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ABSTRACT

This paper discusses a novel approach for developing more
refined and accurate learner models from student data col-
lected from Open Ended Learning Environments (OELEs).
OELESs provide students choice in how they go about con-
structing solutions to problems, and students exhibit a va-
riety of learning behaviors in such environments. Building
accurate models from limited amount of student data is dif-
ficult; to address this we develop a methodology that uses
Monte Carlo Tree Search methods to boost the initial set of
student action sequences in such a way that we can learn
more accurate models of students’ learning behaviors. We
use a HMM representation to model students’ learning beha-
viors and demonstrate the effectiveness of our approach by
running a case study on data collected from 98 students, who
worked with the Betty’s Brain system for four days. The re-
sults have interesting implications for learner modeling and
its applications to adaptive scaffolding of students’ learning
behaviors and strategies as they learn from OELEs.

1. INTRODUCTION

In recent work on computer-based STEM learning environ-
ments, there has been a focus on developing OELEs, which
provide students with a learning goal, usually in the form of
a complex problem or a modeling task, and a set of tools that
support the problem-solving/modeling task [1]. To succeed,
these students need to make choices on how to structure the
solution process, explore alternative solution paths, develop
awareness of their own knowledge and problem-solving skills,
and develop strategies that support more effective learning
and problem solving [2].

Given the complexities students face in working with OE-
LEs, it is imperative that effective scaffolding be provided
to help them progress in their learning and problem solving
tasks and achieve their learning goals. However, an impor-
tant component of effective scaffolding is learner modeling
that can accurately capture students’ cognitive and meta-
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cognitive processes. In this work, we take on the challenge
of using data-driven techniques to construct accurate mo-
dels of learner behaviors and performance by analyzing the
learners’ activity data from OELEs.

Typically, data-driven methods require large volumes of rich
data to support accurate and robust learner modeling. Ho-
wever, collecting such data from OELEs, especially in K-12
settings can be a difficult, time consuming process. To allevi-
ate this problem, we propose a novel set of techniques that
combine the use of Hidden Markov Modeling (HMM) [7],
Monte Carlo Tree Search (MCTS) [3], and a reinforcement
learning methodology [4] to generate artificial student acti-
vity data that simulates students behavior corresponding to
learning activities captured in the log data. The original
student data combined with the artificially generated data
is then used to derive more accurate and complete models
of students’ behaviors and strategies used for learning.

In section 2, we briefly review the Betty’s Brain OELE that
we use for this work, and describe the overall learner mo-
deling approach as well as the two more important techni-
ques that we employ, i.e., HMMs and MCTS. Section 3 pro-
vides experimental results and evaluations of our learner mo-
deling method by comparing analysis results of original data
with data generated post-reinforcement learning. Section 4
presents the discussion and conclusions.

2. BACKGROUND

We implement the learner modeling methods starting from
data collected from student work in the Betty’s Brain OELE.
Betty’s Brain is a learning by teaching environment, where
students utilize tools for information acquisition, solution
construction and solution assessment to teach a virtual cha-
racter named Betty by constructing a causal map [5]. The
primary student actions in the Betty’s Brain environment
can be categorized as:

Information Acquisition (IA): It relates to actions, such
as reading to learn new information (read) and searching for
specific knowledge search. Taking and viewing notes is also
considered to be useful for information acquisition (notes).

Solution Construction (SC): In Betty’s Brain, SC acti-
ons are causal map editing actions (mapedit), which in-
clude addition and deletion of concepts and adding,deleting
or changing links in the causal map.
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Solution Assessment (SA): It consists of asking Betty to
take a quiz(quiz); answer questions (query); and to explain
how she derived her answers using qualitative reasoning met-
hods (expl). Besides, students can mark correctness of links
that have been added to assist their solution assessment.

Students’ performance is based on a map score that is com-
puted by comparing their causal models with a pre-specified
expert model. In our study, the expert model had 15 links,
which implies that the students could achieve a max map
score of 15. At any time, the students’ map score is com-
puted by number of correct links minus number of incorrect
links in their constructed (partial) maps. Next, we describe
the learner modeling approach applied to Betty’s Brain.

2.1 General Approach

Figure 1 illustrates the general approach that we have de-
veloped for our learner modeling method. As a first step,
we apply a HMM clustering method [6] that divides the stu-
dent’ behaviors into groups of similar behaviors. We then
iteratively generate a more accurate HMM model for each
group by running a MCTS algorithm that combined with
a reinforcement learning approach to produces a number of
additional student behavior sequences that provides more
coverage of the students’ learning behaviors. These additio-
nal sequences when combined with the original student data
is used to learn a new HMM model that we believe is a more
complete description of the students’ learning behaviors.
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Figure 1: Architecture of the Overall Approach

2.2 HMM applied to Learner Modeling

A HMM is defined as a tuple, i.e., A = {A,B,n}, where
A and B represent state transition probability distribution
and emission probability distribution matrices, respectively,
while 7 is the initial state probability distribution [7]. Fi-
gure 2 presents the state diagram of a simple HMM exam-
ple trained on two action sequences Si and Sz with only 4
action types. Although not explicitly shown in the action
sequences, the hidden states h; and h2 can be interpreted as
TA state (searching for and reading resources) and SC state
(editing concept entities and causal links) respectively.

Based on the different probability distribution for each ob-
servation (action), the hidden states can be labeled by the
primary actions associated with that state. The transitions
between states capture changes in student activities over
time, as also frequent patterns of activities, e.g., frequent
occurrence of information acquisition followed by solution
construction patterns.

2.3 Reinforcement Learning using MCTS
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Figure 2: Simple HMM example.

To learn accurate and robust HMMs, it is important that the
data set cover the range of behaviors a student exhibits in
sufficiently large numbers.. However, given that we have li-
mited student activity data on the system, we suffer from the
data impoverishment problem. To address this problem, we
propose a novel reinforcement learning method using Monte
Carlo Tree Search (MCTS) and combine it with an initially
derived HMM model to generate artificial data that matches
students’ learning behaviors. For generating action sequen-
ces that simulate actual students’ behavior, we build the
MCTS tree and traverse it to iteratively pick the next best
node (with highest number of simulations) as the new action
and add it to the tail of the sequence. In the reinforcement
learning process as illustrated in Figure 1, we repeatedly ge-
nerate simulated action sequences that maximize a specified
reward function, and add them to the previously generated
data. The reinforced data set is used to construct a refined
version of the HMMs.

MCTS performs an iterative search with each iteration con-
sists of 4 steps, i.e., Selection, Expansion, Simulation
and Backpropagation [3]. In most MCTS implementati-
ons, the Upper Confidence bounds applied to Trees (UCT)
algorithm is applied as the reward function for Selection:

ver =4 (1)

where n; is the number of simulations performed after ad-
ding the ith action; c is the exploration parameter with a
typically chosen empirical value of v/2; t is the total num-
ber of simulation runs for the parent node, which is equal
to the sum of all the n;; w; is the sum of wins (1’s) for all
simulations after adding the ith action.

We adopt a similar reward function and compute the w; va-
lue for generating action sequences that form a Reinforced
scaffolding model. In this model, the normalized simulation
results in the range of lowest-to-highest performance mea-
sure are summed up to compute w;. For example, an action
sequence has w; = 1 when it achieves the max map score
(i-e., 15) in Betty’s Brain. This allows MCTS to better
utilize coherence relations [8] to generate action sequences
with more effective SC actions. The resulting HMM will
favor the use of more coherent actions and be able to cap-
ture evolvement of learning behaviors/strategies that lead to
better learning performance. Such behavioral and strategic
evolvements can provide the basis for adaptive scaffolding.

We use the HMM to constrain the Expansion and Simu-
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Figure 3: HMMs for the three clusters

Table 1: Comparison of the Three Clusters

1A SA Balanced Balanced Search & Note | Better strategic g .

state | state | IA&SC state | SC&SA state Actions rate state transitions g m

Cluster 1 h1 ha ho hs High Yes 6.22 | 7.5
Cluster 2 h1 hs - - Low No 2.85 | -2.25
Cluster 3 - ha ho hs Low Yes 5.61 | 3.79

lation steps to prevent expanding unvisited nodes and as-
sociated actions that are are not likely to occur in a given
state. With these simulation and expansion policies, we can
always generate action sequences that fit the HMM within
a specified variance range. Figure 4 shows a simple example
of generating artificial action sequence by applying MCTS.

Current sequence: search Current sequence: search;read

< Pick read as < Pick mapedit as
MCTS next action. MCTS Dext action.
search search;read
road  mapedit P oad  mapedit P

n-185  ng-10 ng=5 n=90  n,- 105

Figure 4: Simple example of applying MCTS for
generating action sequence. n; is the number of si-
mulations performed during MCTS.

3. EXPERIMENTS AND ANALYSIS

We use data from a Betty’ Brain study run with 98 6th
grade middle school students in a science classroom for our
experiments. A HMM clustering algorithm [6] is applied to
discover groups of action sequences with high within-cluster
homogeneities. This algorithm produced 3 clusters with the
highest Partition Mutual Information value. HMMs for the
three clusters are represented by the state diagrams shown
in Figure 3, where h; represents the ¢th hidden state with
corresponding initial probability m;. State transition pro-
babilities are marked on the transition links while emission
probability of an action a in a state diagram is given by
p(a). For measuring students performance in the different
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clusters, we denote the average pre- and post-test score gain
as S, and denote the average final causal map score of the
group as S,,. We combine this information to interpret and
compare students’ behaviors in the three different groups as
shown in Table 1.

As we can see from Table 1, all three clusters have a SA
state (primarily focusing on SA actions). However, Cluster
3 doesn’t have an TA state, while Cluster 2 doesn’t have sta-
tes that balances efforts between IA & SC, and SC & SA.
These balanced efforts are aimed to use acquired informa-
tion or solution assessment results to support subsequent SC
actions. Besides, only Cluster 1 maintains a good propor-
tion of Search & Note actions which are considered to be
more active as for acquiring information. Students in Clus-
ter 1 and 3 did better in strategic state transitions, while
for Cluster 2, self transitions dominated in all states. The

performance measures of students in Cluster 1, i.e., S, and

Sm, are the best among all three clusters.

3.1 Reinforced Scaffolding Model Analysis

The reinforced scaffolding model as described in section 2.3
is aimed to capture useful behavioral and strategic evolu-
tions. To validate it, we analyze the generated reinforced
HMDMs along with artificial action sequences that equal the
sample size of original data set. The reinforced HMMs are
shown in Figure 5.

Compared to the original HMMs (Figure 3), the HMMs for
the three clusters gradually converge to a isomorphic 3-state
HMM structure. The differences between original and refi-
ned HMMs can be summarized as (1) the HMMs tend to
redistribute the efforts made between IA & SC, as well as
SC & SA, e.g., the proportion of IA in h; is decreased for
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Figure 5: Reinforced Scaffolding HMMs for the three clusters

cluster 1 but it is increased for the other two clusters. Given
the probability of IA supporting SC, Pia—sc =043 =3 :7
according to statistics, the reinforced HMMs tend to have all
SC actions to be supported by at least one IA action by con-
verging emission probability of IA and SC towards a ratio
of 70% : 30%. This is because the SC actions being sup-
ported by IA actions have higher probability to be effective
(the ratio for unsupported:supported mapedits to be cor-
rect is 0.41 : 0.53); and (2) the usage frequency for actions,
such as search, increase significantly, especially for clusters
2 and 3. An explanation for this phenomena is that in the
few cases that search appeared in the original data set, it
is very likely followed by a read that supports a subsequent
mapedit. The original HMM captures this pattern by having
a hidden state hs with relatively high emission probability
for search, read and mapedit. When it expands to a node
with search action during MCTS, the posterior probability
for the hidden state to remain in hs is high and, therefore,
further expansion can form this specific pattern and result
in a higher chance of correct mapedit. Since the reward
function is designed to optimize the causal map score, the
reinforcement learning is likely to follow this pattern more
frequently when generating artificial action sequences.

4. DISCUSSION AND CONCLUSIONS

In this paper, we proposed a novel reinforcement learning
method for learner modeling, which integrated Hidden Mar-
kov Model and Monte Carlo Tree Search within a Reinforce-
ment learning framework to generate more accurate learner
models for groups of students. We applied the HMM cluste-
ring algorithm to divide students into groups based on their
behaviors. Analysis and interpretation on these groups are
presented to explain the clustering results.

We then used data of student activities collected from a
study with the Betty’s Brain OELE and generated reinfor-
ced data sets along with the Reinforced scaffolding model.
The experiments showed promising results according to our
interpretation, where we were able to generate and inter-
pret reinforced HMMs by analyzing evolvements of learning
behaviors that can lead to better performance in building

Proceedings of the 10th International Conference on Educational Data Mining

causal maps.

In future work, we will develop scaffolding methods to sup-
port students’ learning new, more productive behaviors and
strategies as they work on the system. And it will be of
interest to study how our reinforcement learning method
works with longitudinal studies on students and collect data
across longer periods of time to generate dynamic coherence
models. Besides, we will collect data from other learning
environments, or even data from other domains to see how
well our modeling methods perform.
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