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Educational leaders recognize a need to improve students’ 
mathematics achievement (English, 2015; Gonzales & 
Kuenzi, 2012). As the President’s Council of Advisors on 
Science and Technology (2010) stated, “STEM education 
will determine whether the United States will remain a 
leader among nations” (p. vii). Mathematics is well under-
stood to be the fundamental building block for improving 
STEM education (Augustine, 2005; English, 2015). Late 
elementary school is a particularly important point of inter-
vention because the building blocks for algebra, such as 
fractions and mathematical expressions, are emphasized in 
the curriculum (Common Core State Standards Initiative, 
2010); in late elementary school, a transition from basic 
arithmetic toward algebra should be underway (Knuth, 
Stephens, Blanton, & Gardiner, 2016). When students fall 
behind in late elementary school, success in further mathe-
matics learning becomes less likely (Siegler et al., 2012). 
Leaders in education are looking to new digital curricula for 
improvements in student learning, and efficacy research is 
needed to determine what works.

Purpose

The Math Curriculum Impact Study (MCIS) evaluated 
the efficacy of a digital core curriculum resource for improv-
ing achievement in Grade 5 mathematics. Given challenges 
of improving mathematics achievement for struggling stu-
dents, the study also looked for differential treatment effects 
based on prior achievement in Grade 4. The curriculum was 
developed by the nonprofit company Reasoning Mind. It 
implemented theoretically noteworthy “blended” and “adap-
tive” learning capabilities, which are discussed in the fol-
lowing section. The curriculum itself is described in more 
detail in the Research Design and Methods section. A sec-
ondary purpose of MCIS was to explore patterns of teacher 
practice and student use that could inform interpretations of 
the study’s achievement findings.

We addressed the primary and secondary purposes by 
conducting a randomized controlled trial (RCT) that could 
meet the standards set by the What Works Clearinghouse 
(2017). We used complementary methods to examine quali-
ties of implementation and student engagement. We call this 
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the MCIS Study and not the Reasoning Mind Study because 
there have been prior Reasoning Mind studies. Further, the 
study was conducted by an independent evaluation team, not 
Reasoning Mind.

Significance

When we launched the MCIS Study, many districts were 
seeking new resources to address the recent adoption of new 
“college and career ready” curriculum standards (e.g., the 
Common Core; Common Core State Standards Initiative, 
2010). The curriculum market was rapidly shifting to adop-
tion of digital, instead of traditional paper-based resources. In 
particular, the use of adaptive, blended digital technologies 
was rapidly expanding (Powell et al., 2015). Districts had new 
opportunities to choose “core” resources for mathematics 
built around these digital features. Traditionally, districts 
select a single core curriculum as a primary, comprehensive 
resource for instruction for a given grade level. When a school 
or district adopts, purchases, and implements a core curricu-
lum resource, it typically expects all teachers to use this as the 
backbone for mathematics instruction. Selection of core cur-
riculum is a critical decision that determines many aspects of 
instruction and pedagogy throughout the school year. In com-
plement, “supplementary” mathematics resources provide 
additional support. They are usually less comprehensive and 
are typically intended to be used less frequently, with more 
teacher discretion, and not necessarily by all students.

Districts consult efficacy research when choosing a core 
curriculum (Penuel, Farrell, Allen, Toyama, & Coburn, 
2016). However, prior research on technology-rich curricula 
have yielded mixed findings, as the review that follows will 
make clear. Given these mixed findings, additional studies 
are needed.

Prior to widespread integration of technology into core 
curricula, many early studies of computer use in schools 
reported positive effects on achievement (Guerrero, Walker, 
& Dugdale, 2004; Honey, Culp, & Carrigg, 2000; Kulik, 
2003). By 2010, some randomized trials and other sound stud-
ies had begun to find meaningful effects of newer technologi-
cal interventions on student outcomes (Clements & Sarama, 
2008; Pape et al., 2010; Roschelle, Rafanan, et al., 2010; 
Roschelle, Shechtman et al., 2010b). However, amid positive 
results, other studies of educational technology had found 
small or mixed effects (Angrist & Lavy, 2002; Bielefeldt, 
2005; Campuzano, Dynarski, Agodini, & Rall, 2009; Kulik, 
2003). Meanwhile, research that had examined impacts of tra-
ditional (not digital) core curricula in elementary mathematics 
indicated that there could be meaningful differences in effi-
cacy. For example, Agodini et al. (2009) demonstrated effect 
sizes of d = .30 and d =.24 in Grade 1 mathematics achieve-
ment in research that compared the Math Expressions and the 
Saxon curricula to two alternative curricula.

Cheung and Slavin (2013) conducted a meta-analysis of 
evaluations of technology-based mathematics instruction. 

Overall, they found evidence of statistically significant 
impacts on student achievement; however, there were impor-
tant nuances among the studies. Evaluations of elementary 
products found stronger impacts (d = .17) than secondary 
products (d = .13). Evaluations found that programs that 
were used more than 30 minutes a week had more impact 
than programs that were used less. Supplementary products 
were found to have a bigger effect (d = .19) than core prod-
ucts (d = .09), and the authors suggested this may be due to 
weak implementation of comprehensive programs. Programs 
with high levels of implementation had larger effects (d = 
.26) than programs with low levels of implementation (d = 
.12). Effect sizes were similar across socioeconomic popula-
tions. More rigorous study designs yielded smaller effects (d 
= .09).

Later, Pelligrini, Lake, Inns, and Slavin (2018) conducted 
a best-evidence synthesis of evaluations of 61 elementary 
math programs, including several that incorporated technol-
ogy. Overall, they found tutoring and small-group interven-
tions most effective. Their systematic review of rigorous 
studies through March 2018 yielded 14 studies of 10 differ-
ent programs that “strongly emphasize the use of technol-
ogy,” some as supplemental and some as core. The programs 
themselves also represented a heterogeneous mix of theo-
ries; some used adaptive approaches, and several used mul-
timedia, games, or other types of digital media. Based on 
these evaluations, the authors calculated an overall positive 
effect size of d = .07. Notably, only one technology-based 
program (Mathematics and Reasoning, based in the UK) 
demonstrated a statistically significant result with a positive 
effect size (Worth, Sizmur, Ager, & Styles, 2015). The other 
programs, including Dreambox, Accelerated Math, 
Educational Program for Gifted Youth, Waterford Early 
Learning, and ST Math, had small effects that were not sta-
tistically significant. Reasoning Mind’s supplemental (not 
core curriculum) product was included and showed no effect 
(Wang & Woodworth, 2011). In contrast, the digital core 
curriculum Time to Know showed an effect size of d = .31, 
which was promising but not statistically significant.

The meta-analysis authors noted that though there is an 
overall positive effect size across the evaluations, the results 
are heterogeneous and do not provide clear support for any 
particular theory or approach. Overall, the theories and 
approaches in digital core curricula are rapidly evolving, and 
newer approaches are often highly touted. There is a need to 
continue to examine whether such approaches can have 
measurable impacts on student achievement.

Adaptive and Blended Instruction

Today, a typical characterization of technology’s value to 
mathematics education is the opportunity to “personalize” 
instruction to fit the needs of different students. However, the 
term personalize has unclear and varied definitions 
(Cavanagh, 2014; SRI International, 2018), and positive 
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effects associated directly with personalization per se have 
been small (e.g., d = .09, in Pane, Steiner, Baird, Hamilton, & 
Pane, 2017). In contrast, adaptive and blended instruction are 
two complementary approaches to applying technology that 
are better defined and can create opportunities for new kinds 
of interactions in the elementary mathematics classroom.

Adaptive Instruction

Aleven, McLaughlin, Glenn, and Koedinger (2016) posit 
a framework of three nested loops in which data are gathered 
by technology from students’ work on mathematics problems 
and used to adjust instruction. The first is the inner loop, in 
which technology adapts to students by providing them with 
feedback specific to their work as they solve problems. 
Providing more frequent, targeted, and helpful feedback can 
improve learning (Shute, 2008). Next is the middle loop, in 
which technology changes the pace of instruction and depth 
of problem-solving challenges. Technology can also provide 
teachers with real-time data, often in the form of digital dash-
boards, that supports formative assessment (e.g., Wiliam, 
Lee, Harrison, & Black, 2004) by showing students’ progress 
and making recommendations for differentiated interven-
tions (Powell et al., 2015). This kind of instruction has a his-
tory that goes back to early work in “mastery learning” 
(Block & Burns, 1976), and meta-analyses have shown that 
formative assessment can have a positive impact on learning 
(e.g., Kingston & Nash, 2011). However, prior research has 
indicated a risk that individualizing the pace of learning can 
lead struggling students to fall farther behind (e.g., Levin, 
1987). We return to this theme in the Discussion section. 
Finally, in the outer loop, technology can provide data to help 
teachers improve their overall classroom implementation 
based on aggregate student metrics collected by the system. 
Product developers can also use aggregate data to improve 
the technology and better support implementation.

Blended Instruction

These adaptive instruction capabilities can enable class-
room configurations in which teachers and technology have 
balanced and complementary roles in guiding student learn-
ing (Graham, 2006; Means, Toyama, Murphy, Bakia, & 
Jones, 2010). Christensen, Horn, and Staker (2013) define 
blended learning as:

a formal education program in which a student learns at least in part 
through online learning with some element of student control over 
time, place, path, and/or pace and at least in part at a supervised 
brick-and-mortar location away from home. . . . The modalities 
along each student’s learning path within a course or subject are 
connected to provide an integrated learning experience. (p. 6)

Adaptive instruction can provide teachers with supports 
to attend to individual students’ needs in ways that would be 

more difficult without technology. Using technology can 
help keep students “on task” (Stallings, 1980) doing mathe-
matics with support and feedback from a computer while a 
teacher directs attention to individual students (Powell et al., 
2015). This can enable teachers to focus their limited instruc-
tional time to differentiate their instruction to the needs of 
individual students (e.g., Tomlinson et al., 2003); however, 
this can be hard for many teachers to implement in practice 
(Delisle, 2015). In blended learning theory, technology can 
thus both free teachers from the need to orchestrate the large 
group’s minute-to-minute activity and also provide teachers 
with student performance data to guide individualized 
instructional decision making.

Some prior research has examined impacts of adaptive 
and blended learning in mathematics (e.g., Pane, Griffin, 
McCaffrey, & Karam, 2014; What Works Clearinghouse, 
2016). Evaluations of middle school adaptive learning tech-
nologies have found statistically significant, positive 
impacts (e.g., Roschelle, Feng, Murphy & Mason, 2016). 
Prior research has also examined blended learning in ele-
mentary school, but the rigorous studies have focused pri-
marily on reading instruction (Conner, Morrison, Fishman, 
Schatschneider, & Underwood, 2007; Prescott, Bundschuh, 
Kazakoff, & Macaruso, 2018) or implemented case studies 
(e.g., Powell et al., 2015). Hence there is an unmet need to 
examine a digital core curriculum at scale for elementary 
school mathematics that incorporates promising new adap-
tive and blended learning approaches.

Selection of the Digital Core Curriculum

We selected Reasoning Mind’s Grade 5 Common Core 
Curriculum (RM-CC5) for the MCIS Study for several rea-
sons. In addition to its implementation of adaptive, blended 
learning throughout a fully integrated digital core curricu-
lum, its design was grounded in research-based recommen-
dations for mathematics curricula, had wide and growing 
adoption, had promising initial evidence, and had a process 
for achieving implementation fidelity. Further detail appears 
in the Appendix.

Research Questions

The MCIS Study had two main confirmatory research 
questions aligned with the primary purpose of the study and 
two main exploratory research questions aligned with the 
secondary purpose to examine teacher practice and student 
engagement. The confirmatory questions addressed the 
overall main effect and examined the potential for differen-
tial treatment effects based on prior achievement. The 
exploratory questions were important to our interpretation of 
the findings on the confirmatory research questions; in short, 
to interpret a null effect, it is important to consider qualities 
of implementation and use.
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Confirmatory Research Questions

Research Question 1: In schools that adopt RM-CC5 as 
their core resource for Grade 5 mathematics, com-
pared with schools that use their business-as-usual 
resources, do students have higher mathematics 
achievement?

Research Question 2: Are there differential treatment 
effects based on prior year (Grade 4) achievement 
levels?

Exploratory Research Questions

Research Question 3: How did teachers’ use of instruc-
tional resources differ between the treatment and con-
trol groups?

Research Question 4: Did students substantively engage 
with the digital curriculum, and were there differences 
based on prior achievement?

Research Design and Methods

Experimental Groups

The MCIS Study was a 2-year RCT in West Virginia pub-
lic schools, implemented in classrooms in SY2014–2015 
and SY2015–2016. Recruitment occurred primarily in 
SY2013–2014, and schools were randomly assigned to a 
treatment or control condition and asked to participate for 
two full school years. All teachers in treatment schools were 
expected to implement RM-CC5 as their core Grade 5 math-
ematics resource for each year of the study, along with spe-
cific usage guidelines and professional development 
requirements discussed below. Teachers in control schools 
were expected to implement their business-as-usual 
resources (e.g., existing curriculum resources and supple-
mental technologies). The first implementation year 
(SY2014–2015) was considered the warm-up year, during 
which treatment teachers learned about RM-CC5 as they 
used the materials with students and received professional 
development. The second year (SY2015–2016) was consid-
ered the measurement year. The 2-year duration was based 
on RM’s experience onboarding teachers. Shifting to a 
blended learning model can be challenging (e.g., Powell 
et al., 2015); Reasoning Mind expected teachers to grow in 
their first year and implement more effectively in their sec-
ond year. We report findings from the Grade 5 classroom 
cohort in which schools were using RM-CC5 for a second 
year. Grade 4 classrooms did not participate in MCIS; thus, 
Grade 5 students were new to RM-CC5 in this second year.

Setting

MCIS took place in West Virginia (WV). WV had already 
established the infrastructure for widespread adoption of a 
digital curriculum (West Virginia Department of Education, 

n.d.). Also, WV had approved trial use of RM-CC5 as a core 
curriculum. Further, because mathematics scores were 
below the national averages (National Center for Educational 
Statistics [NCES], 2011), teachers and schools in the state 
were motivated to improve mathematics achievement. In 
addition, WV had recently adopted new curricular standards 
and assessments that would be implemented during SY2014–
2015, the first year of the MCIS Study. These were called 
West Virginia’s College & Career Readiness Standards 
(WVCCRS) and the West Virginia General Student 
Assessment (WVGSA). The West Virginia Department of 
Education (WVDOE) provided the data from the WVGSA 
for use as the study’s main outcome measure.

Recruitment and Participants

Recruitment requirements and incentives. The research 
team launched several recruitment efforts in SY2013–
2014—a media event, presence at a statewide meeting of 
principals, and an announcement from the state superinten-
dent. Requirements for school participation were sufficient 
technology resources, having at least one Grade 5 class, 
agreement to random assignment, agreement to allow the 
WVDOE to share student data, and agreement for teachers 
and students to participate in additional data collection 
(e.g., interviews, surveys). As incentives, treatment schools 
received the RM-CC5 program free of charge for their 
Grade 5 classes, and control schools (or their elementary 
school feeders) received a supplemental Reasoning Mind 
program free of charge for their Grade 2 classes. Teachers 
in both groups received a stipend for participation in 
research activities.

Recruitment and randomization. According to the NCES 
(n.d.), the student population across WV’s 340 elementary 
schools was predominantly White (93%), and the majority 
of schools were in rural regions (55%). To increase the 
potential generalizability of the study to the U.S. population 
(i.e., 51% White, 24% Hispanic, and 16% Black), we sought 
to oversample schools with higher Black and Hispanic popu-
lations and in urban areas.

All schools were randomly assigned to the treatment or 
control group. Randomization occurred in waves as applica-
tions were submitted throughout the year. We used a rolling 
assignment process because schools needed information as 
early as possible so that they could plan for the upcoming 
school year. When possible, schools were randomized in 
blocks of two to six with similar characteristics. The major-
ity of schools had similar demographics and were blocked 
by school-level prior mathematics proficiency. In special 
cases, Grade 5 classrooms in middle schools were blocked 
or schools with high ethnic minority student populations 
were blocked. Two schools that had relatively late applica-
tions were independently randomly assigned to condition on 
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their own. One of these schools was randomly assigned in 
Year 1 but was then unavailable to participate until Year 2. 
The Reasoning Mind team worked with the school’s admin-
istration to ensure that the school had the resources and 
training to begin the treatment condition late. As the school 
followed all additional study requirements, we decided to 
include it in the study. As a cautionary measure, we ran the 
main analyses both with and without this school included; 
overall findings were the same both ways.

Participants and attrition. Guided by our power analysis 
(see Appendix) we recruited a total of 56 schools into the 
study. Of these, 29 were assigned to the treatment group, and 
27 were assigned to the control group. The imbalance was 
due to the fact that both schools that were assigned individu-
ally (rather than in blocks) happened to be randomized into 
the treatment group. A total of 46 schools completed the 
study through the second year; 23 were treatment group 
schools, and 23 were control group schools, with attrition 
rates of 20.7% and 14.8%, respectively. The overall school-
level attrition rate was 17.9%, and the differential attrition 
rate was 5.9%. According the What Works Clearinghouse 
(2017), with an 18% overall attrition, 5.7% differential attri-
tion is the “cautious boundary” for tolerable threat of bias 
under both optimistic and cautious assumptions. We exam-
ined school-level prior mathematics proficiency and found 
no statistically significant differences among schools that 
dropped out or stayed in the study in either group. Teacher 
staffing changes across study years were similar in both 
groups; 29% and 30% of teachers in the treatment and con-
trol groups respectively taught Grade 5 mathematics in Year 
2 only. These teachers were included in all data analyses.

Table 1 shows the characteristics of the 46 schools that 
completed the study. Despite the efforts to oversample, stu-
dent populations at participating schools were still predomi-
nantly White, and only two urban schools participated. 
About two-thirds of the schools had only one teacher who 
taught Grade 5 mathematics; the rest had up to four. For 
WVGSA analyses, we included all Grade 5 students for 
whom the WVDOE provided the Grade 5 score. Of these, 
4.7% were missing WVGSA Grade 4 score data, which were 
imputed in the analyses.

The treatment and control groups were statistically equiv-
alent at baseline on all variables examined. Campus-level 
data were obtained from publicly available information 
released by the NCES (n.d.). There were no statistically sig-
nificant differences between treatment and control groups on 
campus poverty, campus urbanicity, or campus ethnic distri-
butions. Student-level data were obtained from the WVDOE. 
Prior mathematics achievement was also equivalent between 
groups; there was no statistically significant difference 
between groups on the Grade 4 WVGSA. The multilevel 
model used to test these group differences is introduced in 

the Data Analysis Methods section, and specific findings are 
presented in the Results section under Research Question 
(RQ) 1. There was also no significant difference between 
groups in gender distributions.

TABLE 1
Characteristics of Schools, Teachers, and Students that 
Completed the Study

Variable Control Treatment

School characteristicsa

 Total count of schools 23 23
 School type
  Elementary and elementary/

middle schools
22 20

  Middle and middle/high schools 1 3
 Free or reduced-price lunch (%)
  Mean 50.9 48.0
  Range 25.3–71.5 31.1–81.5
 Urbanicity (count)
  Urban 0 2
  Suburban 3 1
  Town 5 1
  Rural 15 19
 Campus ethnicity (mean %)
  African American 1.9 2.6
  Asian 0.3 0.2
  Hispanic 1.3 0.7
  Native American 0.02 0.1
  White 94.4 94.4
Teacher characteristics
 Total count of teachers 33 38
 Female (%) 87.5 90.3
 Years teaching full-time
  Mean 10.3 10.8
  Range 1–39 0–37
 Master’s degree (%) 24.1 36.8
Student characteristicsb

 Total count of students 979 940
 Female (%) 49.0 52.1
 Grade 4 WVGSA proficiency level (%)
  Level 1 (below basic) 24.4 25.1
  Level 2 (basic) 38.9 35.9
  Level 3 (proficient) 24.6 24.2
  Level 4 (advanced) 7.5 10.1
  Grade 4 data missing 4.6 4.8

Note: WVGSA, West Virginia General Student Assessment.
aSource: National Center for Education Statistics (n.d.). There were no 
statistically significant differences between the groups for the school-level 
poverty indicator, urbanicity, or campus ethnicity.
bSource: West Virginia Department of Education. There were no statisti-
cally significant differences between the groups for gender or prior achieve-
ment.
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RM-CC5 Intervention

RM-CC5 and its adaptive, blended learning model were 
implemented in the treatment condition as the adopted, core 
instructional resource for a school, intended to replace any 
textbook materials. Teachers were expected to use Reasoning 
Mind every day as their core curriculum, and they were 
asked to dedicate 90 minutes per day to mathematics instruc-
tion for all Grade 5 students. Students worked individually 
on computers throughout the class period, and the teacher 
worked with individual students or small groups of students. 
RM-CC5 incorporated Aleven et al.’s (2016) three theory-
relevant nested adaptive learning loops (discussed earlier): 
(a) Students received immediate feedback as they solved 
problems; (b) the technology changed the pace of instruction 
and depth of problem-solving challenges in response to stu-
dent work, and teachers were provided detailed system 
reports to make decisions about differentiated instruction; 
and (c) implementation coordinators (ICs) employed by 
Reasoning Mind evaluated teachers’ implementation against 
a rubric and focused their coaching accordingly. We discuss 
students, teachers, and ICs in more detail in the following.

While using RM-CC5, students engaged in a series of 
“missions” aligned with learning objectives; in each mis-
sion, they worked on math problems with multiple represen-
tations at three levels of difficulty (Figure 1). Prior to use in 
MCIS, 49 learning objectives in RM-CC5 had been aligned 
to state instructional standards. In addition to these, learning 
objectives below and above grade level were also available 
as appropriate. Within each objective, Level A problems pro-
vided practice in one-step problem solving with a target 
skill, Level B problems involved more steps and went 
beyond direct application of a target rule, and Level C prob-
lems integrated content from beyond the current objective. 
Problem difficulty was differentiated based on students’ per-
formance on the objective. In addition, RM-CC5 provided 
136 “Smarter Solving” activities to prepare students for the 
end-of-year assessment. These were intended to be used dur-
ing the first 15 minutes of class each day.

Building on research on engagement with technology 
(e.g., Connolly, Boyle, MacArthur, Hainey, & Boyle, 2012; 
Federation of American Scientists, 2006), RM-CC5 sought 
to motivate students by providing a supportive instructional 
environment with game-like features, such as narratives, 
cinematics, characters, and awarding of points. A character 
named “Genie” provided direct coaching and illustrated pos-
itive attitudes and behaviors.

Teachers were provided with a dashboard that displayed 
real-time student performance data on the learning objective 
and made recommendations for instruction (see Figure 2). 
Teachers were given guidance to work with individual stu-
dents or small groups of students. Consistent with good use 
of formative assessment, RM-CC5 also enabled teachers to 
assign follow-up assessments to see if their inventions helped.

Over 2 years, the IC team provided approximately 60 
hours of required content-rich teacher professional develop-
ment (PD) to guide teachers in how to implement the blended 
learning approach. The first PD experience was an in-person 
workshop that provided an orientation to the program. 
Subsequent PD was delivered in modules throughout each 
school year, with options for both in-person and online 
engagement. Each school was assigned an IC who stayed in 
frequent contact with schools during implementation and 
visited them as necessary. The IC team for the MCIS Study 
comprised eight ICs and a lead coordinator who reported to 
the research team. ICs conducted classroom observations 
regularly, using a rubric to benchmark each school’s imple-
mentation throughout the year and coached teachers in 
improving instruction and achieving high-quality implemen-
tations of adaptive, blended learning.

Measures

Student achievement measures. The primary independent 
variable was end-of-year mathematics achievement, mea-
sured by the WVGSA. The WVDOE provided the data  
from this assessment. The WVGSA has two parts: a com-
puter-adaptive test and performance tasks. It includes  
multiple-choice questions, extended response items, and 
technology-enhanced items. Performance tasks require stu-
dents to apply their knowledge and skills to respond to com-
plex real-world problems. For each Grade 5 student in the 
measurement year (SY2015–2016) cohort, the WVDOE 
provided the Grade 5 mathematics scale score and profi-
ciency level in spring 2016 (outcome measure) and the 
Grade 4 mathematics scale score and proficiency level in 
spring 2015 (covariate measure). The WVDOE also pro-
vided student-level information about gender and ethnicity.

Teacher instructional logs and survey. The MCIS Study 
elicited treatment and control teachers’ self-reports of their 
classroom practice and implementation. Teacher participa-
tion was managed by one teacher liaison who communicated 
with each of the teachers in both the treatment and control 
groups throughout each year. To support attainment of high 
response rates, incentives described previously included sti-
pends to participating teachers in both groups, and we 
engaged the assistance of the ICs to follow up with nonre-
sponsive teachers.

The research team developed two measures, both admin-
istered online to teachers in both groups. The first was an 
implementation log. The log was designed to take about 10 
minutes to complete and asked about instructional practices 
on a given day: the length of the class period, the teacher’s 
use of data to make instructional decisions, the kinds of 
mathematical interventions the teacher used, the materials 
and technology the class used, the interaction structures the 
students worked in (e.g., whole class, individual, pairs), and 
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teachers’ perceptions of student engagement. All teachers 
were asked to fill out the log for 5 days in a row in each of 3 
separate weeks that researchers selected during the measure-
ment year (for a total of 15 instructional days). The second 
measure was a survey administered at the end of the school 
year. The survey for both groups asked about satisfaction 

with their curriculum, overall technology use, test prepara-
tion activities, professional development experiences, and 
perceptions of impacts of the curriculum on students’ 
achievement. Additional questions for treatment teachers 
concerned interactions and challenges with various aspects of 
RM-CC5.

FIGURE 1. Screen shots of student views. (Top) Reasoning Mind’s Grade 5 Common Core Curriculum assignments are presented 
as missions in a game. This map structures the sequence of activities in a learning objective. (Bottom) Activity screen with multiple 
representations to help students develop a more generalized and complete understanding of fractions.
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System use metrics for students. The RM-CC5 system cap-
tured extensive data for students and teachers as they used 
the digital materials throughout the school year. We used the 
following metrics to characterize student performance and 
intensity of use in the RM-CC5: total time logged into 
RM-CC5 during the school year, learning objectives met, 
number of practice problems given, accuracy of problem 
solving, total time spent in Smarter Solving lessons during 
the school year, and Smarter Solving lessons completed.

Additional measures. The MCIS team also gathered addi-
tional data about classroom implementation, teacher experi-
ences, and student dispositions through observations, 

interviews, and surveys. Fully analyzing and reporting on 
these additional instruments is beyond the scope of this arti-
cle; more details on implementation are discussed elsewhere 
(e.g., Bumgardner, Herman, Knoster, & Knotts, 2017; Sin-
gleton, Roschelle, Feng, & Shechtman, 2019).

Data Analysis Methods

All analyses were conducted on an “intent to treat” basis 
with the school as the unit of treatment. For confirmatory 
RQ1, we used multilevel modelling (MLM), specifically 
two-level hierarchical linear models (students nested within 
schools), to estimate the effects of the treatment (Raudenbush 

FIGURE 2. Screen shots of teacher views. (Top) A portion of the Objective Report that teachers can generate to find out how students 
are doing on individual topics. It includes links to the Activity Logs, allowing teachers to easily view the logs for each objective. (Bottom) 
Quiz for progress monitoring. Student performance on this assessment will inform how the system adapts to student needs.
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& Bryk, 2002). We considered using a three-level model; 
however, because about two-thirds of the schools had only 
one teacher participating in the study, a two-level model was 
more appropriate. For a given school, the model included all 
data provided by the WVDOE for the school’s Grade 5 stu-
dents (i.e., no students were omitted for any reason). The 
two-level MLM accounts for measurement and sampling 
error at both the student and school levels, resulting in cor-
rectly adjusted standard errors for the treatment effect. We 
modeled the mean differences in Grade 5 WVGSA between 
students in treatment and control schools, controlling for 
prior achievement, as measured by the Grade 4 WVGSA. 
The MLM was as follows:

Student level: Y = + X +e

School level: = +

ij 0j 1j ij ij

0j 00 01

π π

π β β II  +rj 0j

where Y
ij
 was the Grade 5 WVGSA for the i-th Grade 5 stu-

dent in the j-th school; X
ij
 was a student-level covariate (i.e., 

Grade 4 WVGSA); I
j
 was an indicator of the j-th school 

being in the treatment group; β
00

 was a constant representing 
the expected (average) student outcome when the grand-
mean-centered student level covariates had values of zero 
and the student was in the control condition; β

01
 was the esti-

mate of the treatment effect of the intervention; and e
ij
 and r

0j
 

were the student- and school-level residual terms. Missing 
Grade 4 data were imputed using multiple imputation (Azur, 
Stuart, Frangakis, & Leaf, 2011). Analyses were run using 
the Stata mi command with 20 implicates (these are copies 
of the database with different values imputed for the missing 
Grade 4 scores). Covariates in the multiple imputation were 
school ID, gender, and ethnicity (White/non-White). Effect 
size was calculated as the number of points of difference 
attributable to the treatment divided by the pooled within-
group estimate (including both treatment and control stu-
dents) of the standard deviation of student scores.

To test for equivalence of groups at baseline, we used a 
similar two-level model but with Y

ij
 as the Grade 4 WVGSA 

for the i-th Grade 5 student in the j-th school, no covariate, I
j
 

as an indicator of the j-th school being in the treatment group, 
and β

02
 as the estimate of differential baseline achievement.

For confirmatory RQ2, we examined the treatment effects 
within subgroups comprising students at each of the four 
Grade 4 proficiency levels (defined by the state). We also 
examined achievement for female versus male students. 
Within each subgroup, we applied the two-level models to 
test for baseline equivalence and treatment effect. Within 
each implicate, students were assigned to Grade 4 profi-
ciency level based on the observed or imputed Grade 4 score 
(allowing the same student to be in different proficiency lev-
els in different implicates). The regressions for each Grade 4 
proficiency level subgroup included all students in each 
implicate who were assigned to that proficiency level. Had 
any tests turned up statistically significant, we were prepared 

to manage the risk of inflated Type I error rates by using the 
false discovery rate procedure of Benjamini and Hochberg 
(1995).

All models were fit using the xtmixed procedure within 
Stata version 13 (using the “mi estimate” prefix) and 
restricted maximum likelihood estimation. Continuous 
covariates were grand mean centered. Categorical variables 
were represented as 0/1 indicators for each category.

For the exploratory research questions, we conducted 
descriptive, correlational, and MLM analyses. For RQ3, we 
conducted descriptive analyses of teachers’ reports on the 
teacher instructional logs and teacher survey in both the 
treatment and control groups. For RQ4, we conducted 
descriptive analyses of students’ RM-CC5 system use met-
rics in the treatment group only. We also calculated a cor-
relation matrix to examine collinearity among Grade 4 
WVGSA, Grade 5 WVGSA, and key RM-CC5 system use 
metrics. Means, population standard deviations, and corre-
lations were calculated using the 20 implicates as if they 
represented a data set 20 times as large as the observed data. 
We also used the two-level MLM model to examine the pro-
portion of variance (R2) in Grade 5 WVGSA accounted for 
differentially by Grade 4 WVGSA and key RM-CC5 system 
use metrics. To calculate R2 values, we first calculated pre-
dicted values based on the multiply imputed xtmixed regres-
sions and then calculated the residuals (i.e., the differences 
between the predicted values and observed or imputed val-
ues). The ratio of the variance of the residuals divided by 
the variance of the observed/imputed values was the esti-
mate of 1 – R2.

Results

Confirmatory Analyses

Table 2 presents descriptive and inferential statistics in 
the overall sample and for selected subgroups.

RQ1: Impact on achievement. As shown in the Grade 4 col-
umn of Table 2, the experimental groups were equivalent at 
baseline on the Grade 4 WVGSA. As shown in the Grade 5 
column and Treatment Effect Grade 5 columns, a two-level 
MLM model controlling for Grade 4 WVGSA indicated that 
the main effect of assignment to condition did not result in a 
statistically significant difference on the Grade 5 WVGSA: 
There was no overall difference in outcomes between the 
treatment and control groups. Both the control and treatment 
schools were distributed across the range of school-level 
achievement at both Grade 4 and Grade 5 (Figure 3). The cor-
relation between the Grade 4 (including imputed values) and 
Grade 5 WVGSA was high (n = 1,919, r = 0.79, p < .0001).

RQ2: Impacts by prior achievement. This analysis tested 
the treatment effects for students at different levels of prior 
achievement (see Table 2). Students were divided into four 
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subgroups corresponding to Grade 4 WVGSA achievement 
levels. We also examined treatment effects by gender (cell 
sizes for ethnic subgroups were too small to analyze). For 
each subgroup, separate two-level MLM models indicated 
baseline equivalence on the Grade 4 WVGSA and no differ-
ences between control and treatment groups on the Grade 5 
WVGSA.

Exploratory Analyses

RQ3: Teacher practices in the treatment and control 
groups. To address this question, we analyzed the teacher 
instructional logs and teacher survey. Response rates were 
high and satisfactory on both measures in both groups, with 
slightly higher rates in the treatment group. For the imple-
mentation log, 100% and 87.9% of teachers completed at 
least one log in the treatment and control groups, respec-
tively (t = 2.2, p < .05). The average total logs per teacher 

were 13.4 and 13.3 in the treatment and control groups, 
respectively. For the survey, the response rates were 97.4% 
and 84.8% in the treatment and control groups, respectively 
(t = 1.9, p = .06). Key observations follow.

Curriculum use in the control group. As reported in the 
survey, control teachers reported using a variety of curricula 
at their schools, including EngageNY, Everyday Mathemat-
ics, Excel Math, Go Math, Investigations, iReady Common 
Core, Math Expressions, and New Mark Learning.

Technology use. Technology was used in both treat-
ment and control classrooms, but use was higher in treat-
ment classrooms. On the survey, in response to the question 
about how much their students used technology in a regular 
week of math class, 89.5% of treatment teachers and 10.7% 
of control teachers indicated students used technology for at 
least half the class time, respectively (t = 10.0, p < .0001). 

TABLE 2
Grade 4 and Grade 5 West Virginia General Student Assessment Student Mathematics Scores

Grade 4a Grade 5 Treatment Effect Grade 5b Variance Components

Condition Nc M SD N M SD ES COEFF SE t p Level 1 (student) Level 2 (school) ICC

Whole sample
 Control 979 2,454.4 68.9 979 2,483.1 80.0  
 Treatment 940 2,457.3 71.8 940 2,478.0 78.5 −0.06 −5.0 5.4 −0.94 .348 5,743.6 853.7 0.13
Grade 4 Level 1
 Control 252 2,367.6 35.8 252 2,402.6 57.0  
 Treatment 250 2,367.7 35.0 250 2,405.7 55.1 0.07 3.9 7.0 0.56 .573 2,689.2 719.5 0.21
Grade 4 Level 2
 Control 399 2,448.2 21.1 399 2,475.0 50.1  
 Treatment 353 2,448.7 21.2 353 2,463.3 52.5 −0.16 −8.4 6.8 −1.23 .218 2,155.6 658.5 0.23
Grade 4 Level 3
 Control 252 2,511.5 18.0 252 2,539.6 51.6  
 Treatment 238 2,513.7 17.9 238 2,528.0 47.8 −0.27 −13.2 6.8 −1.94 .053 2,017.3 432.2 0.18
Grade 4 Level 4
 Control 77 2,583.7 26.9 77 2,603.5 51.3  
 Treatment 100 2,578.2 22.4 100 2,591.7 50.2 −0.13 −6.7 9.9 −0.68 .496 2,081.4 721.5 0.26
Female
 Control 480 2,450.3 65.7 480 2,481.7 73.6  
 Treatment 490 2,458.3 69.5 490 2,480.2 75.2 −0.10 −7.9 6.1 −1.30 .194 4,923.4 874.7 0.15
Male
 Control 499 2,458.0 72.2 499 2,484.4 85.7  
 Treatment 450 2,454.6 75.3 450 2,475.5 81.8 −0.10 −2.4 5.7 −0.41 .679 6,254.7 1,326.3 0.17

Note: No statistically significant differences between the treatment and control groups were found, either at Grade 4 or Grade 5. ES = effect size; COEFF = 
coefficient; ICC = intraclass correlation.
aTo test for baseline equivalence between the treatment and control groups, we used the two-level multilevel model (MLM) predicting Grade 4 score. The 
model was run on both the imputed and nonimputed versions of the Grade 4 score for the whole sample and for each subgroup. In each instance, there was 
no statistically significant difference between the groups at the p < .05 level.
bTo test for the main Grade 5 treatment effects, we used the two-level MLM predicting Grade 5 score, controlling for Grade 4 score (with imputed values). 
There was no statistically significant difference between any of the groups at the p < .05 level.
cFor missing Grade 4 data (<5%), we generated 20 implicates of the Grade 4 score and used Smarter Balanced (n.d.) to convert Grade 4 score to proficiency 
level. The Ns reported by proficiency level include the average number of students the 20 implicates placed in each proficiency level, rounded to the highest 
whole number.
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Note that 60.7% of control teachers reported that students 
used technology 26% to 50% of the time.

Teacher role. Teachers in the two groups reported differ-
ent frequencies of teaching activities. In the treatment group, 
teachers reported greater frequency of one-on-one instruc-
tion with individual students (mean of 49.9% of total log 
days vs. 27.0% in the control group, t = 12.3, p < .0001). 
In the control group, teachers reported greater frequency of 
leading whole-group instruction (mean of 39.0% of total log 
days vs. 11.7% in the treatment group, t = 17.7, p < .0001) 
and working with small groups (mean of 29.5% of total log 
days vs. 15.5% in the treatment group, t = 8.8, p < .0001).

Class period length. In the implementation log, treat-
ment teachers reported longer durations of class periods 
devoted to teaching mathematics. The means were 78.4 min-
utes (SD = 9.8) in the treatment group and 69.0 minutes (SD 
= 13.9) in the control group. This difference of an average 
of 9.4 minutes was statistically significant (t = 3.3, p < .01). 
This was most likely related to RM’s request for 90-minute 
mathematics periods.

RQ4: Student engagement with RM-CC5. Because RM-CC5 
is adaptive to each student’s pace of learning, analyses of 
student use attended to variation at both the student and 
school levels. Table 3 shows the descriptive statistics for 
each of the metrics, aggregated at the school level. Complete 
use data were available for 881 (93.7%) of the 940 treatment 

students for whom we had WVGSA Grade 5 scores. In the 
following analyses, calculations used an estimate of 160 
school days per year; 180 total days is typical in WV but 
includes noninstructional days for testing and other special 
events.

Total time logged into RM-CC5 during the school year 
(hours). Across all treatment schools, students were logged 
into RM-CC5 for an overall estimated average of 56.7 min-
utes per day, with a school-level SD of about 7.7 minutes. 
Within any given classroom, students’ log-in time spanned 
a wide range (Figure 4). Note that the majority of the class 
period was spent using the technology, as expected for the 
treatment group.

Core curriculum learning objectives met. On average, 
across treatment schools, students met about 36.7 RM-CC5 
learning objectives, with a school-level SD of 5.2. There 
were 49 Grade 5 objectives, and additional objectives 
were available below and above grade level. Within any 
given school, students varied in how many objectives they 
met (Figure 4).

Practice problems. Students worked an estimated aver-
age of 14.5 problems per day, the majority at Level A. We 
observed considerable variation between schools on both 
number of problems given and levels of accuracy.

Total time spent in Smarter Solving during the school 
year (hours). On average, students spent about 17.2% of the 
online time doing Smarter Solving lessons. This was an esti-
mated average of 9.8 minutes per day, with a school-level 
SD of about 1.2 minutes.

Compliance with the RM-CC5 program. The system use 
metrics (Table 3) suggested that all the RM-CC5 schools 
were compliant with the program model.

Collinearity of RM-CC5 metrics. Table 4 shows a corre-
lation matrix of RM-CC5 metrics and student achievement. 
Most of the system metrics were collinear. Several may have 
varied together because they related to time on task or dos-
age. These include total time logged into RM-CC5, core 
learning objectives met, practice problems given, total time 
spent in Smarter Solving, and lessons completed in Smarter 
Solving. Problem accuracy may have been less closely 
related to these variables because it was more of an indica-
tion of mathematical precision.

RM-CC5 engagement and student achievement. As 
shown in Table 4, there were also correlations between 
RM-CC5 metrics and both Grade 4 and Grade 5 WVGSA. 
Although it was impossible to tease apart causality, we 
extended our two-level MLM model of Grade 5 WVGSA 

FIGURE 3. Scatterplot of Grade 4 and Grade 5 West Virginia 
General Student Assessment, Aggregated at the School Level.
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(with Grade 4 WVGSA imputation) to examine whether 
any variability could be accounted for by the RM-CC5 
metrics. As discussed, the Grade 4 and Grade 5 WVGSA 
were highly correlated with each other, and the Grade 
4 WVGSA alone accounted for 66% of the variance in 
Grade 5 WVGSA. We added RM-CC5 metrics into the 
model: time logged into RM-CC5, number of learning 
objectives met, number of problems given (A, B, and C), 
and problem accuracy for each problem type. Together, 
these added variables accounted for an additional 7.3% of 
the variance. Thus, after controlling for prior knowledge, 
these RM-CC5 usage metrics had a small positive linear 
relationship with Grade 5 WVGSA.

Together, the findings for RQ4 suggest that students 
substantively engaged with the system and all of the 
schools appeared to be compliant with implementing the 
program. There was, however, extensive variation in 
engagement at both the school and student levels. Both 
prior achievement on the Grade 4 WVGSA and grade-level 
achievement on the Grade 5 WVGSA were correlated with 
engagement metrics. Although there are potentially impor-
tant relationships between Grade 4 and Grade 5 achieve-
ment and content coverage, the study was not designed to 
make causal inferences about mechanisms by which this 
may occur. Because of the collinearity among all the vari-
ables, we cannot infer which variables matter the most, if 
any. Also, there may be additional unmeasured factors that 
could have influenced the findings.

Discussion

The RM-CC5 schools in the MCIS Study did not outper-
form schools in the business-as-usual condition. Here, we 

review characteristics of the study and findings from the 
exploratory research questions to consider three broad types 
of potential explanatory factors (Seftor, 2016): experimental 
research design, program implementation, and program the-
ory. We conclude this section with a discussion of the limits 
of generalizability of these findings.

Experimental Research Design

Technical problems with the experimental research 
design or execution could have affected the findings. 
However, we argue that the experimental design was sound 
and well executed. It was conducted by a research team 
independent from Reasoning Mind, the experimental groups 
were equivalent at baseline in prior achievement, and out-
come data were provided by the state. Although there was 
slightly high differential school attrition of 5.9%, this was 
not likely to have affected the results; we examined school-
level prior mathematics proficiency and found no statisti-
cally significant differences between schools that dropped 
out or stayed in the study in either group.

There was also a strong and confirmable contrast 
between resources used in the treatment and control 
groups. RM-CC5 program theory was based on a concep-
tualization of adaptive, blended learning classroom mod-
els in which students interact one on one with technology 
as a primary mechanism for instruction, the system moni-
tors student progress frequently, and the teacher and tech-
nology use data to adapt instruction to individual needs. In 
our findings for RQ3, we found that most of the control 
group curricular resources were paper-based (however, 
iReady and GoMath include technology), and although 
technology was available in the control group, the role of 

TABLE 3
Reasoning Mind’s Grade 5 Common Core Curriculum (RM-CC5) System Use Key Metrics Aggregated at the School Level and 
Summarized Across Schools

System Use Metric N M SD Minimum Maximum

Total time logged into RM-CC5 during school year (hours) 23 151.3 20.5 98.9 204.0
Core curriculum lessons  
 CC5 learning objectives met 23 36.7 5.2 26.2 46.5
 Practice problems given
  Level A 23 1840.3 618.8 1219.9 3993.4
  Level B 23 201.9 77.9 76.9 343.8
  Level C 23 274.1 236.9 44.2 928.2
 Practice problem accuracy (%)
  Level A 23 77.4 5.0 67.1 85.6
  Level B 23 56.4 6.8 45.3 72.2
  Level C 23 50.4 10.4 32.1 68.3
Smarter Solving lessons
 Total time during school year (hours) 23 26.0 3.1 20.4 33.2
 Sessions 23 104.5 13.6 80.6 129.3
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technology was clearly supplemental, as technology was 
used less than 50% of classroom time in the majority of 
control classrooms. Further, observers found a statistically 

significant higher degree of data use in the RM-CC5 class-
rooms than in the control group (Bumgardner et al., 2017). 
There was likely some degree of adaptive, blended 

FIGURE 4. Distributions within treatment schools of total time logged into the Reasoning Mind system and total objectives met (sorted 
by school median).
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learning in some control classrooms, yet there still was a 
strong contrast between the treatment and control groups 
in the degree of reliance on technology to deliver instruc-
tion and use of student data to adapt instruction and thus in 
the intensity of adaptive, blended learning.

One design issue to consider in future research is 
whether a state accountability measure is the best way to 
characterize achievement differences between groups 
using different instructional approaches. The research 
team considered a range of alternative assessments and 
reached the opinion that given the policy context of the 
research and full-year scope of the intervention, the stron-
gest research design would use the state’s assessment as 
the main outcome measure. This supports the external 
validity of the research; the WVGSA is an important edu-
cational outcome measure in West Virginia, and end-of-
year accountability assessments matter in every state. 
Further, after examining information about relevant stan-
dards and assessments in WV and in other states, the 
research team did not find a reason to suspect these WV 
results would not generalize to states using Common Core 
Standards or Smarter Balanced Assessments (Smarter 
Balanced Assessment Consortium, 2012).

However, one potential limitation may be a lack of 
instructional sensitivity; state accountability assessments are 
typically “distal” measures (Ruiz-Primo et al., 2002), not 
intended to be sensitive to the specific instructional intent of 
any particular intervention (Lipsey, 1990; Lipsey & Hurley, 
2009). Indeed, there have been some critiques of the instruc-
tional sensitivity of the recent end-of-year assessment 
designs (Polikoff, 2016). In the MCIS study, RM-CC5 
potentially could have more effectively supported learning 
for students who needed content below the Grade 5 level, 
but the Grade 5 WVGSA would not likely have been sensi-
tive enough to instruction below grade level to enable detec-
tion of differences between groups. Also, RM-CC5 may 
have focused in more depth on Number and Operations top-
ics than was captured by the WVGSA measure.

Program Implementation

Another possible explanatory factor could be related to 
lack of implementation of the digital curriculum. However, 
this does not appear to be the case. Overall, all the treatment 
schools followed the RM-CC5 program with fidelity to the 
desired intensity of usage. In particular, all schools used 
RM-CC5 as their core Grade 5 resource, the implementation 
coordinators reported coaching teachers in each school, and 
the RM-CC5 system metrics showed that students in all 
schools were using the system throughout the school year. 
There was, however, significant variation among schools in 
details of implementation beyond the overall implementa-
tion fidelity benchmarks. In our extensive exploratory analy-
ses, we did not find any single mediating variable to account 
for achievement differences. One moderator, prior achieve-
ment, predicted both system use and outcomes. However, 
we were unable to make causal claims about this given col-
linearity among all the variables.

Program Theory

Finally, the underlying program theory that informed the 
design of the system may have had problems, gaps, or 
nuances that could have limited the potential of RM-CC5 to 
impact achievement. RM-CC5 program theory was based on 
a conceptualization of adaptive, blended learning classroom 
models in which students interact one on one with technol-
ogy as a primary mechanism for instruction, the system 
monitors student progress frequently, and the teacher and 
technology use data to adapt instruction to individual needs. 
As an efficacy study, MCIS was not designed to evaluate 
claims about specific aspects of the program design or the-
ory; however, findings from our exploratory analyses point 
to two important themes that might be explanatory factors 
and would be worthy of further study.

The first theme relates to the balance between adaptive 
learning (which prioritizes individuals’ mastery of content) 
and coverage-oriented learning. We noted that in the 

TABLE 4
Correlation Among System Use Metrics and Achievement Key Metrics Correlated With West Virginia General Student Assessment 
(WVGSA) Scores and Among Each Other

System Use Metric A B C D E F G

A. Grade 4 WVGSA  
B. Grade 5 WVGSA .798*  
C. Total hours logged into Reasoning Mind .149* .152*  
D. CC5 objectives met .437* .548* .411*  
E. A, B, and C problems given .184* .244* .286* .681*  
F. A, B, and C accuracy (%) .512* .547* .112 .168* −.034  
G. Total Smarter Solving hours .279* .310* .713* .447* .158* .196*  
H. Total Smarter Solving sessions .459* .517* .516* .673* .442* .053 .810*

*p < .0001.
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treatment condition, there was wide variation in coverage of 
learning objectives at both the student level and school level. 
If too much time is spent on mastering topics early in the 
curricular sequence, the lack of coverage of later topics may 
interfere with raising achievement on accountability mea-
sures such as the WVGSA; assessments like these are 
designed to gauge progress on curricular expectations across 
all the topics in a school year. Indeed, one anecdotal, 
although frequent teacher complaint about RM-CC5 was 
that students were not experiencing all the material that 
would be tested. We heard no similar complaints from teach-
ers in the control condition.

An adaptive learning system might compromise individ-
ual student performance on a state assessment if the adaptive 
algorithm limits students’ exposure to their state’s expected 
topics for their grade level. Long ago, Burris, Heubert, and 
Levin (2004a, 2004b) addressed a similar tension in the 
design of the Accelerated Math program: If the system 
responds to student struggles by slowing the pace of instruc-
tion, students will miss out on later topics. Research on mas-
tery learning has demonstrated the possibility of addressing 
pace-related challenges (Guskey & Gates, 1986), but per-
haps RM-CC5’s pacing for struggling students needs further 
adjustment.

The second theme is the potential for shifts in classroom 
activity types to interfere with raising achievement. The 
RM-CC5 blended learning model emphasized independent 
student work and teacher intervention, a shift from tradi-
tional classrooms that typically also include whole-class 
instruction, whole-class discussion, and peer or small-
group interactions. The blended learning model did not 
include a rotation through small-group activities, which is 
a typical recommendation for blended learning approaches 
(Powell et al., 2015). The lack of emphasis on small-group 
work was reflected in teachers’ reports of their classroom 
activities. Though we do not have data to draw specific 
conclusions, we wonder if program theory missed opportu-
nities that complementary nontechnology small-group and 
full-classroom activities might offer. For example, coop-
erative learning and peer tutoring are effective small group 
activities (Kyndt et al., 2013). Also, the lack of small-group 
work might have influenced students’ motivation, engage-
ment with learning, and opportunities for social-cognitive 
processing. Research on the role of full-classroom discus-
sions suggest that teachers use such discussions to estab-
lish mathematical goals and norms, engage and develop 
students’ reasoning, and develop a sense of belonging and 
identity through classroom relationships around mathemat-
ics (Franke, Kazemi & Battey, 2007).

Limits to Generalizability of the Experimental Findings

There are important limits to the generalizability of the 
finding that the use of the RM-CC5 digital core curriculum 

resulted in the same level of achievement as in business-as-
usual classrooms. First, as discussed, the demographic char-
acteristics of WV and the sample in MCIS were not reflective 
of all regions of the United States. Schools that implement 
RM-CC5 in a different region or with different student popu-
lations may experience different results. Also, other adap-
tive, blended learning core curricula are in use, such as 
Time to Know (Rosen & Beck-Hill, 2012). Such products 
may differ from RM-CC5, for example, in terms of pro-
gram theory and implementation, and they might perform 
differently at scale. In addition, our findings have limited 
generalizability to other content or grade levels.

Conclusion

The MCIS Study was conducted at an important time in 
the national discourse about longstanding needs to improve 
mathematics achievement. Educational leaders were then 
and are now making decisions about new curriculum 
resources and approaches to meet college- and career-
ready goals. Use of paper curriculum resources continues 
to decline, and new digital offerings are abundant. 
Adaptive technologies and blended learning are frequently 
featured for their potential to advance learning, yet empiri-
cal results from rigorous, large-scale, independent evalua-
tions are rare, especially for core elementary school math 
resources.

The primary purpose of the MCIS Study was to evalu-
ate the efficacy of a new digital core curriculum for 
improving achievement in Grade 5 mathematics. Although 
it is no doubt disappointing to some stakeholders, MCIS’s 
null result does not indicate that the treatment approach 
was bad or did not work; rather, it shows that the research 
could not distinguish its effects from business-as-usual 
curricula. With regard to future research, the null result is 
not a strong warrant for cutting off further exploration of 
blended or adaptive learning, as we detected no harm to 
students, and further improvements could yield eventual 
measurable impacts.

We noted three issues that deserve attention in future 
research and development. First, measurement remains a 
challenge in studies of educational technology interven-
tions. Given the potential limits of the instructional sensi-
tivity of state accountability measures, the educational 
technology sector is not confident that these measures ade-
quately indicate the true value of innovative approaches. 
Second, adaptive approaches have an unresolved tension 
between coverage and mastery. When the pace of a student 
through instructional objectives slows to allow greater 
mastery, student performance on an assessment of grade-
level standards might be compromised. The field needs 
stronger theory to manage this balance in classroom set-
tings. Third, we noted that a blended learning approach can 
increase the dominance of two activities: independent 
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learning at a computer and teacher interventions. Although 
these activities may be beneficial, there may also be teacher 
or learner strengths that are better activated in alternative 
activities, such as full classroom instruction or small-group 
collaboration. Thus, we need more program theory about 
how the “blend” in a blended learning classroom can be 
best tuned to leverage learner and teacher strengths as well 
as technological capabilities.

Researchers and policymakers have long held that it is 
important to report null effects to retain balance and objec-
tivity in our understanding of potential innovations. A null 
effect can sharpen our thinking and make us realize how 
many factors must be understood and controlled to success-
fully improve the complex system that exists in a mathemat-
ics classroom. Through research that finds a null effect, we 
can learn what should be measured more carefully the next 
time, and we can refine hypotheses. As we explore in more 
detail in Singleton et al. (2019), MCIS demonstrates that a 
complex change in classroom practices, including the inten-
sive daily use of technology and data, as well as shifts in the 
role of the teacher, can be introduced widely across a state. 
We expect the shift from paper to digital curriculum 
resources to continue. A task for further research is to lever-
age what we are learning about the capabilities of digital 
resources and malleability of classroom routines to realize 
improved outcomes at scale.

Appendix

The additional content in this Appendix includes (a) more 
detail on the selection of Reasoning Mind and (b) a power 
analysis.

Detailed Discussion of the Selection of Reasoning Mind

Several factors guided our selection of Reasoning Mind 
for this evaluation.

A first factor was related to the curriculum design. 
Leaders in educational technology research, responding to 
broad critiques of American mathematics curricula as “a 
mile wide and an inch deep” (Schmidt, Wang, & McKnight, 
2005), have recommended that mathematics curricula 
address key dimensions of intensity, focus, and coherence 
(National Mathematics Advisory Panel, 2008). Before 
engaging in this work, we gathered evidence that 
Reasoning Mind was addressing curricular coherence and 
providing opportunities for in-depth learning with feed-
back. Reasoning Mind’s design process was based on a 
well-regarded international mathematics program from 
Russia (as discussed in Karp & Vogeli, 2010) as well as 
artificial intelligence techniques that enable adaptive 
learning (Khachatryan et al., 2014). Reasoning Mind 
implements blended learning where teachers typically 
work with many individuals or small groups in depth 

during a class period while other students get instruction 
directly from the computer.

A second factor was growing adoption. Reasoning Mind 
was serving approximately 100,000 students per year with 
various products, and use was growing annually. Following 
a successful pilot in West Virginia, other schools in the 
state were indicating an interest in adoption. Growing 
interest in adoption is important for the significance of the 
study and has the added benefit of making recruiting for an 
RCT possible.

A third factor was prior evidence of promise. A published 
review of four prior studies on Reasoning Mind core curri-
cula had shown statistically significant positive impacts on 
student achievement, with standardized effect sizes of 0.16, 
0.24, 0.63, and 0.79 (Roschelle, Bhanot, Patton, & 
Gallagher, 2015). The studies were conducted in low-
income schools in Texas and West Virginia with a variety of 
outcome measures (i.e., Texas statewide assessments, a 
Singapore Math test, Iowa Test of Basic Skills). Although 
the effects were significant and promising, it is important to 
note that these studies all used quasi-experimental designs 
with imperfectly matched controls and lacked the strength 
of validity associated with random assignment. Also, an 
evaluation of Reasoning Mind’s supplementary product 
found no impact (Wang & Woodworth, 2011); however, 
findings from supplementary use of one product do not nec-
essarily predict outcomes from core use of a different prod-
uct from the same company.

A fourth factor was the capacity of the Reasoning Mind 
team to support high-quality implementation in a large sam-
ple of schools. As discussed previously, Cheung and 
Slavin’s (2013) meta-analysis showed that high-quality 
implementation was associated with larger effect sizes. 
Similarly, a recent meta-analysis of one-to-one computing 
initiatives has pointed to integration and implementation as 
key success factors (Bethel, 2015). Also, in O’Donnell’s 
(2008) systematic review of this large literature base, the 
author concluded that a study of an intervention that does 
not control fidelity of implementation may provide data 
about whether it succeeded or failed but does not provide 
significant practical guidance for others. We observed that 
Reasoning Mind built a teacher coaching model around a 
rubric that aligned well with Nelson, Cordray, Hulleman, 
Darrow, and Sommer’s (2012) research-based approach to 
measuring implementation fidelity, which focuses on adher-
ence, duration, and participant responsiveness. Electronic 
records informed implementation coordinators (Reasoning 
Mind employees) whether students were using the program 
daily and how much time was spent in each type of module. 
The team could also check whether teachers are using the 
system reports to track student progress and engagement 
with progressively difficult problems. Implementation coor-
dinators could use these data as they observe classrooms 
and interact directly with teachers. Overall, the Reasoning 
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Mind team exhibited a high ability to track whether the pro-
gram is being delivered as expected and use this informa-
tion to help teachers improve their practice (see Roschelle, 
Gaudino, & Darling, 2016).

Power Analysis

To determine the target sample size, we conducted a 
power analysis using Hedges and Rhoads’s (2010) method 
for school-level random assignment design. With a target 
minimum detectable effect (MDE) of .25 standard deviation 
units, we estimated that approximately 44 schools (22 in each 
condition) would be needed to detect the main treatment 
effect (with 80% power and a 5% significance level). We 
assumed intraclass correlations (ICCs) at the school level of 
.22, an 80% correlation between the Grade 4 and Grade 5 
scores, and that an average of 50 students would be enrolled 
in each school through the school year. To protect the integ-
rity of the study from the possibility of school attrition and 
provide additional power for further exploratory analyses, we 
decided to recruit 12 additional schools, for a total of 56 
schools. After the study was completed, we recalculated the 
MDE size using the observed data. The calculation was based 
on 23 schools in each condition, an average of 41.7 students 
per school, a within-group pooled standard deviation of the 
outcome variable of 81.2, an ICC of 0.129, and a reduction in 
variance due to use of the Grade 4 score as a covariate of 
70.3% for between-school variance and 64.2% for within-
school variance. The recalculated MDE size was 0.18 (con-
siderably higher than the small, nonsignificant, negative 
effect size we actually found empirically).
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