA (type III SS) to compare the main 

effects of the condition variable on our dependent measure using 

all other factors as fixed factors. We looked at the percent of 

treatment effects correctly detected (true positive, p<0.05) and 

incorrectly detected (false positive). Our simulation data was 

generated using Java code and the models were trained and 

evaluated using R. 

Table 1. Parameters, value ranges, and an example of a setting 

Parameter Possible Parameter Values 
Example 

Setting 

Expr. in a Group 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 2 

Expr. with Diff. [0, n], n = number of expr. in group 1 

Effect sizes 0.05, 0.1, 0.15, 0.2, 0.4, 0.6, 0.8, 1 1.0 

Samples 20, 40, 60, 80, 100, 200 20 

Factors 0, 1, 2, 3, 4 1 

Values per Factor 2, 3, 4 3 

3.1. Data Generation 
The parameters we experimented with and their possible values 

are summarized in the first and second column of Table 1, while 

the third column shows an instantiation of values for an example 

experiment setting. Ten trials of experimental data were generated 

for all combinations of parameters resulting in over ten million 

trials generated. 

Experiments in a Group: This parameter represents the number of 

experiments in a group. We chose to sample groups in the range of 

[2, 20] experiments in increments of two because we believe this 

is a realistic number of experiments that could be analyzed 

together. Several recent meta-analysis papers publish data with the 

number of studies ranging from 12 - 217 [2, 5, 9]. It is also 

reasonable to have this many experiments with a similar designs, 

which can be analyzed together. Our analysis of real data includes 

a dataset consisting of 22 experiments reported in [5]. 

Experiments with Differences: This parameter is number of 

experiments where there is a difference in the outcome measure 

between the control and treatment group. This value ranges from 

having no experiments in group with differences to having all the 

experiments within a group with differences. All experiments that 

have a difference between the control group and the treatment 

group all have equal effect sizes. 

Samples: This parameter is for the number of samples assigned 

into a given experiment. In the context of the EDM community, 

the number samples is equivalent to the number of students that 

have participated in an experiment. We chose to simulate data for 

a number of students in the range of {20, 40, 60, 80, 100, and 

200} because we believe this range consists of values for a typical 

number of students expected to participate in most experiments. 

Factors: The number of factors for all experiments within an 

experiment group. The condition of the experiment is considered a 

special factor and is not grouped with the other factors. All factors 

are categorical variables. Factors are used to represent features of 

the student such as gender or levels of prior knowledge, which 

have been shown to improve predictive modeling [8]. We add 

features to the generated data to more accurately simulate a real-

world scenario. We assume the features do not correlate with the 

intervention, and therefore do not have interaction effects. 

Values per Factor: This parameter represents the number of 

categorical values that all factors can subsume. For example a 

factor with two values could represent the gender of a student or a 

factor with several values could represent the prior knowledge of 

the student discretized into several bins.  

Effect Size: The effect size measured with Cohen’s D. Both 

smaller ranges of differences and larger ranges of differences were 

tested for both practical and theoretical contexts. In practice many 

experiments report small effect sizes; therefore we test in the 

range of [0.05, 0.2] in increments of 0.05 to simulate what would  
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Table 2. A concrete example of simulated data 

Row Number 
Experiment 

Number 

Sample 

Number 
Condition 

Condition 

Value 
Factor 1 

Factor 1 

Value 

Base Outcome 

Value 

Final Outcome 

Value 

1 1 1 A 0 A 0.4 0 0.4 

2 1 2 B 1 B 0.1 0.1 1.2 

3 2 2 B N/A C -0.7 0.05 -0.65 

4 2 3 A N/A A 0.38 -0.7 -0.42 
 

happen in a likely scenario. We also use values from [0.2, 1.0] in 

increments of 0.2 for larger differences to observe what would 

happen in a best-case scenario with a large difference in means. 

Table 2 shows an example of what the data generated under the 

example setting in Table 1 looks like. The first column in Table 2 

shows what experiment each sample belongs to. In this example 

there are only two experiments. Each experiment in this example 

has twenty samples each, however only two samples are shown for 

both experiments in Table 2. The sample column represents a 

unique sample number for each experiment. In the context of an 

experiment, the sample number represents the student. The 

condition column represents what condition the sample is assigned 

into. The condition is uniformly and randomly chosen between 

either “A”, or “B”, where “A” represents the control group and 

“B” represents the treatment group. Each condition has a value 

associated with it, which is equivalent to the effect of the 

treatment. Table 2 shows that in this example, the intervention has 

an effect size of 1.0 standard deviation. Therefore the condition 

value is set to 1.0 where the condition is “B” (treatment), and the 

condition value is set to 0 where the condition is “A” (control). 

Each factor in the experiment has a column for the categorical 

value of that factor and a value for how that factor value affects 

the dependent measure of the experiment. Since there is only one 

factor in this experiment setting, there is only a single factor 

column (“Factor 1”) shown in Table 2. This column can hold three 

values (“A”, “B”, or “C”), because the number of values per factor 

is set to three in this experiment setting. Each factor value is 

generated randomly and uniformly for each sample. The value for 

how the factor effects the dependent measure is randomly 

generated from a standard normal distribution (μ = 0, σ = 1.0) with 

Gaussian noise added to the value for each sample for a more 

realistic simulation. The noise is generated from a normal 

distribution with the mean centered at the randomly generated 

value for the factor with a standard deviation of 0.25. In Table 2, 

this can be seen by looking at rows 1, and 4, which are assigned to 

factor “A”, where all the values for this factor are close to 0.4. In 

this example the randomly generated effect of factor “A” is 0.4 

with noise added for each sample. In the context of educational 

data mining, certain features of the student can have effects on 

learning gains which may vary slightly for each student. 

The base outcome value is a random number chosen from a 

normal distribution (μ = 0, σ = 1). This number represents how a 

random sample performs. The final column represents the 

dependent measure in experiments. This value is the sum of the 

base outcome values, all feature values, and the condition value. 

For example, row 2 has a condition value of 1, a factor value of 

0.1 and a base outcome value of 0.1. Therefore the final outcome 

value is 1 + 0.1 + 0.1 = 1.2. This representation may be thought of 

as the average learning gains a student has when comparing their 

pretest score to their posttest scores. We do not have an explicit 

dependent measure and will refer to it in the general context. 

4. SIMULATION RESULT 
To analyze our results we calculated the mean true positive rate 

and false positive rate at the experiment group level. Each 

experiment group consisted of a varying number of experiments, 

with ten trials each. Each trial had a ground truth value where 

there was either a difference in conditions or there was not a 

difference in conditions. The ground truth value on whether or not 

an experiment had differences in conditions is represented in the 

“experiments with differences” variable described in section 3.1. 

If a model correctly detected significant differences (p<0.05) 

between conditions it was counted as a true positive. Similarly, if a 

model incorrectly detected significant differences it was counted 

as a false positive. An average of the true positive counts and false 

positive counts for all experiments and trials was used to equally 

weight each experiment group. Some random data samples 

generated errors in analysis. If an error occurred for any trial the 

entire experiment group was removed from analysis to ensure the 

analysis would be as unbiased as possible. There were 79,200 

simulated experiment groups, of which 58 were removed, 

resulting in 77,842 experiment groups analyzed. The data from the 

results of the simulation experiment and the code used can be 

found here. https://sites.google.com/site/tamemethod/ 

Since there was little change in the false positive rate (Type I 

error) regardless of method or factors, we exclude it from further 

analysis. All sets of parameters had a Type I error of roughly 5%, 

which is the threshold we used to determine if a model detected 

significant differences. Our analysis focuses on the true positive 

rates (statistical power) of each method. We ran a repeated 

measure ANOVA to compare the main effects of the parameters 

(see data section) on the statistical power of our method to the 

statistical power of an ANOVA. Out of 70,742 simulated 

experiments, TAME has an average power of 0.376 (SD = 0.357), 

which is slightly better than the ANOVA which had an average 

power of 0.366 (SD = 0.353). This power may seem low, however 

many experiments in the learning science community do in fact 

have low power due to the combination of low sample sizes and 

low effect sizes.  

Table 4 shows the results of a repeated measures ANOVA, which 

determined that the average power of TAME was significantly 

better than the ANOVA (F(1, 70,713) = 804.144, p < 0.001). We 

discuss the effect of each parameter in the following sections. We 

discuss the overall effect each parameter has on both methods and 

compare the effects between each method. 

4.1. Experiments in a Group 
There is no general effect of the number of experiments in a 

group. This is because this variable will only matter for our 

method which takes advantage of a larger number of experiments 

in a group when training a model. An ANOVA trains and tests on 

experiments individually; therefore the number of experiments in 

group has no effect on the power of the ANOVA. Since the 

number of experiments has no effect on the power of the ANOVA, 

it is less likely to see an overall effect considering both TAME and 

the ANOVA. 
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Table 3. Tests of Between-Subject Effects 

Source 
Type III 

Sum of Squares 
df Mean Square F Significance 

Partial Eta 

Squared 

Intercept 3285.103 1 3285.103 115891.122 < 0.001 0.621 

effect size 13753.480 7 1964.783 69313.168 < 0.001 0.873 

factors 37.834 4 9.459 333.678 < 0.001 0.019 

values per factor 1.196 2 0.598 21.096 < 0.001 0.001 

samples 2013.213 5 402.643 14204.334 < 0.001 0.501 

experiments 0.163 9 0.018 0.638 0.765 0 

percent of exp. with diff. 0 1 0 0.011 0.917 0 

Error 2004.463 70713 0.028 
   

Table 4. Test of Within-Subjects Effects 

Source 
Type III 

Sum of Squares 
df 

Mean 

Square 
F Significance 

Partial Eta 

Squared 

method 0.576 1 0.576 804.144 < 0.001 0.011 

method * effect size 2.948 7 0.421 587.633 < 0.001 0.055 

method * factors 2.205 4 0.551 769.046 < 0.001 0.042 

method * values per factor 0.671 2 0.335 467.906 < 0.001 0.013 

method * samples 1.173 5 0.235 327.340 < 0.001 0.023 

method * experiments 0.050 9 0.006 7.709 < 0.001 0.001 

method * percent of exp. with diff. 0.002 1 0.002 2.468 0.116 0 

error(method) 50.683 70713 0.001 
   

 

There is also no overall noticeable difference between TAME and 

an ANOVA for different number of experiments in a group. Table 

3 shows that the number of experiments in a group has a 

significant effect on power (F(9,70713) = 7.71, p<0.001) with a 

partial eta squared = 0.001. Although the difference between the 

two methods is statistically significant, the effect size is 

insignificant.  

Although there is no overall difference in method type for varying 

the number of experiments in a group, the number of experiments 

has a major impact in the case where there are a large number of 

factors and a small number of samples with a high effect size. 

Figure 1 shows that for a subset of experiments, as the number of 

experiments in a group increases, the difference in power between 

the two methods increases. TAME has a power of 0.27 compared 

to a power of 0.22 for the ANOVA with two experiments in a 

group and TAME has a power of 0.35 compared to a power of 

0.25 for the ANOVA with ten experiments in a group. 

4.2. Number of Factors 
More factors introduce more noise in the data, making it harder to 

detect treatment effects. Table 3 shows that the number of factors 

has a significant effect on power (F(4,70713) = 333.67, p<0.001) 

with a partial eta squared = .019. Figure 2 shows that as the 

number of factors increases, the power of TAME decreases less 

than the power of ANOVA. This decrease leads to a difference in 

power between the two methods based on the number of factors. 

The number of factors is statistically significant (F(4,70713) = 

769.046, p<0.001) with a partial eta squared of 0.042. We believe 

this is because TAME accounts for noises better than ANOVA by 

using more data that is available to TAME. 

4.3. Number of Samples 
In general, more samples lead to a better estimate of the true 

means and more power. Table 3 shows that the number of samples 

has a significant effect on power (F(5,70713) = 14204.334, 

p<0.001) with a partial eta squared = 0.5. As the number of 

samples increases, both methods perform equally well. This result 

is expected.  

Table 4 shows that TAME performs better slightly than the 

ANOVA when there are a fewer number of samples, since the 

ANOVA is not an optimal method in this situation. The number of 

samples is a statistically significant factor when comparing the 

power differences between the two methods (F(5,70713) = 

327.340, p<0.001) with a partial eta squared of 0.023. 

 

Figure 1. The power as the number of experiments in a group 

increases for experiment groups with 20 samples, four factors, 

and a treatment effect size of 0.8 and 1.0.  

 

Figure 2. The statistical power of TAME and ANOVA by the 

number of factors used to train the models 
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4.4. Effect Size 
A larger treatment effect is easier to detect and therefore has a 

positive impact on power. Table 3 shows that the size of the 

treatment effect has a significant effect on power (F(7,70713) = 

69313.168, p<0.001) with a partial eta squared = 0.873. As the 

size of the effect increases so does the power.  

Table 4 shows TAME performs slightly better than the regular 

ANOVA as the treatment effect increases. The effect size is a 

statistically significant factor when comparing power differences 

between TAME and ANOVA, (F(7,70713) = 587.633, p<0.001) 

with a partial eta squared of 0.055. 

5. REAL DATA RESULT 
We applied both TAME and the ANOVA method on a data set 

composed of twenty-two randomized controlled experiments run 

inside the ASSISTments online learning platform to compare the 

two method on real data [6]. Every experiment in the group is a 

Skill Builder consisting of one control group and one treatment 

group. A Skill Builder is “an assignment type that consists of a 

large number of similar problems, where students must answer a 

specified number of problems (usually three) correctly in a row on 

the same day in order to finish the assignment.” [6]. We applied 

both TAME and an ANOVA on students in the studies, with the 

following factors as training factors: Prior Percent Correct, 

Guessed Gender, Prior Percent Completion, Z Scored Mastery 

Speed, Prior Homework Percent Completion, Z Scored HW 

Mastery Speed. For dependent measure, we use logarithm with 

base ten of the Mastery Speed, which is the number of problems a 

student took to answer three problems correctly in a row [9]. We 

use the logarithm of Mastery Speed to reduce the effect of outliers. 

Table 6 shows that our method can be applied to detect significant 

different between conditions of a real data set. Since the size of 

each experiment in the data set is greater than 100, the result of 

simulation study suggests that TAME is as good at detecting 

significant differences as ANOVA. Both TAME and ANOVA 

detected significant differences between conditions of the same 

experiments (2, 3, 4, 10, and 22). This result further supports our 

claim that TAME is a good alternative to ANOVA, if not better. 

We further investigated the reliability of TAME and ANOVA. For 

each experiment, we trained a model using all of the data from the 

other twenty-one experiments. We then used this model to predict 

the performance on the data in the test experiment. We 

experimented with a different sample size of (10, 20, 30, 40, 50, 

60, 70, 80, 90, and 100) to predict in the test experiment. The 

evaluation of each model was an average of running the model 

1,000 times, with a different random set of data points in the test 

experiment each time. This methodology does not invalidate our 

analysis since TAME was designed to utilize all data from outside 

of the target experiment, such as data from experiments in the 

past, and such data are not affected by the sample size of the target 

experiment. We chose to report on the results of two of the 

experiments in Table 5 and Table 7.; experiment 3, which was the 

experiment that we found the strongest treatment effect for, and 

experiment 6, which was one of the experiments that we did not 

find a significant treatment. 

Table 5. The probability and the confident interval of 

detecting the treatment effect on the resampled data set          

(p < 0.05) on experiment 3 

Experiment 

3 

Probability of Detecting 

Treatment Effect (p<0.05) 

Size of Adjusted Wald 

Confidence Interval 

sample size TAME ANOVA TAME ANOVA 

10 0.2280 0.0650 0.0260 0.0154 

20 0.4410 0.3360 0.0307 0.0292 

30 0.5810 0.5590 0.0305 0.0307 

40 0.7070 0.7050 0.0282 0.0282 

50 0.7970 0.8020 0.0249 0.0247 

60 0.8580 0.8530 0.0217 0.0220 

70 0.9170 0.9180 0.0172 0.0171 

80 0.9420 0.9580 0.0147 0.0127 

90 0.9660 0.9610 0.0115 0.0122 

100 0.9710 0.9810 0.0107 0.0088 

Table 6. Summary statistics and significance for the real dataset 

 

Mastery Speed Control and 

Experiment Group 

Mastery Speed 

Control Group 

Mastery Speed 

Experiment Group 

TAME 

Sig. 

ANOVA 

Sig. 

ANOVA Partial 

Eta Squared 

1 μ = 0.80, n = 468, σ = 0.21 μ = 0.79, n = 256, σ = 0.20 μ = 0.82, n = 212, σ = 0.22 0.208 0.222 0.003 

2 μ = 0.78, n = 672, σ = 0.24 μ = 0.76, n = 324, σ = 0.21 μ = 0.80, n = 348, σ = 0.26 0.014 0.013 0.009 

3 μ = 1.16, n = 240, σ = 0.12 μ = 1.12, n = 123, σ = 0.11 μ = 1.21, n = 117, σ = 0.11 0.000 0.000 0.162 

4 μ = 1.12, n = 540, σ = 0.21 μ = 1.10, n = 298, σ = 0.19 μ = 1.16, n = 242, σ = 0.22 0.001 0.001 0.020 

5 μ = 0.67, n = 1303, σ = 0.25 μ = 0.67, n = 667, σ = 0.25 μ = 0.67, n = 636, σ = 0.24 0.503 0.389 0.001 

6 μ = 0.63, n = 337, σ = 0.17 μ = 0.62, n = 165, σ = 0.18 μ = 0.63, n = 172, σ = 0.16 0.634 0.737 0.000 

7 μ = 0.65, n = 365, σ = 0.16 μ = 0.65, n = 202, σ = 0.16 μ = 0.65, n = 163, σ = 0.16 0.489 0.562 0.001 

8 μ = 0.59, n = 455, σ = 0.17 μ = 0.59, n = 223, σ = 0.18 μ = 0.59, n = 232, σ = 0.16 0.542 0.571 0.001 

9 μ = 0.91, n = 119, σ = 0.16 μ = 0.93, n = 52, σ = 0.18 μ = 0.90, n = 67, σ = 0.14 0.460 0.478 0.005 

10 μ = 1.09, n = 432, σ = 0.20 μ = 1.07, n = 212, σ = 0.18 μ = 1.11, n = 220, σ = 0.22 0.037 0.045 0.010 

11 μ = 0.95, n = 171, σ = 0.20 μ = 0.96, n = 84, σ = 0.21 μ = 0.93, n = 87, σ = 0.19 0.297 0.225 0.009 

12 μ = 0.90, n = 122, σ = 0.18 μ = 0.92, n = 60, σ = 0.19 μ = 0.88, n = 62, σ = 0.16 0.302 0.389 0.007 

13 μ = 1.11, n = 148, σ = 0.24 μ = 1.08, n = 70, σ = 0.28 μ = 1.12, n = 78, σ = 0.21 0.320 0.395 0.005 

14 μ = 0.83, n = 174, σ = 0.16 μ = 0.84, n = 99, σ = 0.17 μ = 0.82, n = 75, σ = 0.14 0.159 0.216 0.009 

15 μ = 0.93, n = 240, σ = 0.19 μ = 0.94, n = 124, σ = 0.19 μ = 0.91, n = 116, σ = 0.19 0.159 0.177 0.008 

16 μ = 0.98, n = 121, σ = 0.17 μ = 0.97, n = 63, σ = 0.14 μ = 1.00, n = 58, σ = 0.19 0.159 0.324 0.009 

17 μ = 0.94, n = 226, σ = 0.18 μ = 0.95, n = 120, σ = 0.17 μ = 0.94, n = 106, σ = 0.20 0.529 0.342 0.004 

18 μ = 0.70, n = 264, σ = 0.13 μ = 0.71, n = 126, σ = 0.14 μ = 0.70, n = 138, σ = 0.13 0.455 0.226 0.006 

19 μ = 1.02, n = 218, σ = 0.19 μ = 1.02, n = 105, σ = 0.17 μ = 1.02, n = 113, σ = 0.20 0.844 0.994 0.000 

20 μ = 0.81, n = 825, σ = 0.18 μ = 0.81, n = 409, σ = 0.19 μ = 0.81, n = 416, σ = 0.17 0.887 0.926 0.000 

21 μ = 0.84, n = 291, σ = 0.15 μ = 0.85, n = 140, σ = 0.15 μ = 0.84, n = 151, σ = 0.15 0.855 0.892 0.000 

22 μ = 0.78, n = 213, σ = 0.16 μ = 0.80, n = 111, σ = 0.16 μ = 0.75, n = 102, σ = 0.15 0.020 0.018 0.027 
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Table 7. The probability and the confident interval of 

detecting the treatment effect on the resampled data set          

(p < 0.05) on experiment 6 

experiment 

6 

probability of detecting 

treatment effect (p<0.05) 

Size of Adjusted Wald 

Confidence Interval 

sample size TAME ANOVA TAME ANOVA 

10 0.0560 0.0340 0.0144 0.0115 

20 0.0500 0.0450 0.0137 0.0131 

30 0.0510 0.0660 0.0138 0.0155 

40 0.0470 0.0650 0.0133 0.0154 

50 0.0560 0.0580 0.0144 0.0147 

60 0.0720 0.0780 0.0162 0.0167 

70 0.0540 0.0540 0.0142 0.0142 

80 0.0490 0.0530 0.0136 0.0141 

90 0.0620 0.0670 0.0151 0.0156 

100 0.0520 0.0600 0.0139 0.0149 

 

Table 5 shows that for the experiment with the strongest treatment 

effect (experiment 3), TAME is able to detect the treatment effect 

better than ANOVA, especially when the sample size <= 40. This 

result agrees with the result of our simulation study. When the 

treatment effect is not present (experiment 6), the false positive 

rate of both TAME and ANOVA are around 5% as shown in 

Table 7. This result is to be expected from using a p-value 

threshold of 0.05. 

6. CONTRIBUTIONS 
This paper makes three contributions. The first contribution of this 

paper is TAME, a more robust and more effective method of 

detecting treatment effects that can analyze several experiments 

simultaneously. Since the TAME model is not built specifically 

for any particular experiment, it allows the same model to 

generalize to experiments unseen by the model, including future 

experiments. To our knowledge, this is the first method that 

detects treatment effects on multiple experiments individually and 

simultaneously.  

The second contribution this paper makes is that the results from a 

large-scale simulation experiment showed that TAME is better at 

detecting treatment effects compared to an ANOVA by more than 

ten percent in the case where there is a large effect, fewer samples, 

more factors, and with more experiments. This simulation 

experiment validated our proposed method and also showed that 

TAME has slightly better statistical power than an ANOVA and 

never performs worse. TAME can quickly detect large differences, 

such as when the treatment is harmful. It is important to detect 

harmful interventions as soon as possible to ensure that students 

are exposed to the least amount of negative effects.  

The third contribution this paper makes is taking our validated 

method and applying it to real data collected from twenty-two 

randomized controlled experiments run in the ASSISTments 

online learning platform. On this data set, TAME and ANOVA are 

in agreement on significant differences between conditions. This 

result allows the associated researchers to further investigate the 

interventions and their effects, allowing them to better understand 

how students learn and, eventually, develop better tools and 

interventions for students. 

6.1. Future Work and Conclusions 
This work is a first step in building a model that can be used 

across interventions to estimate effect sizes. As such, there are 

many future directions to explore. A possible future work involves 

equally weighting the experiments our model uses. It is rare for all 

experiments to all have the same number of samples. Currently 

our model gives more weight experiments with more samples. 

This may lead to a small number of experiments accounting for a 

large amount of the weight when training a model. For future 

work the weighting of experiments and the effect can be 

investigated. 

In conclusion, we have created a single model that generalizes 

across experiments. We have shown how it can be applied to 

multiple, unseen, experiments in order to evaluate their efficacy. 

This approach is in contrast to creating separate models for each 

intervention we are evaluating. This model is able to detect the 

effect of each intervention relative to other interventions and 

provide a set of features that might affect and interact with 

interventions. In addition, the same trained model can be applied 

to investigate future interventions. We evaluated the effectiveness 

of our model in a simulation study, which shows that our model 

can detect significant differences 10% more than an ANOVA in 

certain cases. We then applied our model to real data and found 

that three out of twenty-two interventions are significantly 

different from the control conditions. 
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