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Abstract 

The focus of this article is the well documented association between low working memory 

capacity and difficulty with mathematical word-problem solving. We begin by describing a 

model that specifies how various cognitive resources, including working memory, contribute to 

individual differences in word-problem solving and by then summarizing findings on the relation 

between working memory and word-problem solving. This sets the context for the article’s main 

purpose and major section: to describe the findings of research studies that take one of two 

approaches for addressing the needs of students with low working memory within word-problem 

solving intervention. One approach focuses on compensating for working memory limitations; 

the other on building working memory capacity. We then suggest the need for research on 

integrating the two approaches by embedding working memory training within explicit word-

problem solving intervention. 

Key words: mathematics word problems; word-problem solving; working memory; working 

memory training 
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The Role of Working Memory within Mathematical Word-Problem Solving: 

Implications for Intervention 

Difficulty with word problems can occur even when other forms of mathematical 

cognition are intact (Cummins et al., 1988; Koedinger & Nathan, 2004). Specific word-problem 

difficulty occurs in part because the cognitive resources involved when solving word problems 

differ from and are more numerous than those underlying number knowledge or calculation skill 

(e.g., Swanson & Beebee-Frankenberger 2004). Thus word-problem difficulty is multiply 

determined and may be difficult to overcome.  

It is therefore important that schools assume a proactive stance to prevent such difficulty 

by reaching all students via effective word-problem classroom instruction. Moreover, for 

students who struggle with mathematics, schools must provide specially designed word-problem 

intervention. (In this article, we refer to this population as struggling learners to mean students 

with a history of low performance on number, calculations, or word problems. In the studies we 

consider, researchers used a variety of cut-points to operationalize low math performance. If the 

study’s authors indicated their sample had low math performance, we included it even though 

some cut-points were as high as the 50th percentile.) 

The need for word-problem intervention for struggling learners is illustrated in a 

randomized control trial investigating effects of number knowledge intervention for struggling 

learners (Fuchs et al. 2013). Intervention produced stronger learning than occurred for struggling 

learners receiving their typical school program, including simple arithmetic, multi-digit 

calculations, number knowledge, and word problems. Yet, while the posttest arithmetic 

achievement gap (between struggling and other classmates) narrowed substantially for struggling 

learners who received intervention, their posttest word-problem achievement gap increased 

dramatically.  
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This widening word-problem achievement gap in the face of a narrowing arithmetic 

achievement gap is alarming because word-problem solving (WPS) may reflect understanding of 

and the capacity to apply mathematical ideas in everyday life and in the service of STEM 

learning (Foreman-Murray and Fuchs 2019). WPS is a strong school-age predictor of 

employment and wages in adulthood (Every Child a Chance Trust 2009; Parsons and Bynner 

1997), and word problems represent a major emphasis in almost every strand of the mathematics 

curriculum. It is also alarming because the WPS literature provides the basis for only limited 

understanding about the nature of WPS difficulty or effective intervention practice.  

The focus of this article is the well documented association between low working 

memory capacity (working memory) and difficulty with WPS and how recent studies have 

addressed this association within WPS intervention. We define working memory as a resource-

limited capacity that allocates attention and plans, sequences, and maintains information in short-

term memory while processing the same or other information (Baddeley and Logie 1999; 

Unsworth and Engle 2007). Working memory is often operationalized in assessments and 

training activities as complex working memory span or updating tasks. Complex working 

memory span tasks combine short-term memory demands with unrelated secondary tasks. For 

example, the student is presented with a series of sentences, listens to each and immediately 

decides if it is true or false; at the end of a string of sentences, the student recalls the last word in 

each sentence. The number of sentences and words to remember (working memory span) 

gradually increases. Updating requires continuous and simultaneous refreshing of several items. 

For example, words from a category are presented; after a variable and unpredictable number of 

updating steps, students name the last word in each category. Studies indicate these tasks index 

the same general construct of working memory capacity (Schmiedek et al. 2009).  

We begin this article by describing a model that specifies how cognitive resources, including 

working memory, contribute to individual differences in WPS and then summarizing findings on 
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the relation between working memory and WPS. This sets the context for the article’s main 

purpose and major section: to describe the findings of research studies that take one of two 

approaches for addressing the needs of students with low working memory within word-problem 

solving intervention. One approach focuses on compensating for working memory limitations; 

the other on building working memory capacity. We then suggest the need for research on 

integrating the two approaches by embedding working memory training within explicit WPS 

intervention. 

1. A Framework for Understanding Mathematical Word-Problem Solving 

Kintsch’s model of WPS (Kintsch and Greeno 1985) suggests a complex undertaking. 

The model assumes that general features of the text comprehension process apply across stories, 

essays, and word-problem statements, but that the comprehension strategies, the nature of the 

required knowledge structures, and the form of the resulting macrostructures and the situation 

and problem models differ by text type. Based on theories of text comprehension and discourse 

processing (van Dijk and Kintsch 1983), the model specifies that word-problem representations 

have three components. First, the problem solver constructs a coherent microstructure and 

derives a hierarchical macrostructure to capture the text’s essential ideas. Second, the problem 

solver supplements the text using inferences based on world and mathematical knowledge to 

build the situation model. The problem solver then identifies the problem model or schema, in 

which structural relations among quantities are formalized. This schema provides the structure 

that drives the problem solver’s solution strategies. 

The Kintsch model posits that building the problem model, via the propositional text 

structure, inferencing, and schema induction and then applying solution strategies makes strong 

demands on memory capacity and oral language ability. In this article, we expand the Kintsch 

model in two ways. First, we reframe short-term memory as working memory. This seems 

appropriate because WPS involves not only briefly storing information but more pertinently 
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sequentially holding and updating chunks of information in memory as the problem solver 

processes subsequent segments of the WP statement. This revision to the Kintsch model is 

grounded in studies showing that working memory is actively involved in WPS (e.g., Anderson 

2007; Lee et al. 2004; Raghubar et al. 2010; Swanson et al. 2008; Swanson and Sachse-Lee 

2001; also see description of the Peng et al. meta-analysis [in press] at the end of this section).  

The second departure from the Kintsch model is our inclusion of reasoning as a key 

ability involved in WPS. This is based on evidence that individual difference explaining 

development within representative samples (e.g., Fuchs et al. 2015). It is also supported by the 

finding that children with stronger reasoning are differentially responsive to WPS intervention 

(Fuchs et al. 2014).  

With respect to demands on working memory and reasoning, consider the following 

problem-solving process for this second-grade combine word problem (Part 1 plus Part 2 equals 

Total or P1 + P2 = T): Cleo has 3 sisters. Her cousin, Fu, has 5 girlfriends and 1 sister. How 

many sisters do the girls have in all? A problem solver may process the first sentence’s 

propositional text base to identify that the object is sisters, the quantity is 3, and the actor is Cleo. 

Cleo’s role is to be determined. The problem solver stores this information in working memory. 

In the second sentence, the problem solver similarly codes the propositions and places them in 

memory, but girlfriends fails to match the object code in the first sentence, signaling 5 as 

possibly irrelevant. This is added to working memory. In the last sentence (the question), the 

problem solver is cued by the quantitative proposition how many sisters and the phrase in all to 

select the combine schema; assign the role of superset (Total) to the missing quantity; assign 

subset roles (Part 1 and Part 2) to the to-be-determined entities in working memory; and reject 5 

girlfriends as irrelevant. The problem solver translates the numbers associated with the combine 

schema’s slots to frame a number sentence with a missing quantity. Then the problem solver 

relies on this number sentence to calculate the solution. With typical school instruction, children 
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gradually induce the combine schema as a “problem type” (this is rarely explicitly taught), just as 

they devise their own strategies for managing the working memory and reasoning demands 

associated with this problem-solving sequence.  

In terms of language comprehension, children enter school understanding generic 

vocabulary and language constructions. However, as per Kintsch and Greeno (l985) and others 

(e.g., De Corte and Verschaffel 1985), with arithmetic and word-problem exposure, they learn to 

treat these words in a math-specific way (e.g., more becomes the more complicated construction 

more than involving sets). Cummins et al.’s (1988) computational simulation showed that 

problem representation depends heavily on language comprehension; De Corte et al. (1985) 

showed that altering wording in minor ways dramatically affects solution accuracy; Fuchs et al 

(2018) showed that embedding word-problem language instruction in word-problem intervention 

offers added value on WPS outcomes over word-problem intervention without embedded 

language instruction. 

To illustrate how WPS depends on and taxes language comprehension, consider this next 

problem: Jose, who is a farmer, has 7 chickens. His friend, Thom, has 1 tractor and 6 sheep. 

How many animals do the farmers have in all? Compared to the first combine problem, which 

presented similar demands for inducing the schema, the vocabulary and constructions involving 

this scenario’s objects increase demands on language comprehension for assigning roles in the 

propositional text structure. Increased language comprehension demands stem from more 

sophisticated representations of vocabulary involving taxonomic relations at superordinate levels 

and distinctions among categories (chickens + sheep = animals; tractors are not animals).  

2. Evidence on the Relation between Working Memory and Word-Problem Solving 

This expanded Kintsch model, which departs from the original model by substituting 

working memory for short-term memory and by adding reasoning as a third cognitive resource, 

provides this paper’s context for how working memory operates to support WPS. Because 
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working memory is our main focus in this article, we now turn our attention to the empirical 

evidence on the relation between working memory and WPS by summarizing the findings of a 

major recent meta-analysis. 

Peng et al. (in press) estimated the relation between mathematics and working memory 

and tested potentially moderating influences on this relation. The potential influences were 

working memory domain (verbal, numerical, visuospatial), type of math skill (basic number 

knowledge, whole-number calculations, WPS, fractions, geometry, algebra), and type of 

mathematics difficulty (math disability with vs. without other co-occurring cognitive weaknesses 

or other disorders). The motivation for this undertaking was variation in estimates of the 

magnitude of the relation, ranging from .00 (e.g., Meyer et al., 2010; Tirre & Pena, 1993) to .70 

(e.g., Andersson and Lyxell 2007; Passolunghi and Siegel 2004). The major extension over the 

previous meta-analysis (Friso-van den Bos et al. 2013) was the focus on moderators as a means 

of explaining such variation.  

The authors considered 100 studies with 829 effect sizes, while controlling for age. The 

overall estimate of the correlation between working memory and mathematics performance was 

a moderate .35. However, type of math skill and type of mathematics difficulty moderated this 

relation. With respect to the topic of the present article, the type of math skill with the largest 

estimate of effect was word-problem solving (r = .37), and this relation was comparable across 

verbal, numerical, and visuospatial forms of working memory tasks. This finding indicates that 

WPS taxes domain-general working memory resources that are not tied entirely to language-

based processes. It suggests the importance of the central executive for directing attention to 

relevant information in the WP statement, for coordinating multiple cognitive resources, and for 

inhibiting irrelevant information. At the same time, the effect of type of mathematics difficulty 

revealed that the relation between working memory and mathematics was stronger for students 

who experienced a math disability along with another, complicating cognitive weakness or 
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disorder. This suggests that students with more severe math difficulty lack appropriate strategies 

for managing the working memory demands involved in WPS. 

Some may wonder about the role of math anxiety in math performance and how working 

memory may affect that relation. In a more recent meta-analysis, centrally focused on math 

anxiety, Namkung et al. (in press) addressed this question. They found that the relation between 

math anxiety and math performance was not moderated by working memory capacity. While the 

estimate of the correlation between math performance and working memory was .31, the 

correlation between math anxiety and working memory was only .08. The authors noted that the 

literature that simultaneously attends to math, working memory, and anxiety is small; thus, 

additional research on this question is warranted. Math anxiety aside, the extant literature clearly 

documents a role for working memory in WPS, and the effect between working memory and 

mathematics appears larger for individuals with complex mathematics difficulty simultaneously 

involving other neurocognitive difficulties. This provides the basis for considering intervention 

methods to address the working memory limitations of struggling learners. 

3. Two Approaches for Addressing Students’ Working Memory Limitations  

within Word-Problem Intervention 

3.1 Approach 1: Compensating for Low Working Memory Capacity via Cognitive Strategy 

Intervention 

 In this section, we describe an approach, incorporated in three related lines of research, 

designed to compensate for low working memory capacity via cognitive strategy intervention. 

With this approach, students learn to conceptualize word problems as belonging to word-

problem types; in the Kintsch and Greeno (1985) framework, this is referred to as the problem 

model derived from text processing. Students learn to represent each word-problem type with a 

diagram or equation that maps onto the word-problem type’s central mathematical event. Once 

students identify the word problem’s type, they execute the step-by-step solution strategy used to 
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solve that problem type. This involves mapping the information in the word problem into that 

word-problem type’s diagram or equation and then transforming that representation into a 

number sentence with a missing quantity to solve for the missing quantity. Jitendra and 

colleagues (e.g., Jitendra et al. 2011; Jitendra et al. 2009), Fuchs and colleagues (e.g., Fuchs, 

Zumeta et al. 2010; Fuchs et al. 2014), and Powell and colleagues (2019) refer to this approach 

as schema-based instruction (or word-problem type instruction). Swanson (Swanson et al. 2014, 

Swanson 2016) refers to this as cognitive strategy instruction. 

 In his 2016 study, Swanson investigated the effects of four cognitive strategy conditions 

(verbal or visual or verbal + visual emphasis or specific [materials-only] cognitive strategies) or 

a control group, with 30 classrooms randomly assigned to conditions. Each intervention 

condition ran 20 sessions over eight weeks, 30 min per session, three times per week in groups of 

4-5. In a warm-up activity, children solved addition and subtraction problems with missing 

information in any of the three slots of equations. During instruction, tutors read or reviewed the 

relevant condition’s strategy rule card. In guided practice, children completed three practice 

problems and reviewed problems from the instructional phase, as tutors assisted with applying 

the strategy’s steps, finding the correct operation, and identifying key words. Independent 

practice followed on three problems, each with three parts: a question sentence, a number 

sentence, and irrelevant information. The number of irrelevant sentences during guided and 

independent practice gradually increased over sessions from one in lessons 1-7 to five in lessons 

18-20, thus gradually increasing working memory demands.  

 In the verbal condition, steps are find and underline the question, circle numbers, put a 

square around the key word, cross out irrelevant information, determine the operation, and solve. 

In the visual condition, two types of diagrams are taught: for the combine problem type showing 

constituting the whole; for the compare problem type representing quantities being compared. 

Students enter quantities from the word-problem statement into the selected diagram, with a 
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question mark signifying the missing quantity. The verbal + visual condition integrates the two 

conditions. These schema-induction methods in combination with the overt problem-solving 

steps are thought to decrease the working memory demands involved in WPS. The specific 

strategy condition relies on the same materials as other conditions but without overt problem-

solving steps (e.g., underlining, diagramming). Control group students participated in the school 

math curriculum in their classroom. 

 On problem-solution accuracy, a significant interaction emerged between intervention 

condition effects and students’ pretest working memory capacity. For students with high working 

memory, materials-only was superior to the visual (diagram) condition, but the visual, combined, 

control, and verbal conditions performed comparably. For students with low working memory, 

the materials-only and visual conditions were comparable to each other, but both were superior 

to the remaining conditions. Thus, via the specific strategy condition, Swanson (2016) found 

some support for the idea that cognitive strategies compensate for struggling learners’ low 

working memory capacity, with additional evidence for the visual over the verbal or combined 

strategies for students with low working memory capacity. In a 2014 analysis, focused on a 

subset of students with more severe pretest math deficits, Swanson et al. (2014) found a similar 

pattern of effects. 

 The programmatic lines of research on schema-based cognitive strategy instruction provide 

more robust evidence favoring intervention over control group struggling learners at the 

elementary grades. For example, Jitendra et al. (2007) randomly assigned third-grade struggling 

learners to schema-based instruction or general strategies instruction in groups of 15-16 students. 

Reflecting common school word-problem instructional practice, the general strategies instruction 

condition taught students to use objects, draw a diagram that students thought depicted the word-

problem narrative, write a number sentence, and use data from a graph.  
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Schema-based instruction comprised two phases. The first, schema-induction, helped 

students to consolidate the mathematical structure associated with three problem types (combine, 

compare, change) and to represent each structure with the researcher-designed schematic 

diagram representing that problem type (similar to Swanson’s [2016] visual condition). The 

second phase, problem solution, taught students to solve problems with four steps: find the 

problem type, organize the information in the problem using the problem type’s diagram, plan to 

solve the problem, and solve the program. The effect size (ES) favoring schema-based 

instruction I over general strategies instruction was 0.52 on a WPS measure mapping the 1- and 

2-step problem types taught during intervention; 0.69 six weeks later on the same measure; and 

0.65 on the state achievement test. The moderating effects of pretest working memory capacity 

have not been tested in this line of research. 

 The Fuchs et al. research group has also documented learning advantages for schema-based 

instruction over control, using a similar set of methods tested at the classroom (e.g., Fuchs et al. 

2014) and intervention (e.g., Powell et al. 2015) levels. It explicitly teaches children the 

underlying structure of combine, compare, and change schema. The teacher begins by role 

playing the problem type’s central mathematical event using intact number stories (no missing 

quantities), concrete objects, and the child’s and teacher’s names. The teacher then connects the 

central event to a visual schematic (into which story quantities can be written, similar to Jitendra 

et al. 2007 and Swanson 2016). However, with the Fuchs’s methods, students immediately 

transition from the visual schematic, which is not ordinarily available to them, to first a hand 

gesture that quickly permits tutors to unobtrusively remind students of the schema’s central 

mathematical event and then the problem model number sentence (combine: P1 + P2 = T; 

compare: B – s = D; change: St + C = E or St – C = E). Next, tutors introduce problems (with 

missing quantities) using role playing, the problem type’s schematic and hand gesture, and the 

problem model number sentence.  
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 Central to this article’s focus and in line with Jitendra et al.’s (2007), Powell et al.’s (2019), 

and Swanson’s (2016) intervention methods, schema-based instruction is intended to provide 

children with strategies that reduce working memory demands. First, when introducing problem 

types, the teacher makes connections among the situation model, schema, and productive 

solution strategies explicit. Second, the teacher models step-by-step strategies for identifying 

problem statements as combine, compare, or change schema and for building the propositional 

text structure. Children learn to begin with an attack strategy, called RUN: Read the problem, 

Underline the word representing the problem’s object code (to anchor the problem’s central 

focus and provide a label for the numerical answer without taxing working memory), and Name 

the schema by writing the first letter of the problem type to make it available, rather than holding 

it in working memory (T for total [combine], D for difference [compare], and C for change). 

Children then write the problem model number sentence and then re-read the problem statement. 

While re-reading, children replace letters in the problem model number sentence with relevant 

numerals, cross out irrelevant numerals from the word-problem statement, and insert a blank in 

the number sentence to signify the missing quantity. Relying on these strategies results in the 

number sentence for problem solution.  

This form of schema-based instruction, designed to address struggling learners’ 

limitations in working memory, includes five units: (a) foundational skills (equal sign as a 

relational term; efficient counting strategies to add and subtract; methods to solve 2-digit 

calculation problems; strategies to find a missing quantity when it occurs in any of the three slots 

of standard addition or subtraction problems; strategies for checking work); (b) combine 

problems; (c) compare problems; (d) change problems; and (e) review. Across multiple studies, 

the ES for this form of schema-based instruction over control is 0.68. As with Jitendra’s line of 

work, the moderating effects of students’ pretest working memory capacity have not been tested. 

Clearly, research testing the compensatory hypothesis is warranted. 
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Across the various intervention research groups, schema-based instruction is viewed as a 

validated form of WPS intervention. The 2008 U.S. Department of Education’s responsiveness-

to-intervention practice guide 

(http://ies.ed.gov/ncee/wwc/pdf/practice_guides/rti_math_pg_042109.pdf) recommended that 

WPS intervention for struggling learners should include instruction on solving word problems 

based on common underlying structures, citing eight randomized controlled trials to support the 

panel’s strong level of evidence for this recommendation.  

3.2 Approach 2: Building Working Memory Capacity 

Like all validated interventions, schema-based instruction does not address the needs of 

all struggling learners. Randomized controlled trials (e.g., Fuchs et al. 2014; Fuchs et al. 2004) 

suggest a response rate of 70%. One viable approach for expanding schema-based instruction’s 

framework is to build working memory capacity while compensating for students’ low working 

memory capacity via schema-based instruction. 

Good problem solvers have greater working memory capacity than do poor problem 

solvers, and individual differences in working memory account for variance in WPS when 

controlling for other cognitive resources (e.g., LeBlanc and Weber-Russell 1996; Passolunghi 

and Siegel 2004; Swanson & Sachse-Lee 2001). Moreover, Barnes et al.’s (2014) longitudinal 

mediation modeling with young children with and without spina bifida myelomeningocele, a 

neurodevelopmental disorder associated with mathematics difficulty, found that visuospatial 

working memory at 36 months fully mediated the effect of group (with vs. without the disorder) 

on WPS at 8-9 years. As mentioned earlier, Peng et al.’s (in press) meta-analysis showed that the 

effect of working memory on WPS is higher than for other types of math. Such observational 

evidence provides the basis for hypothesizing that improving working memory will strengthen 

WPS. 

http://ies.ed.gov/ncee/wwc/pdf/practice_guides/rti_math_pg_042109.pdf
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The research base testing this hypothesis is, however, inconsistent and controversial. 

According to a 2013 meta-analysis (Melby-Lervag and Hulme), working memory training 

produces reliable short-term improvements in working memory. However, near-transfer effects 

do not generally sustain at follow-up, and transfer to academic skills is limited. On measures of 

mathematics calculations, the ES approximated 0.25 standard deviations for the subset of studies 

not targeting students with IQ between 55 - 85 (it approached zero without this exclusion). In 

this meta-analysis, no studies indexing transfer to math WPS were identified. (Sala and Gobet’s 

2017 meta-analysis, which only considered effects on typical learners, also did not identify 

studies that disaggregated effects on WPS.) 

The issue of transfer to academic outcomes is critical for the population of students with 

histories of poor mathematics learning. This population is especially vulnerable to transfer 

difficulty, because these students fail to recognize novel stimuli as related to tasks on which they 

have received instruction (e.g., Haskell 2001; National Research Council 2000). Randomized 

controlled trials on schema-based instruction show that transfer distance (i.e., the alignment of 

outcome measures with the training’s content) has a more deleterious effect on WPS outcomes 

for struggling learners than for typically developing learners (e.g., Fuchs et al. 2008). In working 

memory training, struggling learners may suffer serious transfer problems because they do not 

have the reservoir of mathematics skill onto which enhanced working memory capacity, derived 

from working memory training, may be applied. 

We next consider results of six randomized controlled trials, conducted since publication 

of Melby-Lervag and Hulme’s (2013) meta-analysis, examining working memory training 

effects on mathematics outcomes of students with mathematics difficulties. (We did not consider 

studies targeting students with attention deficit hyperactivity.) Three of the six studies examined 

working memory training’s effects against one or more control group, while assessing transfer to 
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mathematics calculations, without any attention to mathematics within working memory training 

or as a supplement to working memory training.  

Partanen et al. (2015) included primary-grade special education students performing 

below the 10th percentile on forward or backward digit span, arithmetic, reading, and writing. 

Students were randomly assigned, within school, to CogMed (a computerized adaptive program 

with practice on simple span tasks) or a non-active control group. In five schools, students 

received CogMed alone; in another five schools, CogMed was used in conjunction with 

metacognitive strategies. They found no significant effects on working memory (auditory and 

visuospatial backward digit span and spatial span) and no significant transfer effect to 

calculations. 

Ang et al. (2015), by contrast, obtained some support for enhancing working memory, 

but again without transfer to calculations. They included 7-year-olds with working memory 

scores below the 25th percentile; teachers had identified 23% of these children as performing 

poorly in mathematics, and the majority received school-delivered supplemental math support. 

Students were randomly assigned to four conditions: an author-developed computerized program 

(updating practice), CogMed, active control (same games as the author-developed program but 

without updating), and non-active control. Working memory training had a significant effect on 

working memory tasks similar to those trained at 6-month follow-up but not immediate posttest 

(1-2 weeks after training ended); CogMed produced significant effects only at immediate 

posttest. Neither form of working memory training produced transfer to untrained working 

memory tasks or addition or subtraction fluency.  

Zhan et al. (2018) randomly assigned students with learning difficulties in reading and 

math to working memory training on an updating task or non-active control. The process for 

identifying learning difficulties was unclear; we infer students with Chinese language and math 

scores below the 25th percentile but with their fluid intelligence scores above the 49th percentile. 



 17 

Working memory training outperformed control on a measure of updating accuracy (not on 

response time), and effects transferred to performance on a broad-based mathematics 

achievement test. On this test, 60% of items were pure calculations; the others assessed some 

form of problem solving. We assume some were word problems, but only total test score was 

analyzed. Also, working memory training was also associated with changes in brain activity 

indicating improved cognitive control and working memory updating capacity.  

Although these studies differed in a variety of ways, we observe that severity of students’ 

learning problems appears associated with working memory training’s efficacy. In Partanen et al. 

(2015), whose sample performed below the 10th percentile in multiple areas, working memory 

training did not improve working memory or math. Ang et al.’s (2015) sample performed below 

the 25th percentile on working memory but with only 23% scoring low in math. Here, effects on 

near-transfer working memory were evident, but without transfer to math or other working 

memory measures. In Zhan et al. (2018), where we infer participants scored below the 25th 

percentile in mathematics but above the 49th percentile on reasoning, effects on working memory 

and transfer to mathematics were realized. 

Yet, across the next three studies, results were modest even though math difficulty was 

defined leniently: below the 50th percentile. What distinguishes this set of studies from the 

previous set is that each included features designed to strengthen working memory training’s 

capacity for improving mathematics. Nelwan and colleagues addressed the transfer challenge 

raised above: that transfer from working memory training to math may be especially difficult for 

struggling learners because they lack a reservoir of mathematics skill. Nelwan and Kroesbergen 

(2016) investigated effects of a commercial working memory training program in 9-12-year-olds 

with attention and mathematics difficulties as rated by teachers and with scores below the 50th 

percentile on math tests. They randomly assigned students to three conditions, each comprising 

two 8-week periods: Working memory training followed by adaptive computerized arithmetic 
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training, this math training followed by working memory training, and non-active control 

followed by this math training. Although short-term effects on verbal updating were revealed, 

none was found on short- or long-term visuospatial updating. Moreover, there was little evidence 

of transfer to fluency on the four operations and no evidence that working memory training or 

math training improved number sense. The authors speculated that working memory training, 

although implemented as the program developers intended, may have been compromised by 

inadequate guidance and feedback to students.  

Nelwan et al. (2018) pursued this idea with children identified for participation in the 

same way, trained with the same programs, and measured with the same assessments as the 2016 

study. Children were randomly assigned to working memory training followed by math training 

or non-active control followed by math training. In working memory training, however, research 

staff closely monitored each student’s progress and provided weekly feedback designed to 

overcome difficulties students experienced (e.g., verbalize visual stimuli or subvocally repeat 

solutions to arithmetic problems). Analyses incorporated students in Nelwan and Kroesbergen’s 

(2016) low-coaching group as a second contrast condition. Only weak support was found for the 

idea that high-coaching working memory training improves working memory outcomes more 

than low-coaching working memory training or control. “Minimal” effects were documented on 

the first short-term visuospatial working memory outcome, but without effects on verbal working 

memory. Although math performance across the first training period increased more in highly-

trained working memory training students than in other conditions, working memory training did 

not build working memory capacity in ways that differentially benefited calculations learning 

during the second period’s math training. 

Kroesbergen et al. (2014) evaluated a different approach for promoting transfer to math 

by testing effects of two versions of working memory training: Exercises were constructed in 

highly similar ways except that one version relied on numerical stimuli; the other on domain-
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general stimuli. Five-year old children with mathematics performance below the 50th percentile 

were randomly assigned to three groups: two active conditions and a non-active control group. 

There were no significant differences among conditions on phonological working memory, but 

the two working memory training conditions (which performed comparably) scored significantly 

higher than control on visuospatial working memory. In terms of transfer, both working memory 

training conditions outperformed control on nonsymbolic quantity discrimination, which 

involves visuospatial perception. More interestingly, on counting skills, domain-specific working 

memory training but not domain-general working memory training outperformed control (the 

two working memory training conditions performed comparably). Results suggest that domain-

specific working memory training improves transfer to math performance, although this effect 

was revealed with a lenient criterion for mathematics difficulty.  

4. Integrating Schema-Based Instruction with Domain-Specific Working Memory Training 

 These six studies in combination with Melby-Lervag and Hulme’s meta-analysis (2013) and 

other analyses of the working memory training literature (Hulme and Melby-Lervag 2012; Sala 

and Gobet 2017; Shipstead et al. 2012) reveal only mixed support for working memory training’s 

effects on working memory capacity and with only limited transfer to mathematics skill. They 

also reveal notable gaps in the literature. Few studies have assessed working memory 

improvement as a mediator of working memory training transfer; none has investigated 

WORKING MEMORY improvement as a mediator of transfer to math outcomes in students 

with math difficulties. We also identified no prior studies assessing working memory training’s 

transfer effects to WPS. These gaps in the extant literature should be addressed in future 

research. 

 Further, across the six recent studies focused on students with mathematics difficulties, 

effects appear more encouraging when studies apply more lenient cut-points for identifying 
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samples of students with mathematics difficulties. Studies are needed that focus on students with 

substantial deficits because school intervention in many countries is reserved for such students. 

 At the same time, no studies have evaluated working memory training’s added value over a 

standard-of-practice condition, a point raised by Kroesbergen et al. (2014). Given intervention 

costs along with limited school time and complicated schedules for providing intervention, 

innovative interventions must prove their value against standard-of-practice programs. 

Otherwise, validated interventions, involving explicit instruction, are preferred.  

 Thus, need exists for studies examining working memory training’s transfer effects to WPS 

on students who begin intervention with clear math deficits, that assess WORKING MEMORY 

improvement as a mediator of working memory training’s transfer effects to WPS, and that 

include a standard-of-practice contrast condition. In considering potentially productive directions 

for enhancing working memory training’s transfer effects to math, Nelwan et al. (2018) provides 

rationale for supplementing working memory training with math training during or immediately 

following working memory training. Kroesbergen et al. (2014) provides rationale for conducting 

working memory training with domain-specific tasks to prime struggling learners to transfer 

enhanced working memory capacity to math. 

 This leads us to suggest the following directions for future research. First, randomized 

control trials are needed to contrast domain-general working memory training to standard-of-care 

WPS interventions for students with meaningful mathematics deficits, at below the 25th 

percentile. Second, innovative forms of validated WPS, perhaps schema-based instruction, might 

be extended by embedding domain-general or domain-specific working memory training within 

the validated WPS program. This might involve complex span games conducted adaptively by 

live tutors on calculations and word-problem stimuli. (For example, in a 2-span task, the tutor 

reads the first problem aloud: “There were 6 donuts in the box. Then, Chris ate 1. How many 

donuts are left?” The student says, “Donuts, 6 minus 1 equals five.” The tester then reads the 
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second problem out loud: “Blair read 4 books. Then, she read 2 more. How many books has 

Blair read now?” The student says, “Books, 4 plus 2 equals 6.” Then, the student recalls: “5, 6.”) 

Such innovation might thereby succeed in developing WPS even as it builds working memory. 

Testing such an embedded approach in the same study that incorporates a domain-general 

working memory condition and a standard-of-care WPS intervention might deepen 

understanding of working memory training’s potential in valuable ways. 

5.  Summary 

WPS is a complex form of mathematical cognition, which makes strong demands on 

cognitive resources. Standard-of-practice instructional classroom programs and interventions for 

students with mathematics difficulties include strategies for helping students compensate for 

students’ cognitive processing limitations, including working memory. By contrast, working 

memory training is designed to build working memory capacity. Yet, standard-of-practice 

programs designed to compensate for working memory limitations fail to meet the needs of all 

struggling learners, while working memory training has yet to demonstrate convincing transfer to 

math outcomes for the struggling population. One approach for extending intervention methods 

to address the needs of struggling learners is to merge validated explicit instructional WPS 

programs with cognitive training.  

The hope explored in this article is that integrating schema-based instruction with domain-

specific versions of working memory training may create synergy for promoting stronger WPS 

learning in struggling learners. By building capacity for future learning through working memory 

training, while increasing mathematics performance on the school’s curriculum, such a merger 

may at least in part address intervention fade-out effects over time (e.g., Bailey et al. in press; 

Clarke et al. 2016; Smith et al. 2013). That is, interventions that simultaneously forge more solid 

foundational mathematics skills while building capacity to support future learning create synergy 

by which struggling learners profit from the general education’s program in future grades.     
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