
Evaluation of a Data-driven Feedback Algorithm
for Open-ended Programming

Thomas Price
North Carolina State Univ.

Raleigh, NC, USA
twprice@ncsu.edu

Rui Zhi
North Carolina State Univ.

Raleigh, NC, USA
rzhi@ncsu.edu

Tiffany Barnes
North Carolina State Univ.

Raleigh, NC, USA
tmbarnes@ncsu.edu

ABSTRACT
In this paper we present a novel, data-driven algorithm for
generating feedback for students on open-ended program-
ming problems. The feedback goes beyond next-step hints,
annotating a student’s whole program with suggested edits,
including code that should be moved or reordered. We also
build on existing work to design a methodology for evalu-
ating this feedback in comparison to human tutor feedback,
using a dataset of real student help requests. Our results
suggest that our algorithm is capable of reproducing ideal
human tutor edits almost as frequently as another human tu-
tor. However, our algorithm also suggests many edits that
are not supported by human tutors, indicating the need for
better feedback selection.

1. INTRODUCTION AND BACKGROUND
A hallmark of Intelligent Tutoring Systems (ITSs) is their
ability to support learners with adaptive feedback as they
work on problem solving tasks. In the domain of open-ended
computer programming, much research has addressed how
this feedback can be generated automatically using reference
solutions [11] or data-driven methods [5, 6, 9]. However,
existing techniques (including our own work [6]) have two
notable limitations: the type of feedback they can provide
and the methods with which they are evaluated.

Existing work has focused almost exclusively on generating
next-step hints, suggesting how a student can proceed if they
get stuck. Next-step hints make sense in the context of a
structured problem-solving task, with well-defined, discrete
steps, but they may not always be appropriate in an open-
ended programming context. Students may request help for
other reasons, such as to verify that code they have written
is correct, or to help find a bug in code that does not produce
correct output. A more comprehensive feedback generation
algorithm is needed to address these concerns. In this work,
we present SourceCheck, a novel feedback generation algo-
rithm that builds on existing work to check over a student’s
whole program, suggesting useful edits throughout.

While extensive effort has been put into the generation of
feedback for programming, efforts to evaluate the quality of
this feedback are still underdeveloped. Most existing eval-
uations are either technical evaluations that focus on how
often hints can be generated and theoretical hint quality
(e.g. [6, 9, 11]) or small classroom studies that use case
studies (e.g. [7]). Ideally, we would employ controlled stud-
ies to evaluate the impact of feedback on students’ course

outcomes, as was done by Stamper et al. in their evaluation
of data-driven hints in the Deep Thought logic tutor [10].
However, recent work suggests that programming hints can
vary widely in quality and that low-quality hints may deter
students from later asking for help when they need it [8].
A meaningful first step would therefore be to better under-
stand and evaluate the quality of the feedback we generate.
Piech et al. [5] suggest evaluating automatically generated
hints for programming by comparing them to “gold stan-
dard,” expert-authored hints. We build on this method to
evaluate our feedback algorithm, comparing it to human-
authored feedback.

Our initial results show that SourceCheck’s feedback has
good overlap with that from human tutors. However,
SourceCheck also produces much more feedback than hu-
man tutors, and much of this feedback is not represented
in human tutor feedback. This suggests that SourceCheck
has good potential but that more work is needed to select
targeted feedback from potential suggestions.

2. FEEDBACK GENERATION
At a high level, SourceCheck works on a simple premise. To
generate feedback for a student on a given assignment, we
use a two-step process. First, in the Solution Matching step,
we look at previously submitted, correct student solutions
for that assignment and select the one that best matches
that student’s code. Then, in the Edit Inference step, we
extract the edits that separate the student’s code from the
correct solution and present these as feedback. This idea
dates back to the original Hint Factory [1] and was success-
fully implemented by Rivers and Koedinger for program-
ming hints [9]. Rather than changing the fundamentals of
this idea, we present techniques for improving both steps of
the process. These improvements center on the understand-
ing that students’ solutions are diverse and often include
much correct code that does not directly match a known so-
lution because of small changes in structure. SourceCheck
attempts to make use of this code, and can suggest moving
code in addition to inserting and deleting it.

SourceCheck takes as input a set of complete, correct prior
student solutions for an assignment and a snapshot of code
from a new student requesting a hint. As in previous work,
we represent both as an abstract syntax tree (AST), a di-
rected, rooted tree where each node is labeled to represent
a program element, such as a function call, control struc-
ture or variable, and the hierarchy of the tree represents

Proceedings of the 10th International Conference on Educational Data Mining 192



how these elements are nested together. To each AST we
apply simple canonicalization to reduce syntactic complex-
ity while preserving semantic meaning, as described in [6].
SourceCheck outputs a set of edits, (insertions, deletions,
moves and reorders) that can be used to annotate the stu-
dent’s code with feedback. While this feedback can include
next steps hints in the form of insertions, it also highlights
potential errors and provides reassurance that unannotated
code is likely correct.

2.1 Solution Matching
Most hint generation algorithms for programming select a
goal solution by finding the “closest” solution to the stu-
dent’s current code, determined by some distance metric.
Researchers have used string edit distance [9] and approx-
imations of tree edit distance [11], though more complex
metrics have been proposed [4]. The problem with edit dis-
tances, however, is that they heavily penalize differences in
the position of code fragments [3, 4]. For example, swap-
ping the order of two independent subroutines in a program
does not affect its semantic meaning, but this movement
is treated as a large set of deletions and insertions by edit
distance algorithms.

Mokbel et al. suggest addressing this by fragmenting each
AST into subgraphs, pairing similar subgraphs from the two
ASTs, and computing their distance independently [3]. We
build on this idea, along with our previous work decompos-
ing ASTs using root paths [6], to produce a distance metric
designed specifically for code. The root path of a node n in
an AST is the sequence of node labels on the path from the
root of the AST to n. Multiple nodes in an AST will have
the same root path if they and each of their respective an-
cestors have matching labels, such as two calls to the same
function in the same block of code.

Given ASTs A and B, consisting of nodes {a1, . . . , a|A|} and
{b1, . . . , b|B|} respectively, SourceCheck produces a match-
ing, M = {[ai, bj ], . . .}, pairing nodes from A to nodes from
B, and a cost C for the mapping. Nodes can only appear
in one pair, and some nodes may be left unmatched. First,
we iterate over each root path in A, from shortest to longest
path. For a given root path r, let Ar and Br be the set
of nodes in A and B respectively with root path r. Let us
define c(n) as the child-sequence of n, or the sequence of
node labels of the immediate children of n. For each pair of
nodes ari ∈ Ar and brj ∈ Br, we compute the pairwise dis-
tance between their child-sequences, d(c(ari), c(brj)). This
is used to match nodes with the same root path and similar
children.

For the distance function d, we could use a string edit dis-
tance, such as Levenshtein distance, since AST child-se-
quences are just sequences of node labels. However, Source-
Check is designed to match incomplete student code (A) to
complete solutions (B), so for d we use a “progress” func-
tion that measures how much of c(ari) represents progress
towards c(brj). Our progress function is similar to an edit
distance, but it is intentionally asymmetrical and penalizes
deletions (student’s code not found in the solution) much
more than insertions (solution code not yet found in the
student’s code). Additionally, our progress function identi-
fies insertion/deletion pairs with the same label and treats

these as a “reorder”, which has a much lower cost, distin-
guishing between code that should be deleted and code that
is out of order.

SourceCheck calculates the pairwise distances for all nodes
in Ar and Br and then uses the Hungarian algorithm to se-
lect the set of pairs of minimum total cost, which it adds
to the mapping, M . This cost is added to C. This proce-
dure is performed for each root path in A to determine the
total mapping and cost. To select a target solution T for
a student’s current code S, SourceCheck simply finds the
solution with the minimum mapping cost. The result is a
target solution that maximizes the number of nodes in the
student’s code which can be reasonably mapped to nodes in
the target solution.

2.2 Edit Inference
Once a target solution T has been identified for a student’s
code S, SourceCheck identifies a set of edits that can bring
the student closer to this solution. In previous work, this is
accomplished by selecting the top-level applicable edit [9] or
following edits from previous students [6]. Instead, we use
the mapping M between the student’s AST and the target
solution to calculate a more precise set of edits between S
and T . These edits take the form of Moves and Reorders,
along with traditional Insertions and Deletions, determined
as follows:

Deletions: First, all nodes s ∈ S without a pair in M are
marked for deletion; however, these nodes may be reused in
the final step of the algorithm.

Moves: Next, we consider all pairs [si, ti] ∈ M . Let
P (n) denote the parent of the node n in its AST. If
[P (si), P (ti)] 6∈ M , this means si is under the wrong
parent node, so we mark si to be moved under p, where
[p, P (ti)] ∈ M , at an index corresponding to that of ti. If
no such p exists, this means that the appropriate parent has
not yet been added to S. We still mark si for movement,
but we cannot specify a destination.

Reorders: Next, we ensure that the children of si are in the
correct order. We do this by identifying the set of matching
child pairs [cs, ct] ∈M such that P (cs) = si and P (ct) = ti.
For each node cs, if the node’s index among its siblings is
different than that of its pair, ct, we mark it for reordering.

Insertions: Any node t ∈ T which has no pair in S is
marked for insertion. If P (t) has a pair in S, this pair is
used as a parent. If P (t) has no pair in S, we do not yet
have a place to insert t. We still mark t for insertion, since
it may be useful in the next step.

Combining Insertions and Deletions: If a node is
deleted in one place and a node with the same label is in-
serted in another, this may actually represent a Move or
Reorder. We identify pairs of Deletions and Insertions with
the same label and replace these with an appropriate Move
or Reorder. This is a key feature of SourceCheck that en-
courages a student to use existing code, rather than deleting
and re-inserting it.

Using the mapping M , SourceCheck is able to infer more
semantically meaningful edits, such as Moves and Reorders,

Proceedings of the 10th International Conference on Educational Data Mining 193



which convey more information than their component inser-
tions and deletions would alone. The Deletions that remain
indicate likely errors to the students, and the Moves and
Reorders suggest areas in need of editing. Any node not
marked with an edit has been “checked” and likely repre-
sents correct code.

3. METHODS
Our evaluation focuses on measuring the quality and appro-
priateness of SourceCheck’s feedback by comparing it to hu-
man tutor feedback. This is in contrast to previous technical
evaluations [6, 9] that used theoretical measures of hint qual-
ity and availability. Instead, we extend the work of Piech et
al., who assessed feedback quality by comparing hint poli-
cies with “gold standard,” human-authored, expert hints on
small, constrained programming problems (4-6 lines of code
for an ideal solution) [5]. However, for the more complex
problems we investigate here (about twice as many lines of
code), we argue that it is not realistic to define a single best
“gold standard” hint for a given code snapshot. There may
be many useful ways a tutor can advise a student, so it is
more reasonable to measure the similarity of human and
algorithmic feedback, rather than whether they match ex-
actly. We build on the “gold standard” method to compare
the feedback of human tutors and SourceCheck in a more
nuanced way. We focus on the following research questions:

RQ1: How well does SourceCheck’s feedback agree with
ideal human tutor feedback?

RQ2: How does the agreement between SourceCheck and
a human tutor compare to the agreement between human
tutors?

We evaluated SourceCheck in the context of an introduc-
tory computing course for non-majors, consisting of 51 stu-
dents, held at a research university during the Spring 2017
semester. During the first half of the course, undergradu-
ate teaching assistants (TAs) facilitated Snap! programming
labs derived from the Beauty and Joy of Computing (BJC)
AP Computer Science Principles curriculum [2] (available
at bjc.edc.org). The course includes three in-lab program-
ming assignments, completed with TA help available, inter-
leaved with three homework assignments, completed inde-
pendently. Students programmed using iSnap1 [7], an exten-
sion of the block-based, novice programming environment
Snap! [2]. iSnap supports students working on open-ended
assignments with data-driven, on-demand hints [6].

We selected one homework assignment (Squiral – SQ) and
one in-lab assignment (The Guessing Game – GG) for anal-
ysis. In SQ, students draw a square-shaped spiral using
loops, variables and a custom block (function), and a typ-
ical solution is around 10 lines of code. In GG, students
create a simple game in which the player must guess a ran-
dom number using loops, variables, conditionals and user
input, and a typical solution is around 13 lines of code. We
built a dataset of student hint requests on GG and SQ to
serve as authentic scenarios for evaluating SourceCheck. We
sampled up to two hint requests from each student. Where
possible we sampled one request from the first half of their
working time and one from the second half to avoid overly

1Demo and datasets available at http://go.ncsu.edu/isnap

similar samples. We also ensured that at least 30 seconds
and one code edit occurred between sampled hint requests.
We sampled hints from 14 and 15 students on SQ and GG
for a total of 22 and 29 hints respectively, 51 altogether.

3.1 Human Feedback Generation
For each hint request, we extracted a snapshot of the stu-
dent’s code at the time of the request. Importantly, these
snapshots represent code for which real students requested
help, making them an ideal sample on which to evaluate
SourceCheck. We did so using a post hoc Wizard-of-Oz-
style experiment. The first two authors, who were familiar
with the assignments and context, acted as human tutors
and manually generated feedback for each selected snapshot.
The two tutors were graduate students in Computer Science
who were domain experts but not teaching experts, making
them similar to most course TAs for advanced computing
courses.

When generating feedback, the human tutors attempted to
offer pedagogically useful feedback, but they were limited to
communicating their feedback using the edits defined in Sec-
tion 2.2. These edits also had to be independent, meaning
no edit could be dependent on the student following another
suggested edit (e.g. suggesting inserting both a for-loop
and the body of the loop). Tutors crafted these edits with
the understanding that the edits would be (theoretically)
presented to students without further explanation or any
guarantee of further feedback requests. These limitations
forced the human tutors to generate feedback that could be
provided through the same user interface that SourceCheck
would use, as in a Wizard-of-Oz experiment, allowing us to
directly compare human and algorithmic feedback. Tutors
generated their feedback based on the student’s current code
at the time of the hint request, using previous snapshots of
the student’s code for context. However, tutors did not have
access to a student’s code after the hint request or the stu-
dent’s final solution. While the two tutors generated feed-
back independently, they first practiced on a dataset with
the same assignments from another semester and compared
results to ensure a consistent understanding of the feedback
guidelines. The tutors generated feedback in a two-phase
process:

Phase I: Tutors identified the edit(s) they would recom-
mend to best support the student’s current goal and pro-
mote learning. The edit(s) should convey a single idea.

Phase II: Tutors envisioned a correct solution that most
closely matched the student’s current code and identified all
edits that would bring the student closer to this solution.

Phase I allows us to measure how well the algorithm repro-
duces ideal, targeted tutor feedback, addressing RQ1. In
Phase II, tutors generate a large set of all applicable edits,
just as SourceCheck does, allowing us to directly compare
algorithmic and human feedback, addressing RQ2.

4. ANALYSIS AND RESULTS
To quantify the overlap between two sets of feedback for a
given snapshot, we define feedback generation as the process
of labeling each node of an AST with an edit (Delete, Re-
order, Move or nothing) and generating a set of Insertions

Proceedings of the 10th International Conference on Educational Data Mining 194



GG SQ

1

4 18

27

42
51

9 9 38 38 90 90
2

15

8

5

54 53

25 25 10 10 78 78
0.0

0.2

0.4

0.6

0.8

Delete Move Insertion Delete Move Insertion
Edit Type

R
ec

al
l Predictor

SC
TC

Figure 1: The percentage of tutor Phase I edits predicted by SourceCheck (SC) and TC (the recall) for each
edit type on the GG and SQ assignments. Bars are labeled with the total number of Phase I edits of each
type (bottom) and the number of correctly labeled edits (top).

(each consisting of a type of node to insert and an index
in the AST at which to insert it). Under this definition,
we can treat SourceCheck as a classifier and evaluate its
ability to predict the feedback provided by tutors. We mea-
sure classification success for each type of edit separately,
treating it as a binary classification task. For Deletions and
Moves, we consider each node of each snapshot in our dataset
to be a classification instance, where both the tutors and
SourceCheck have labeled the node. Successful classifica-
tion occurs when SourceCheck produces the same label as
the tutor. Each Insertion provided by either the tutors or
SourceCheck for a given snapshot is also considered a clas-
sification instance, where both the tutors and SourceCheck
have either included or not included that Insertion. Since
Reorders were rarely suggested by SourceCheck and were
never suggested by tutors, we exclude them from analysis.

Treating feedback generation as a classification task allows
us to address RQ1 and evaluate the extent to which Source-
Check agrees with (predicts) the feedback of human tutors.
The results of this evaluation would be difficult to interpret
without a baseline for comparison. Therefore, we also de-
fine a “Tutor Classifier” (TC), which predicts feedback from
Tutor 1 using the feedback collected in Phase II from Tutor
2, and vice versa. Since tutors generate a full set of applica-
ble edits in Phase II, just like SourceCheck, we can directly
compare the SourceCheck and TC classifiers. This allows us
to address RQ2, comparing the agreement of human and al-
gorithmic feedback with that of two humans. We would not
generally expect an algorithm to predict human tutor feed-
back better than it would be predicted by another tutor, so
TC provides a high performance target.

4.1 Results
We first look at predicting the targeted feedback that tutors
provided in Phase I. Figure 1 shows the percentage of the
tutor edits that were also generated by SourceCheck and
TC, or the recall of both predictors. We did not observe
large differences between prediction success for edits gener-
ated by the two human tutors, so we report their results in
aggregate. While Deletions were fairly rare, SourceCheck
performs quite poorly at predicting them on both assign-
ments. However, SourceCheck predicts 46% and 47% of tu-
tor Moves and Insertions respectively on GG, and 69% and

80% of Moves and Insertions for SQ, where it even outper-
forms TC. Totalling all edits, SourceCheck had a recall of
0.45 and 0.57 on GG and SQ respectively, while TC achieved
0.59 and 0.65.

An important limitation of recall is that it only considers
how many of the tutor edits were successfully predicted, and
not how many “guesses” (suggested edits), it took to do so.
To understand how much of SourceCheck’s feedback agrees
with tutor feedback, we must compare it against all tutor
edits collected in Phase II. Figure 2 shows the recall (top) for
SourceCheck and TC over all Phase II edits, as well as the
precision (bottom), or the percentage of SourceCheck and
TC edits that agreed with human tutor edits. We see very
similar trends for recall across Phases I and II, implying
that both SourceCheck and TC predict “ideal” (Phase I)
and “possible” (Phase II) edits at similar rates. Totalling all
Phase II edits, SourceCheck had a recall of 0.41 and 0.41 on
GG and SQ respectively, while TC achieved 0.57 and 0.54.

However, SourceCheck’s precision is much lower, particu-
larly for GG, where SourceCheck suggests more of every type
of edit, for a total of over 50% more suggested edits. Source-
Check generated on average 10.7 and 6.4 edits per snapshot
on GG and SQ respectively, compared to 6.3 and 5.2 edits
per snapshot for the tutors’ Phase II edits. Despite this low
precision, SourceCheck is not simply suggesting edits every-
where in the code and getting a few correct by chance. It
correctly suggests no edit for 1092/1238 (88%) of GG AST
nodes where the tutors also did not suggest an edit in Phase
II and for 662/703 (94%) of SQ nodes. Totalling all edits,
SourceCheck had a precision of 0.27 and 0.38 on GG and
SQ respectively, while TC achieved 0.57 and 0.542.

4.2 A Closer Look
We manually investigated edits on which the human tutors
and SourceCheck disagreed, and in this section we present
some common causes of disagreement:

Variables: We noticed that many disagreements were over
variable assignments and references. For example, most of

2Note that because with TC, Tutor 1 predicts Tutor 2 and
vice versa, the precision and recall of TC in Phase II will be
the same, and this value indicates percent agreement.

Proceedings of the 10th International Conference on Educational Data Mining 195



GG SQ

4

12

45

58

114

154

30 30 90 90 273 273

4

12 45

58

114

154

76 30 108 90 416 273

4

20

9

4

93

116

37 37 14 14 206 206

4

20

9 4

93

116

30 37 32 14 218 206

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

R
ecall

P
recision

Delete Move Insertion Delete Move Insertion
Edit Type

V
al

ue

Predictor
SC
TC

Figure 2: The recall for Phase II edits (top), as well the the percentage of SourceCheck (SC) and TC edits
that agreed with a human tutor (the precision, bottom).

the Phase I deletions that SourceCheck failed to predict were
instances of a tutor deleting a variable, such when a student
used the wrong variable in an expression. This is largely
due to SourceCheck’s canonicalization process [6], which
currently gives all variables the same label, making them
indistinguishable. This simplification makes code matching
easier, but clearly a more robust solution is needed.

Supporting Unusual Code: Many times, a tutor sug-
gested an edit, such as deleting an unneeded control struc-
ture, that would lead the student away from a potentially
confusing program state. In many of these cases, Source-
Check found some solution which used this unusual code
correctly and instead suggested how the student could do
the same. We view this behavior as a design choice, rather
than a flaw per se, but it is worth investigating when this
behavior would lead to its intended effect of supporting un-
conventional solutions, and when it would lead to confusion.

Code Variability: The assignments we analyzed were com-
plex enough to allow the student to make a number of small
design choices, such how to reset the sprite and canvas be-
fore drawing the “Squiral” in the SQ assignment. Often, the
tutor and the target solution chosen by SourceCheck made
different, correct suggestions. This also occurred between
human tutors, emphasizing that disagreement with the tu-
tors does not always indicate poor feedback.

Human Traits: Sometimes the human tutors were able
to infer information from natural language in a student’s
code that influenced their feedback in a way that would not
be possible for SourceCheck. For example, the name of a
variable might imply how it is intended to be used (e.g.
“randomNumber”). This sometimes led to very different ed-
its from SourceCheck and the human tutors. On the other
hand, humans are also capable of making careless errors,
and our tutors sometimes simply forgot to suggest a small,
useful edit in Phase II, which SourceCheck remembered.

5. DISCUSSION
RQ1: How well does SourceCheck’s feedback agree with ideal
human tutor feedback? SourceCheck agrees with approxi-
mately half of ideal tutor feedback provided in Phase I, al-
most as much as another human tutor, with SourceCheck
achieving a recall 76% and 88% as high as TC on GG and
SQ respectively. This does not necessarily mean that Source-
Check’s feedback is almost as good as a tutor’s. It is possible
that when SourceCheck’s feedback diverges from a tutor’s, it
does so in a less useful way than when another tutor does so;
however, this is difficult to investigate without some direct
measure of hint quality (e.g. [8]). For now, we can say that
these results suggest good potential for data-driven feed-
back generation, in that ideal tutor feedback is frequently
contained in the set of edits generated by SourceCheck.

RQ2: How does the agreement between SourceCheck and a
human tutor compare to the agreement between human tu-
tors? Our results for RQ2 are mixed. In Phase II, Source-
Check was 72-76% as likely to agree with a given tutor’s
edit as another tutor was on GG and SQ (as measured by
recall). However, a given tutor was only 47-70% as likely to
agree with SourceCheck’s edit as with another tutor’s edit
(as measured by precision). This is largely because Source-
Check generated more total edits than the tutors did, espe-
cially on GG. This lack of precision seems to be the largest
difference between SourceCheck and human tutors. Even if
SourceCheck can produce quality feedback, the benefit to
the student might be lost if it is hidden among less useful
suggestions. Additionally, recent work suggests that stu-
dents seek less help after receiving poor quality hints [8].
A critical direction for future research will be how to select
feedback once a set of possible edits has been generated.

It is also worth noting that our two human tutors had rel-
atively low agreement. Comparing all suggested Phase II
edits, we see that they have a 54% and 57% agreement on

Proceedings of the 10th International Conference on Educational Data Mining 196



the GG and SQ assignments respectively. In fact, tutors
only agreed completely on 8 out of 22 SQ snapshots (36%)
and 7 out of 29 GG snapshots (24%) in Phase I. This sug-
gests the assignments we studied truly are open-ended, since
tutors often disagreed on the best path forward, though we
cannot make any strong claims using our human data be-
cause it was generated by the authors. This supports our
choice to measure agreement using the similarity of edits,
rather than using a single, best “gold standard” hint, as was
done by Piech et al. on simpler assignments [5].

6. CONCLUSION
In this work, we have presented SourceCheck, an algo-
rithm for automatically generating data-driven feedback for
students working on open-ended programming problems.
SourceCheck builds on existing methods [3, 9] to improve
the processes of selecting a target solution from a set of
correct solutions and inferring edits to get the student to
that solution. It does so with a code-specific matching
function and more semantically meaningful suggested edits:
Moves and Reorders. We have also presented a method for
evaluating automatically generated feedback by comparing
it to feedback generated by human tutors playing the same
role. We extend existing methods [5] by using a dataset
of real student help requests to ensure authenticity and by
formulating the problem as a prediction task, allowing us
to compare the similarity among an algorithm and multiple
human tutors. This allows us to envision the high standard
of an algorithm as similar to human tutors are they are
to each other. We show that SourceCheck approaches this
target in some ways and falls well short in others.

Based on our results, iSnap has been updated to include
SourceCheck feedback, and we envision a number of practi-
cal application for the algorithm. In busy classrooms, large-
scale MOOCs and informal learning settings, instructors are
often absent or unavailable. The on-demand feedback pro-
vided by SourceCheck can keep students going when they
get stuck and would otherwise give up. SourceCheck could
also be used to identify potential struggling students in real-
time, based on their distance to a known solution. Both
SourceCheck and our evaluation methodology were designed
to scale to the larger, more complex programming problems
found in real classrooms. This will require SourceCheck to
support a greater diversity of student code, which will re-
quire a larger dataset of correct solutions for matching.

This work also has clear limitations. We only used two tutors
to generate human feedback, and the authors who served as
tutors were not pedagogical experts and had limited teach-
ing experience. While their experience is on par with many
graduate computing TAs, results may be different with expe-
rienced teachers. Additionally, despite efforts at objectivity,
the tutors’ familiarity with each other and with SourceCheck
may have biased their feedback. Our work is also limited by
the small sample of assignments and hint requests we inves-
tigated, especially given that our results were quite different
for GG and SQ. Finally, the methods presented here do not
lend themselves to traditional statistical testing, making it
difficult to make claims about true differences in recall and
precision. Our methods only speak to the relative similarity
of algorithmic and human tutor feedback, but this does not
directly assess feedback quality.

This work opens many avenues for future work. Our results
suggest a number of ways SourceCheck could be improved,
such as a method for selecting which of the generated ed-
its are most useful to show the student. Future work could
also explore how to expand data-driven ITS feedback for
programming beyond edit-based hints, towards richer de-
scriptions or explanations. Our results also raise questions
about the consistency of human feedback on open-ended pro-
gramming problems, and future work should determine how
much agreement can be expected among human tutor feed-
back. Lastly, the methods presented here can be used to
evaluate, compare and benchmark other feedback genera-
tion techniques, giving researchers a better understanding
of their strengths and weaknesses.

7. ACKNOWLEDGEMENTS
This material is based upon work supported by the National
Science Foundation under grant 1623470.

8. REFERENCES
[1] T. Barnes and J. Stamper. Toward Automatic Hint

Generation for Logic Proof Tutoring Using Historical
Student Data. In Proc. of Int. Conf. on Intelligent
Tutoring Systems, pages 373–382, 2008.

[2] D. Garcia, B. Harvey, and T. Barnes. The Beauty and
Joy of Computing. ACM Inroads, 6(4):71–79, 2015.

[3] B. Mokbel, S. Gross, B. Paaßen, N. Pinkwart, and
B. Hammer. Domain-independent proximity measures
in intelligent tutoring systems. In Proc. of Int. Conf.
on Educational Data Mining, 2013.

[4] B. Paaßen, B. Mokbel, and B. Hammer. Adaptive
Structure Metrics for Automated Feedback Provision
in Java Programming. In European Symp. on Artificial
Neural Networks, Computational Intelligence and
Machine Learning, page 312, 2015.

[5] C. Piech, M. Sahami, J. Huang, and L. Guibas.
Autonomously Generating Hints by Inferring Problem
Solving Policies. In Proc. of ACM Conf. on Learning
@ Scale, pages 1–10, 2015.

[6] T. W. Price, Y. Dong, and T. Barnes. Generating
Data-driven Hints for Open-ended Programming. In
Proc. of Int. Conf. on Educational Data Mining, 2016.

[7] T. W. Price, Y. Dong, and D. Lipovac. iSnap:
Towards Intelligent Tutoring in Novice Programming
Environments. In Proc. of ACM Technical Symp. on
Computer Science Education, 2017.

[8] T. W. Price, R. Zhi, and T. Barnes. Hint Generation
Under Uncertainty: The Effect of Hint Quality on
Help-Seeking Behavior. In Proc. of Int. Conf. on
Artificial Intelligence in Education, 2017.

[9] K. Rivers and K. R. Koedinger. Data-Driven Hint
Generation in Vast Solution Spaces: a Self-Improving
Python Programming Tutor. International Journal of
Artificial Intelligence in Education, 16(1), 2015.

[10] J. Stamper, M. Eagle, T. Barnes, and M. Croy.
Experimental Evaluation of Automatic Hint
Generation for a Logic Tutor. Int. J. of Artificial
Intelligence in Education, 22(1):3–17, 2013.

[11] K. Zimmerman and C. R. Rupakheti. An Automated
Framework for Recommending Program Elements to
Novices. In Proc. of Int. Conf. on Automated Software
Engineering, 2015.

Proceedings of the 10th International Conference on Educational Data Mining 197


