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Reasoning about numerical magnitudes is a key aspect of mathematics learning. Most research examining
the relation of magnitude understanding to general mathematics achievement has focused on whole
number and fraction magnitudes. The present longitudinal study (N � 435) used a 3-step latent class
analysis to examine reasoning about magnitudes on a decimal comparison task in 4th grade, before
systematic decimals instruction. Three classes of response patterns were identified, indicating empirically
distinct levels of decimal magnitude understanding. Class 1 students consistently gave correct responses,
suggesting that they understood decimal properties even before systematic decimal instruction. Class 2
students were accurate when a 0 immediately followed the decimal, but were inaccurate when a zero was
added to the end of the decimal string, suggesting a partial understanding of place value; their
performance was also negatively influenced by a whole number bias. Class 3 students showed misun-
derstanding of both place value and a whole number bias. Class membership accurately predicted 6th
grade mathematics achievement, after controlling for whole number and fraction magnitude understand-
ing as well as demographic and cognitive factors. Taken together, the findings suggest students may
benefit from instruction that emphasizes decimal properties earlier in school.

Educational Impact and Implications Statement
The present study showed that 4th-grade students use rule-based strategies to reason about decimal
magnitude, even before they have had systematic instruction in school. In turn, level of decimal
magnitude understanding was associated with later understanding of fractions and mathematics
achievement in the intermediate grades. Findings highlight the importance of emphasizing decimal
properties and suggest that decimal instruction could be presented earlier in school.
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Reasoning about symbolic whole number magnitude and
symbolic fraction magnitude both contribute to broad mathe-
matics achievement (e.g., Bailey, Hoard, Nugent, & Geary,
2012; Resnick et al., 2016; Siegler & Pyke, 2013; Siegler,
Thompson, & Schneider, 2011, 2012). The role of decimal
magnitude understanding in general mathematics achievement,
however, has not been examined. If decimal, fraction, and
whole number magnitude understanding each contribute inde-
pendently to mathematics achievement, then reasoning about
different types of magnitudes may require unique and important
skills or processes. On the other hand, if decimal magnitude

understanding does not predict mathematics achievement
over and above whole number and fraction magnitude under-
standing, it would suggest that decimal magnitudes are pro-
cessed in a way that is similar to fraction or whole number
magnitudes.

To address this gap, the present longitudinal study examined
how students reason about decimal magnitude before they have
had systematic instruction on the topic as well as the contribution
of early decimal magnitude reasoning to later mathematics
achievement. We first characterized the ways that children inter-
pret decimal magnitudes in fourth grade. By using a decimal
comparison task, we sought to identify rule-based strategies re-
flecting different levels of decimal magnitude understanding. We
then assessed whether decimal magnitude understanding in fourth
grade predicts later fraction magnitude understanding in fourth
grade and general mathematics achievement in sixth grade. To
motivate the study, we review the literature on how whole number,
fraction, and decimal magnitude understandings develop, the role
of rule-based reasoning in understanding magnitudes in decimal
and fraction format, and how such knowledge supports later math-
ematics achievement.
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Development of Whole Number, Fraction, and
Decimal Magnitude Reasoning

According to the integrated theory of numerical development, a
unifying feature of mathematics learning is that all real numbers,
including fractions and decimals, have magnitudes that can be
ordered along the number line (Siegler & Lortie-Forgues, 2014;
Siegler et al., 2011). When children learn mathematics, they grad-
ually expand their mental number lines to include larger whole
numbers as well as nonwhole rational numbers (Siegler & Lortie-
Forgues, 2014; Siegler et al., 2011). To understand decimal and
fraction magnitudes, students must reorganize their conceptions of
the number line to accommodate new numerical properties (Sieg-
ler & Lortie-Forgues, 2014; Siegler et al., 2011). It is not known
precisely when students automatically activate numerical repre-
sentations on the number line, although it has been suggested this
occurs with whole numbers by 9 years of age (Laski & Siegler,
2014). It is likely that students use procedures or rules to activate
representations of fractions and decimals through at least the
intermediate grades.

Unfortunately, children often overgeneralize whole number
properties when reasoning about rational numbers (Ni & Zhou,
2005). For example, students may overgeneralize that 0.25 is
larger than 0.3 because 25 is larger than 3, or that 1/4 is bigger than
1/3 because 4 is larger than 3. Common decimal magnitude mis-
conceptions have been identified by a number of researchers
(Irwin, 2001; Resnick et al., 1989; Sackur-Grisvard & Leonard,
1985; Stacey & Steinle, 1999). Misconceptions include an exten-
sion of whole number properties by identifying decimals with
more places to the right of the decimal point as larger (e.g.,
3.214 � 3.8), misunderstanding place value by ignoring zeroes in
the tenths place (e.g., 1.03 � 1.3), and believing that adding a zero
to the end of a decimal increases its magnitude (e.g., 5.40 � 5.4).
Children tend to retain the latter two misconceptions involving the
role of zero longer (Irwin, 2001). Children also misapply proper-
ties of fractions to decimals (Durkin & Rittle-Johnson, 2014). For
example, students may identify decimals with fewer places as
larger (e.g., 1.2 � 1.353) because fractions with smaller denomi-
nators are typically smaller than fractions with larger denominators
(e.g., 1/10 � 1/1000).

Role of Rule-Based Reasoning in Understanding
Magnitudes in Decimal and Fraction Format

At any given time, most students possess multiple strategies for
solving a problem and adaptively choose the strategy that maxi-
mizes speed and accuracy (Siegler, 1996). Adults and children use
a range of rule-based strategies to reason about decimals (Resnick
et al., 1989; Sackur-Grisvard & Leonard, 1985; Stacey & Steinle,
1999; Steinle & Stacey, 1998) and fractions (Fazio, DeWolf, &
Siegler, 2016; Meert, Grégoire, & Noël, 2010; Rinne, Ye, &
Jordan, 2017; Schneider & Siegler, 2010). These strategies incor-
porate both rule-based reasoning and holistic representation of
magnitudes. For example, when identifying which of two fractions
is larger, if both fractions have equal denominators, individuals
may simply identify the fraction with the larger numerator as
larger (Fazio et al., 2016). In this case, the fraction magnitude
is not processed holistically; the problem is solved using an easier
and more efficient strategy. However, when denominators and

numerators are all different, individuals are more likely to reason
holistically about the fraction magnitude (Rinne et al., 2017;
Schneider & Siegler, 2010).

With respect to reasoning about fractions, rule-based strategies
develop and change over time. In a 3-year longitudinal study of
performance on fraction comparisons tasks (Rinne et al., 2017),
students indicated the larger value within fraction pairs. Results
showed that most fourth graders initially overgeneralized whole
number properties and thought that larger numbers in both numer-
ators and denominators yield larger fraction values. Eventually,
some children began to choose fractions with smaller numbers in
both numerators and denominators, believing that this translates to
larger fraction values. That is, they applied an “inverse relation-
ship” rule (i.e., the smaller the number, the larger the fraction), but
failed to recognize that this rule holds only for the numbers in the
denominator—the reverse is true for numbers in the numerator.
However, children who at some point held this partial understand-
ing tended to acquire normative fraction comparisons strategies
earlier than did children who maintained the larger number bias.
Thus, this partial understanding appears to represent a “stepping
stone” on the way to normative strategy use.

Given the shared numerical properties of fractions and decimals,
it is possible that a transitional partial understanding stage exists in
decimal learning that is analogous to the one found in fraction
learning. That is, the use of rule-based strategies for judging
magnitude may develop in a similar fashion for each different kind
of rational number representation. For both fractions and decimals,
children may start with strategies that stem from simple general-
izations of rules for whole numbers. Then, when learning rules that
are distinct to a particular form of representation, children may
initially misunderstand or misapply rules in a predictable, consis-
tent way, only sometimes producing accurate judgments. As rules
are fully learned, children will eventually exhibit normative mag-
nitude judgments.

Relation Between Magnitude Understanding and
Mathematics Achievement

It is widely viewed that reasoning about numerical magnitudes
is foundational in mathematics learning (Halberda, Mazzocco, &
Feigenson, 2008; Jordan et al., 2013; National Mathematics Ad-
visory Panel, 2008; Sasanguie, Göbel, Moll, Smets, & Reynvoet,
2013; Siegler & Lortie-Forgues, 2014; Siegler et al., 2011). Al-
though the relation between nonsymbolic magnitude reasoning and
mathematics achievement is not clear, there is a consistently strong
relation between symbolic magnitude reasoning and mathematics
achievement (De Smedt, Noel, Gilmore, & Ansari, 2013). Under-
standing whole number magnitude is important to early mathemat-
ics learning, while understanding of fraction magnitude supports
understanding of more complex computations and algebraic con-
cepts (Booth & Newton, 2012; Mix, Levine, & Huttenlocher,
1999; Siegler et al., 2011; Wu, 2009). Across this developmental
continuum, understanding of numerical magnitude helps students
assess the plausibility of their answers to arithmetic problems
(Siegler, 2016).

There is one study that examines the role of decimal magnitude
understanding in the context of algebra. DeWolf, Bassok, and
Holyoak (2015) assessed concurrent predictors of seventh-grade
algebra knowledge, including estimation of symbolic fraction,
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decimal, and whole number magnitudes on the number line, a test
of procedural fraction knowledge, and an assessment that focused
on understanding of the relations between the numerator and
denominator of fractions (referred to as the fractions relations
task). Items on the fractions relations task assessed understanding
fraction equivalence, division, inverse relations, multiplying by the
reciprocal, and identifying part-to-part ratios versus part-to-whole
ratios in countable sets. Among this set of predictors, only perfor-
mance on decimal number line estimation and the fraction rela-
tions task emerged as independent concurrent predictors of algebra
knowledge. DeWolf et al. argue that decimal magnitude tests
provide a “purer” measure of numerical magnitude understanding
than do fraction magnitude tests, because unlike fraction magni-
tudes, accessing decimal magnitudes does not explicitly require an
understanding of mathematical relations between two numbers.
That is, although bounded number line tasks involve proportional
reasoning (Barth & Paladino, 2011), whole number and decimal
magnitudes are often reasoned about as continuous one-
dimensional quantities (e.g., a 1.25 L bottle of soda; DeWolf et al.,
2015; Rapp, Bassok, DeWolf, & Holyoak, 2015). The bipartite
structure of fractions, on the other hand, tends to elicit represen-
tation of magnitudes in terms of a two-dimensional relation be-
tween discrete objects (e.g., 3 candies in a box of 12 candies).

Present Study

The aims of the present study were to characterize fourth-grade
students’ use of rule-based strategies on a decimal comparison task
and to assess whether these strategies support fraction magnitude

understanding measured at the end of fourth grade as well as later
mathematics achievement measured in sixth grade. At the time of
this study, in the United States, fourth grade mathematics instruc-
tion typically covers fractions intensely and includes only limited
instruction on decimals toward the end of the school year (National
Governors Association Center for Best Practices, Council of Chief
State School Officers, 2010; Tian & Siegler, 2017). We assessed
children’s decimal magnitude knowledge at the beginning of
fourth grade, before they received any systematic instruction in
school. We expected variability in children’s understanding of
decimals, because children typically have many informal experi-
ences with decimals before systematic instruction (e.g., counting
money; for a review see Mack, 1993).

We designed a decimal comparisons task to identify the rule-
based strategies that children would be likely to use in the absence
of a full understanding of decimal magnitudes. Children were
asked to identify which of two decimals was larger across six
blocks of four items, where each block was designed to capture an
overgeneralization of whole number properties and/or misunder-
standing of place value. Thus, patterns of performance across
different blocks of items indicated what rule-based strategies (cor-
rect or incorrect) children were using to determine which decimal
magnitude was larger. (The items, and their relation to whole
number bias and place value bias, are presented in the materials
section and summarized in Table 1.) If a child can access an
accurate mental representation of decimal magnitude, they should
be accurate across all blocks. If a child uses a rule-based strategy
(i.e., applying whole number properties or misunderstanding place

Table 1
Description and Items in the Decimal Comparisons Task

Block Block description Items Whole number bias Place value bias

1 Different numbers .2 or .4 Helps performance n/a
Both in the tenths position .38 or .32

.08 or .03

.43 or .63
2 Same number .04 or .4 n/a Hurts performance

In tenths vs. hundredths position .05 or .5
.9 or .09
.2 or .02

3 Same number .007 or .7 n/a Hurts performance
In tenths vs. thousandths position .1 or .001

.3 or .003

.006 or .6
4 Different numbers .04 or .5 Helps performance Hurts performance

Larger number in tenths position .2 or .01
Smaller number in hundredths position .9 or .08

.05 or .7
5 Different numbers .06 or .2 Hurts performance Hurts performance

Larger number in hundredths position .09 or .8
Smaller number in tenths position .5 or .08

.1 or .03
6 Different numbers .40 or .6 Hurts performance Hurts performance

Both in the tenths position 24.5 or 24.30
Smaller number has a zero in the

hundredths position
7.20 or 7.4
.8 or .60

Note. Whole number bias in the decimal comparisons task is to identify the decimal with the larger numerals
as having the greater value regardless of the number’s place value. Place value bias in the decimal comparisons
task is to identify the decimal with more zeros between the decimal place and first digit larger than zero as having
the greater value.
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value), we would expect him or her to be accurate only on items
where the correct response is consistent with that strategy. For
example, a student who holds a whole number bias would correctly
identify that 0.4 is larger than 0.2 (because 4 is larger than 2), but
incorrectly identify that 0.04 is larger than 0.2. If the rules the child
used conflicted, we expected the child to perform at chance level.
Take, for example, the item 0.04 versus 0.5; a whole number bias
leads to a correct response, but a place value bias leads to an
incorrect response. A child who misapplied whole number prop-
erties and did not understand place value would perform at chance
on this item. Finally, similar to fractions, where some children
show partial understandings on their way to normative develop-
ment (Rinne et al., 2017), we expected some students to show
partial knowledge of decimals, such as understanding place value
(e.g., correctly identify 0.4 � 0.04) while still possessing a whole
number bias (e.g., incorrectly identify 0.40 � 0.6).

Using a three-step latent class analysis (LCA; Asparouhov &
Muthén, 2014; Vermunt, 2010), we first identified the latent class
structure of fourth graders’ performance across blocks on our
decimal comparisons task. The three-step approach yields a model
that relates class membership to other variables but does not allow
those other variables to influence the latent class structure. Thus,
we characterized rule-based strategies for reasoning about deci-
mals, and then examined how other variables relate to this class
structure. Similar to fraction magnitude understanding (Rinne et
al., 2017) we hypothesized there would be at least three latent
classes: good, partial, and poor understanding. However, there was
no a priori hypothesis for if there would be one or two partial
knowledge classes.

In our three-step model, we also assessed the relation between
decimal class membership in fourth grade with covariates and
mathematics achievement in sixth grade (controlling for the cova-
riates). Covariates include fraction magnitude understanding,
whole number magnitude estimation, general cognitive abilities
(i.e., nonverbal reasoning, attentive behavior, working memory,
receptive vocabulary, and reading fluency), and demographic fac-
tors (i.e., age, free lunch status, gender, and English Language
Learner status). Cognitive predictor variables were chosen based
on known relations to mathematics achievement (Geary, 2004) and
fraction knowledge (Hansen, Jordan, & Rodrigues, 2017; Hecht &
Vagi, 2010; Resnick et al., 2016; Ye et al., 2016). Given that in
previous studies whole number and fraction magnitude under-
standing each uniquely predict later mathematics achievement, and
considering the importance of developing effective rules for rea-
soning about different kinds of numerical properties, we hypoth-
esized that decimal magnitude understanding will also account for
unique variance in later mathematics achievement.

We also constructed a categorical structural equation model
(SEM) to examine whether different types of rule-based strat-
egies for determining decimal magnitude (assessed in the mid-
dle of fourth grade) support learning of rule-based strategies for
solving fraction comparisons at the end of fourth grade, while
controlling for fraction comparison strategies at the beginning of
fourth grade. As discussed above, while decimals and fractions
share numerical properties that are different from whole numbers,
decimals and whole numbers have commonalities not shared by
fractions: in particular, a structure that is grounded solely in
base-10 syntax (i.e., unlike fractions, there is no “bipartite” struc-
ture). This commonality may lead students to maintain similar

internal representations for decimals and whole numbers. Thus, it
is not clear if understanding decimals would help support learning
of fractions. To our knowledge, there have been no studies exam-
ining whether decimal understanding supports later fraction learn-
ing (for review see Tian & Siegler, 2017).

Method

Participants

Participants were part of a larger study on mathematics learning
(Jordan et al., 2013). Students were recruited from nine elementary
schools in two school districts in the same state that serve families
from diverse socioeconomic backgrounds (N � 435). In the sam-
ple, 58.7% participated in a school free/reduced price lunch pro-
gram, a proxy for low-income status; 46.9% was male; 52.1%
identified as White, 39.4% Black, 5.7% Asian/Pacific Island, and
2.8% American Indian/Alaskan Native; and 16.3% additionally
identified as Hispanic. Children’s mean age at the start of the study
was 8.83 years old. Eleven percent of the students were English
language learners, and 11% were receiving special education ser-
vices. Mathematics instruction in all schools was aligned with the
Common Core State Standards (CCSS), starting in fourth grade.

Measures

General mathematics achievement. Mathematics achieve-
ment was assessed using a statewide standardized test, which was
given to all students in sixth grade (American Institutes for Re-
search, 2012). Assessment content included numeric reasoning,
algebraic reasoning, geometric reasoning, and quantitative reason-
ing that is consistent with sixth-grade math standards. Internal
consistency was high at � � .88 (American Institutes for Research,
2012). Scores ranged from 0 to 1,300.

Decimal comparisons. Decimal magnitude knowledge was
assessed with a decimal comparisons task. Students were asked to
compare two decimals and circle the one with the greater value.
There were six blocks of comparison items, with four items in each
block. Each block corresponded to a comparison that focuses on a
particular feature of decimal understanding. Blocks and items were
presented in a fixed order, and are presented in Table 1. In Block
1, students compared decimals containing different digits located
in the tenths position (e.g., 0.2 or 0.4); the correct response is
consistent with whole number properties (e.g., 0.4 is larger than
0.2 and 4 is larger than 2). In Block 2, students compared decimals
containing the same digit but located in either the tenths or the
100ths position (e.g., 0.04 or 0.4); the correct response is incon-
sistent with a place value bias, as this bias would lead to the
incorrect belief that the number with more digits to the right of the
decimal is greater (e.g., 0.4 is larger than 0.04 but 0.04 has more
digits than 0.4). In Block 3, students compared decimals contain-
ing the same digit but located in either the tenths or 1000ths
position (e.g., 0.007 or 0.7); like Block 2, the correct response is
inconsistent with place value bias (e.g., 0.7 is larger than 0.007 but
0.007 has more digits than 0.7). In Block 4, students compared
decimals containing different digits, with the larger-valued digit
located in the tenths position and the smaller-valued digit located
in the 100ths position (e.g., 0.04 or 0.5); the correct response is
consistent with whole number properties (e.g., 0.5 is larger than
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0.04 and 5 is larger than 4) but inconsistent with place value bias
(e.g., 0.04 has more digits than 0.5). In Block 5, students compared
decimals containing different digits, with the larger numeral lo-
cated in the 100ths position and the smaller numeral located in the
tenths position (e.g., 0.06 or 0.2); the correct response is inconsis-
tent with whole number properties and place value bias (e.g., 0.2
is larger than 0.06 but 6 is larger than 2 and 0.06 has more digits
than 0.2). In Block 6, students compared decimals containing
different digits in the tenths position, with the smaller-valued digit
followed by a zero in the 100ths position (e.g., 0.8 or 0.60); like
Block 5, the correct response is inconsistent with whole number
properties and place value bias (e.g., 0.8 is larger than 0.60 but 60
is larger than 8 and 0.60 has more digits than 0.8). Internal
reliability for the decimal comparison task for our sample was high
(� � .95).

Fraction comparisons. The fraction comparisons task had the
same structure as the decimal comparisons task. Students were
asked to compare two fractions and circle the one with the greater
value. There were six blocks of four items presented in a fixed
order. Each block corresponded to a comparison that focuses on a
particular feature of fraction understanding (see Table 2). In Block
1, students compared unit fractions (e.g., 1/3 or 1/5). In Block 2,
students compared fractions with the same denominator but dif-
ferent numerators (e.g., 3/5 or 4/5). In Block 3, students compared
fractions with relatively larger numerators and denominators to
fractions that had relatively smaller numerals in the numerators
and denominators but were larger in magnitude (e.g., 50/100 or
16/17). In Block 4, students compared fractions with the same
numerator but different denominators (e.g., 6/9 or 6/12). In Block
5, students compared reciprocal fractions (e.g., 5/7 or 7/5). In

Block 6, students compared fractions with different numerators
and denominators (e.g., 2/3 or 5/6). Internal reliability for the
fractions comparisons task for our sample was high (� � .90).

Control measures.
Matrix reasoning. The Matrix Reasoning subtest of the

Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler,
1999) assessed nonverbal ability. This test consisted of a 2 � 2
grid with geometric patterns in three cells, with the fourth cell
empty. Students were asked to complete the sequence by selecting
the missing geometric pattern from five response options. Students
received one point for each correct trial with a total 35 possible
points. Internal consistency was � � .90 (Wechsler, 1999).

Attentive behavior. The SWAN Teacher Rating Scale (Swan-
son et al., 2006) is based on criteria for attention-deficit-
hyperactivity disorder from the fourth edition of the Diagnostic
and Statistical Manual of Mental Disorders (American Psychiatric
Association, 1994). For each of the nine items, third-grade math-
ematics teachers rated each student’s attentive behavior on a scale
from 1 (below average) to 7 (above average). Lower scores
represent ratings of poorer classroom attention. Internal consis-
tency for this sample was high at � � .97.

Working memory. The Counting Recall subtest of the Work-
ing Memory Test Battery for Children (WMTBC; Pickering &
Gathercole, 2001) was used to assess working memory. Students
were presented with a sequence of dot arrays, and asked to re-
member the number of dots presented in each array in the correct
order. The number of dots ranged from sets of four dots to seven
dots. After three correct trials out of six, the number of dot arrays
increased by one. Students received one point for each correct trial,

Table 2
Description and Items in the Fraction Comparisons Task

Blocks Block description Items
Whole number

bias

1 Unit fractions 1/3 or 1/2 Hurts performance
1/55 or 1/57
1/4 or 1/5
1/10 or 1/100

2 Different numerators 7/12 or 9/12 Helps performance
Same denominator 5/7 or 6/7

24/48 or 28/48
2/10 or 4/10

3 Numerators and denominators with
relatively larger numbers vs.
relatively smaller numbers but
larger in ratio

50/100 or 16/17 Hurts performance
20/40 or 8/9
5/10 or 3/4
10/20 or 5/6

4 Same numerator 5/3 or 5/2 Hurts performance
Different denominators 2/4 or 2/5

6/9 or 6/12
3/7 or 3/8

5 Reciprocal fractions 3/2 or 2/3 n/a
8/4 or 4/8
5/14 or 14/5
5/6 or 6/5

6 Different numerators 3/10 or 2/12 n/a
Different denominators 12/50 or 8/60

6/33 or 9/30
6/8 or 3/9

Note. Whole number bias in the fraction comparisons task is to identify the fraction with larger numerator
and/or denominator regardless of ratio as having the greater value.
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out of 42 total possible points. Test–retest reliability on this stan-
dardized task is .61 (Pickering & Gathercole, 2001).

Reading fluency. The Sight Word Efficiency subtest of the
Test of Word Reading Efficiency (TOWRE; Torgesen, Wagner, &
Rashotte, 1999) was used. Students read aloud as many words as
possible from a list of 104 written words within a 45-s time span.
The score is the number of correctly read words. Test–retest
reliability for this standardized measure is .97 (TOWRE; Torgesen
et al., 1999).

Receptive vocabulary. Verbal ability was assessed using the
Peabody Picture Vocabulary Test–Fourth Edition (PPVT; Dunn &
Dunn, 2007). Students were shown four pictures and asked to point
to the picture that depicted the spoken word said by the assessor.
The student’s score is the number of correctly identified pictures.
Internal consistency is high at � � .96 (Dunn & Dunn, 2007).

Whole number line estimation (WNLE). Students were asked
to estimate where whole numbers should be placed on a number
line segment according to their magnitude, labeled 0 on the left end
and 1,000 on the right end (Siegler & Opfer, 2003). There were 22
items presented on a laptop in the following order: 56, 606, 179,
122, 34, 78, 150, 938, 100, 163, 754, 5, 725, 18, 246, 722, 818,
738, 366, 2, 486, and 147. Students were asked to show the
presenter where 0 and 1,000 were located on the number line and
then completed one practice round using the number 150. Consis-
tent with Opfer and Siegler (2007), students received verbal feed-
back after the practice round. Percent absolute error (PAE) was
calculated for each estimate by dividing the absolute difference
between the estimated and actual magnitudes by the numerical
range of the number line (1,000), and then multiplying by 100.
Students were assigned a single score by taking the mean percent
absolute error across all estimations. Internal consistency for this
sample was high at � � .91.

Demographic variables. Free/reduced price lunch program
status, gender, age, and English language learner status were
assessed through school records.

Testing Timeline and Procedure

All behavioral tasks were administered in school by trained
assessors. Matrix reasoning/nonverbal ability, TOWRE reading
fluency, PPVT receptive vocabulary/verbal ability, and whole
number line estimation (WNLE) were administered individually in
the winter of third grade. Working memory (WMTBC) was as-
sessed individually during spring of third grade. Students’ teachers
rated attentive classroom behavior (SWAN) in third grade.

The fraction comparisons task was given in the fall and the
spring of fourth grade, and the decimal comparisons task was
administered between these time points in the winter of fourth
grade. The decimal and fraction tasks were administered in a group
setting via paper and pencil. The mathematics achievement test
was administered by the school district following published guide-
lines in the spring of sixth grade.

Data analytic strategy

As noted previously, the decimal and fraction comparisons tasks
contained blocks of items that assessed different aspects of deci-
mal and fraction understanding, respectively. Chance performance
was 50% correct on each item. Preliminary analyses indicated that

students tended to answer either all or most of the items within a
given block correctly or incorrectly, resulting in a bimodal distri-
bution within block type. This finding suggests that students were
using a strategy that influences performance at the block level, as
expected. Thus, students’ performance on each block of four items
was dichotomized; students were assigned a score of “1” if they
answered three or four items correctly (exceeding chance perfor-
mance) or a score of “0” if they answered two or fewer items
correctly. This step simplifies the data and makes it more appro-
priate for latent class analysis (LCA).

A three-step LCA approach (Asparouhov & Muthén, 2014;
Vermunt, 2010) was used to assess the use of rule-based strategies
on the decimal comparison task and investigate whether these
strategies predict later mathematics achievement. The first step of
the three-step procedure was to identify the underlying latent class
structure without influence from covariates. In the second step,
error terms were derived for individual’s assignments to a most
likely latent class. In the third step, most likely latent class mem-
bership values were treated as indicator variables for a new latent
class model, which was then used to examine the relation between
class membership and other auxiliary variables (i.e., demographic
and cognitive covariates) and distal outcomes (i.e., mathematics
achievement).

To inform our decision regarding how many classes to include
in each LCA model, we used the Bootstrapped Likelihood Ratio
Test (BLRT; Nylund, Asparouhov, & Muthén, 2007), as well as
the value of the entropy statistic, which indicates how separate or
distinct the latent classes are. The entropy statistic ranges from
0–1, with values larger than 0.6 indicating sufficient latent class
separation (Collins & Lanza, 2010). Finally, we also based the
number of classes on previous mathematics learning literature
(e.g., Jordan, Kaplan, Ramineni, & Locuniak, 2009; Rinne et al.,
2017), the characteristics of each block of items, and the interpret-
ability of the resulting latent class structure.

Demographic variables included age in months, gender (fe-
male � 1), income status as indicated by enrollment in the free or
reduced lunch program (low � 1), and English language learner
status (ELL � 1). Demographic variables and cognitive compe-
tencies were treated as covariates. The distal outcome was sixth
grade mathematics achievement on a standardized state test. All
LCA models were tested using MPlus 7.1 (Muthén & Muthén,
1998–2014).

We also built a categorical SEM to assess the relation between
the rule-based strategies used for decimal comparisons and strat-
egies used for a fraction comparison task. Specifically, latent class
membership for the decimal comparisons task in the winter of
fourth grade was used to predict later (spring) fourth grade latent
class membership for the fraction comparisons task, while control-
ling for earlier (fall) fourth grade performance on the fraction
comparisons task.

It should be noted that the present study analyzes some of the
same data on fraction comparisons as Rinne et al. (2017), but our
analysis addresses unique research questions using a variety of
additional measures. In Rinne et al.’s (2017) study, an LCA was
developed to assess understanding of fraction magnitudes. Here,
we used a similar analysis to investigate broader relations between
decimal magnitude understanding and other areas of mathematics
achievement. Fraction class membership was included as one
covariate in the three-step LCA as well a baseline predictor in the
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categorical SEM. Additionally, our sample had a different pattern
of missing data compared with Rinne et al. (2017) because of our
focus on a different set of test times and the inclusion of additional
covariates. Thus, the results of the LCA of fraction comparisons in
the present article, though similar to those found by Rinne et al.
(2017), reflect our unique focus on a different set of research
questions.

Results

To determine whether missing data patterns for student out-
comes were systematically related to covariates, we tested for
covariate-dependent missingness (Little & Schenker, 1995) among
participants’ latent classification probabilities for the fraction and
decimal comparisons tasks. Results were not significant,
�2[140] � 59.78, p � .25, indicating that data were missing at
random.

Latent Class Analysis of Decimal Comparisons Task

Identification of decimal comparison latent class structure.
We conducted a three-step LCA of students’ response patterns for
the six decimal comparison blocks. A bootstrapped likelihood ratio
test (BLRT) indicated that a three-class model fit significantly
better than a two-class model (2��LL � 53.345, df � 7, p � .001).
A four-class model could not be identified because of the extrac-
tion of too many latent classes. Given that the entropy value for the
three-class model was very high (.95), we utilized the three-class
model for all subsequent analyses.

For the purposes of the LCA, performance on each block of four
items was scored as 1 when performance was above chance (3 or
4 correct) and 0 when performance was at or below chance (2 or
fewer correct). However, the left half of Table 3 shows the average
proportion of correct responses (out of 4) for each item block
within each latent class. These proportions are labeled as “high,”
“low,” or “chance” to highlight patterns of performance across
blocks.

Students in Class 1 consistently performed near ceiling regard-
less of item block (i.e., comparison type), suggesting that even in
fourth grade, some children broadly understood decimal properties
(n � 55, 12.97%). Students in Class 2 (n � 82, 19.34%) were

highly accurate on blocks where having a whole number bias
would not negatively influence performance, but an understanding
of place value was required, as in Block 2 (e.g., 0.04 vs. 0.4) and
Block 3 (e.g., 0.007 vs. 0.7). On these items, a zero was added
immediately to the right of the decimal point on one of the
decimals within each pair. However, these students were consis-
tently inaccurate on items where zeros were added to the end of the
decimal string, resulting in a negative impact of whole number
bias, as in Block 6 (e.g., 0.40 vs. 0.6). This suggests that students
in Class 2 understand some aspects of place value in decimal
representations: they understood that adding a zero immediately to
the right of the decimal point lowered the overall value, but they
failed to understand that adding zeros at the end of the decimal
string does not change its value. Rather, it appears as though they
are mistakenly interpreting zeros that come at the end of the
decimal string as yielding increased numerical magnitudes, just as
they would for whole numbers (e.g., 0.60 � 0.6 because 60 � 6).
On items where a whole number bias would hurt and zeros were
added immediately after the decimal, as in Block 5 (e.g., 0.06 or
0.2), these students performed at chance. They were also highly
accurate when comparisons were consistent with whole number
properties, as in Block 1 (e.g., 0.2 or 0.4) and Block 4 (e.g., 0.04
or 0.5). Taken together, this suggests these students possess a
whole number bias, but have a partial understanding of decimal
place value.

Not surprisingly because of fourth graders’ limited exposure to
decimals, the majority of children fell into Class 3 (n � 287,
67.69%), which is characterized by little knowledge of decimal
magnitudes as reflected by both a whole number bias and a
misunderstanding of place value after the decimal (i.e., tenths,
100ths, 1000ths). Class 3 children were accurate only when whole
number properties could be used to compare the decimals and
when place value was constant, as in Block 1 (e.g., 0.08 or 0.03).
Responses were inaccurate when comparisons were either incon-
sistent with whole number properties, as in Block 6 (e.g., 0.40 or
0.6), or required an understanding of place value after the decimal,
as in Block 2 (e.g., 0.04 or 0.4), Block 3 (e.g., 0.007 or 0.7), and
Block 5 (e.g., 0.06 or 0.2). Students in Class 3 performed at chance
when a whole number bias and a misunderstanding of place value
yield opposing responses, as in Block 4 (e.g., 0.04 or 0.5). Sub-

Table 3
Mean Proportion Correct (Out of 4) by Item block, Latent Class, and Outcome Measure
(Decimals vs. Fractions)

Decimal latent class structure: Winter fourth grade Fraction latent class structure: Fall fourth grade

Good
understanding

Partial
understanding

Poor
understanding

Good
understanding

Partial
understanding

Poor
understanding

Block n � 55 n � 82 n � 287 n � 80 n � 47 n � 304

1 High (.75) High (.99) High (.99) High (.94) High (.88) Low (.50)
2 High (.96) High (.97) Low (.40) High (.79) Low (.17) High (.94)
3 High (.98) High (.95) Low (.50) High (.98) High (.76) Low (.30)
4 High (.95) High (.96) Chance (.52) High (.87) High (.86) Low (.20)
5 High (.99) Chance (.55) Low (.10) Chance (.61) Low (.12) Chance (.64)
6 High (.94) Low (.15) Low (.30) High (.93) Low (.18) Chance (.55)

Note. Good understanding is defined as getting most items correct. Partial understanding is defined as having
a pattern of responses consistent with a whole number bias, but understanding place value. Poor understanding
is defined as having a pattern of responses consistent with having a whole number bias and weak understanding
place value. Value in parentheses is mean percent correct.
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sequently, we refer to these three classes as good understanding
(Class 1), partial understanding (Class 2), and poor understanding
(Class 3).

Effects of covariates on decimal comparison latent class
membership. The LCA model allows us to examine the relation
between covariates and the patterns of performance across blocks
(i.e., students’ level of understanding of decimal magnitudes). The
three-step LCA ensures that covariates do not unduly influence the
formation of the latent classes; thus, the effects reported here
describe relations between covariates and latent class membership
wherein the latent class structure is independent of covariate
values. The poor understanding class (Class 3) is treated as the
reference group because most students were in this latent class.
Thus, effects of covariates indicate the relative odds of being in the
good understanding class (Class 1) or the partial understanding
class (Class 2), respectively, compared with being in the poor
understanding class.

Effects of covariates are shown in Table 4. Compared with
students with a poor understanding of decimal magnitudes (Class
3), students with a good understanding (Class 1) tended to exhibit
better (i.e., lower error) WNLE scores. That is, students with better
WNLE accuracy (measured in third grade) were significantly more
likely in the winter of fourth grade to be in the good understanding
class (Class 1) than the poor understanding class (Class 3). Better
receptive vocabulary scores also predicted a higher likelihood of
membership in Class 1 versus Class 3. Different covariates signif-
icantly predicted the chances of being in the partial understanding
class (Class 2) versus the poor understanding class (Class 3).
Better nonverbal ability and a good understanding of fraction
magnitudes (i.e., membership in fraction understanding Class 1)

predicted membership in the partial understanding class for deci-
mal comparisons.

Latent Class Analysis of Fraction Comparisons Task

To analyze the relationship between decimal magnitude under-
standing and fraction magnitude understanding, we conducted an
LCA of students’ response patterns for the six blocks of the
fraction comparisons task given in the fall of fourth grade. Previ-
ous work with an overlapping data set (Rinne et al., 2017) found
that a three-class model fit well with a broader sample of students
on this task. Regarding the present sample, a BLRT showed that
the fit improvement for the three-class model over a two-class
model was significant (2��LL � 77.535, df � 7, p � .001).
Results are shown in the right half of Table 3.

Class 1 (n � 51; 18%) included students whose high perfor-
mance across blocks indicates that they understand the properties
of fractions. The performance of students in Class 2 (n � 29;
11%), on the other hand, indicates a misunderstanding that
smaller digits—regardless of whether they appear in the nu-
merator or denominator—produce larger magnitudes. This
“inverse-relationship” (Rinne et al., 2017) strategy results in a
pattern of responses that contrasts with a whole number bias
(i.e., the child would always choose the fraction that has larger
numerals). Thus, performance was near ceiling in blocks in
which having a whole number bias should lead to incorrect
responses, Block 1 (e.g., 1/3 or 1/5), Block 3 (e.g., 50/100 or
16/17), and Block 4 (e.g., 6/9 or 6/12). Performance was near
floor in Block 2 where having a whole number bias should lead
to correct responses (e.g., 3/5 or 4/5). Performance was near

Table 4
Effects of Covariates on Decimal Comparisons Class Membership

Decimals class Covariate Coefficient SE p-value Odds ratio

Decimals Class 1
(vs. Class 3)

WNLE 	.070 .035 .049� .932
Attentive behavior .014 .022 .528 1.014
Receptive vocabulary .029 .015 .049� 1.029
Nonverbal ability .001 .070 .991 1.001
Reading fluency 	.029 .020 .147 .971
Working memory .010 .010 .316 1.010
Age .032 .039 .419 1.033
Female .429 .350 .220 1.536
Low SES 	.188 .364 .605 .829
English language learner .203 .537 .706 1.225
Fractions Class 1 (vs. Class 3) .874 .547 .110 2.396
Fractions Class 2 (vs. Class 3) .215 .570 .706 1.240

Decimals Class 2
(vs. Class 3)

WNLE 	.091 .061 .134 .913
Attentive behavior .031 .024 .197 1.031
Receptive vocabulary .002 .021 .922 1.002
Nonverbal ability .339 .124 .006�� 1.404
Reading fluency .040 .034 .232 1.041
Working memory 	.001 .013 .916 .999
Age .030 .060 .612 1.030
Female 	.082 .530 .877 .921
Low SES .721 .580 .214 2.056
English language learner 	.314 .819 .702 .731
Fractions Class 1 (vs. Class 3) 2.244 .574 �.001��� 9.431
Fractions Class 2 (vs. Class 3) 1.110 .852 .193 3.034

Note. WNLE � whole number line estimation; SES � socioeconomic status.
� p � .05. �� p � .01. ��� p � .001.
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chance in Block 5 (e.g., 5/7 or 7/5) and Block 6 (e.g., 2/3 or 5/6)
in which numerators and denominators differ in opposite direc-
tions so there would be no influence of whole number bias or a
small number strategy. Taken together, membership in Class 2
indicated a partial understanding that larger digits can lead to
smaller magnitudes for fractions. Class 3 (n � 196; 71%)
included students who—like those in Class 3 for the decimal
comparisons task—are strongly biased by their whole number
knowledge, such that they believe that fractions with larger
digits always produce larger fraction magnitudes, regardless of
whether they appear in the numerator or denominator. This
results in near-floor performance for Blocks 1, 3, and 4, near
ceiling performance for Block 2, and again, near chance per-
formance for Blocks 5 and 6.

Effects of Early Decimal Comparison Latent Class
Membership on Later Mathematics Achievement

We also investigated the relation between fourth grade decimal
comparison latent class membership and a distal outcome—sixth
grade general mathematics achievement—after controlling for

variables that may also contribute to overall mathematics achieve-
ment: cognitive and demographic variables, WNLE, and fraction
comparison class membership. For this analysis, we constructed a
model that included both direct effects of covariates on the distal
outcome (mathematics achievement) and class-specific covariate
effects. Results showing the combination of these effects for each
class are given in Table 5.

To compare mean mathematics achievement scores across
classes, we conducted Wald tests on differences between mod-
eled means (i.e., sample means weighted by estimated class
probabilities). Relative to the mathematics achievement of stu-
dents with a poor understanding of decimal magnitudes (Class
3; M � 774.564), students with a good understanding of deci-
mal magnitudes (Class 1) had significantly higher achievement
scores, M � 813.186, Wald �2(1) � 6.16, p � .013. Although
students with a partial understanding (Class 2) also exhibited
higher mean mathematics achievement scores, M � 849.572,
the difference between Class 2 and Class 3 did not reach
significance, Wald �2(1) � 2.657, p � .103. The difference in
achievement scores between the partial and good understanding

Table 5
Model of Sixth Grade Mathematics Achievement Scores, by Decimal Understanding Class

Decimals class Covariate Coefficient SE p-value

Decimals Class 1
(M � 889.20)

WNLE 	2.041 1.913 .286
Attentive behavior .021 1.006 .983
Receptive vocabulary 	.364 .701 .604
Nonverbal ability 	4.012 6.863 .559
Reading fluency 	2.455 1.082 .023�

Working memory .931 .866 .282
Age 	5.172 3.340 .122
Female 4.741 27.806 .865
Low SES 	68.669 22.158 .002��

English language learner 	9.257 23.198 .690
Fractions Class 1 (vs. Class 3) 83.549 32.214 .010�

Fractions Class 2 (vs. Class 3) 44.347 27.554 .108
Decimals Class 2

(M � 813.19)
WNLE 	2.262 1.650 .170
Attentive behavior 1.284 1.736 .460
Receptive vocabulary 1.006 1.688 .547
Nonverbal ability .576 2.296 .802
Reading fluency .331 .687 .629
Working memory .302 .380 .427
Age .740 2.997 .805
Female 10.990 32.902 .738
Low SES 	18.303 14.993 .222
English language learner 12.113 27.573 .660
Fractions Class 1 (vs. Class 3) 19.455 30.992 .530
Fractions Class 2 (vs. Class 3) 11.260 24.440 .645

Decimals Class 3
(M � 774.56)

WNLE 	2.604 .582 �.001���

Attentive behavior 1.837 .439 �.001���

Receptive vocabulary 1.108 .352 .002�

Nonverbal ability 1.922 1.440 .182
Reading fluency .395 .359 .271
Working memory .091 .200 .650
Age .922 .715 .197
Female 17.244 7.086 .015�

Low SES 	1.682 8.138 .836
English language learner 9.205 10.140 .364
Fractions Class 1 (vs. Class 3) 44.842 11.677 �.001���

Fractions Class 2 (vs. Class 3) 10.139 12.266 .408

Note. WNLE � whole number line estimation; SES � socioeconomic status.
� p � .05. �� p � .01. ��� p � .001.
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classes was not significant, Wald �2(1) � .018, p � .894.
Overall, these results show that decimal understanding class in
fourth grade accounts for unique variance in sixth grade math-
ematics achievement beyond that attributable to all other vari-
ables, including prior fraction understanding.

As seen in Table 5, effects of covariates on sixth grade mathe-
matics achievement differed across decimal understanding classes.
Most notably, membership in the “good understanding” fraction
comparison class (Class 1) significantly predicted mathematics
achievement among students in decimal understanding Class 1 and
Class 3 (but not Class 2). This shows that fourth grade fraction
understanding, like decimal understanding, uniquely predicts gen-
eral mathematics achievement in sixth grade, even after controlling
for other variables. Among students with a poor understanding of
decimal magnitudes in fourth grade (that includes most students),
WNLE, attentive behavior, and receptive vocabulary also indepen-
dently predicted later mathematics achievement. Females in this
group also exhibited a slight advantage in later mathematics
achievement scores. Among students in decimal understanding
Class 1 (good understanding) in fourth grade, low socioeconomic
status (SES) was associated with poorer sixth grade mathematics
achievement scores. There was also a small but significant nega-
tive association between reading fluency and later mathematics
achievement, though the weakness of this effect along with the
lack of any apparent explanation suggests that this negative rela-
tion may be spurious.

Relation Between Decimal and Fraction Comparison
Class Structures

We constructed a categorical SEM to investigate whether early
decimal understanding contributes to the development of norma-
tive fraction concepts over the course of instruction. Specifically,
we examined whether fourth grade winter decimal comparison
class membership predicted fourth grade spring fraction compar-
ison class membership, while controlling for prior fraction com-
parison class membership assessed in the fall of fourth grade. We
controlled for prior knowledge of fractions to rule out the possi-
bility that any observed relation between early decimal under-
standing and later fraction understanding is simply a function of
common prior knowledge and cognitive ability relevant to both
domains.

The results of the categorical SEM are displayed in Table 6. As
in previous models, the reference class is Class 3 (i.e., the poor
understanding class) for both the decimal comparisons task and the

fraction comparisons task. Membership in fraction comparison
Class 1 in the spring of fourth grade was strongly predicted by
prior fraction class membership, as well as membership in either
decimal comparison Class 1 or decimal comparison Class 2. This
result shows that having either a good or partial understanding of
decimals is associated with later learning of fractions. Prior frac-
tion and decimal comparison class memberships did not predict
membership in the smaller number bias class for fraction compar-
isons in the spring of fourth grade.

Discussion

The ability to reason about numerical magnitudes facilitates
mathematics learning (National Mathematics Advisory Panel,
2008). To date, however, much more work has focused on stu-
dents’ understanding of whole number and fraction magnitudes
than decimal magnitudes. In the present study, we identified three
classes of early decimal magnitude understanding based on student
performance on different types of decimal comparisons in the
middle of fourth grade. We then showed that decimal comparison
class membership predicted later mathematics achievement in
sixth grade, while controlling for whole number line estimation,
fraction knowledge, and other cognitive processes and demograph-
ics. Finally, we found that decimal comparison class membership
in the winter of fourth grade predicted fraction comparison class
membership at the end of fourth grade, even after controlling for
fraction knowledge at the beginning of fourth grade.

Identification of Decimal Comparison Latent Class
Structure

Three classes of student performance on the decimal compari-
sons task emerged. Students in Class 1 (good understanding)
consistently gave correct responses, suggesting that even in fourth
grade they broadly understood decimal properties. Students in
Class 2 (partial understanding) were highly accurate when a whole
number bias would not influence performance but an understand-
ing of place value after the decimal was required. Students in Class
3 (poor understanding) showed little knowledge of decimal mag-
nitudes, as reflected by both a whole number bias and a misun-
derstanding of place value after the decimal.

Because students in Class 1 were highly accurate, they could be
accessing an internal representation of magnitude. However, stu-
dents in Class 2 and 3 did not appear to reason about decimal
magnitudes holistically (Zhang, Fang, Gabriel, & Szűcs, 2016);

Table 6
Categorical SEM Results

Outcome Predictor Coefficient SE p-value Odds ratio

Spring fourth grade fractions
Class 1 (vs. Class 3)

Decimal Class 1 1.771 .543 .001 5.877
Decimal Class 2 .967 .357 .007 2.630
Fall fourth grade fraction Class 1 2.970 .532 �.001 19.492
Fall fourth grade fraction Class 2 .940 .428 .028 2.560

Spring fourth grade fractions
Class 2 (vs. Class 3)

Decimal Class 1 1.011 .707 .153 2.748
Decimal Class 2 .348 .436 .424 1.416
Fall fourth grade fraction Class 1 1.010 .749 .178 2.746
Fall fourth grade fraction Class 2 1.197 .461 .009 3.310

Note. SEM � structural equation model.
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rather, given their performance described above, they applied (or
misapplied) rules regarding whole number and place value. When
different rules conflicted with one another (e.g., .06 vs. .4–place
value helps performance but whole number bias hurts perfor-
mance), students with a partial (Class 2) or poor (Class 3) under-
standing performed at chance, suggesting they simultaneously
possessed different strategies that competed with one another for
application. These findings support an overlapping waves theory
of development (Siegler, 1996), which suggests that at any given
time children can access a number of strategies to solve a problem,
even though some strategies may be more effective than others
depending on the context.

The finding that children applied rule-based strategies to reason
about decimal magnitudes, rather than constructing holistic repre-
sentations of magnitudes, contrasts somewhat with the findings of
DeWolf, Grounds, Bassok, and Holyoak (2014, 2015). DeWolf
and colleagues argue that decimals and whole numbers are pro-
cessed as (continuous) unidimensional magnitudes whereas frac-
tions are processed as (discrete) relational structures. However,
DeWolf et al.’s studies are with older populations (i.e., seventh
graders and adults). It is possible that, as with fractions (see
Bonato et al., 2007; Schneider & Siegler, 2010), older children and
adults have multiple ways of reasoning about decimal magnitudes,
including an analog continuous representation as well as rule-
based strategies that are strategically deployed based on task
demands. The older children and adults in DeWolf and colleagues’
studies may be using an analog representation while also possess-
ing rule-based strategies that would apply in particular circum-
stances. That DeWolf et al. found that older children and adults use
an analog representation to reason about decimal magnitudes,
while we found that younger children (who are on the cusp of
systematic learning about decimals) use rule-based strategies, sug-
gests a developmental progression. That is, when learning about
any kind of new magnitude, children begin by learning relevant
rules before later gaining the ability to construct analog represen-
tations.

It should be noted that DeWolf et al. (2014) used a decimal
number line estimation task with their seventh-grade students
while DeWolf et al. (2015) used a magnitude comparison task with
adults. The similar results for both studies suggest that differences
in performance between DeWolf’s studies and the current study
are not because of task demands but rather differences in reason-
ing. Nevertheless, a study using the same task (e.g., magnitude
comparison) across different ages would characterize a develop-
mental progression.

In a longitudinal study on fraction magnitude understanding
from fourth through sixth grades, Rinne et al. (2017) found a
developmental progression in fraction magnitude understanding,
with students commonly moving from poor to partial to good
understandings. In the present study, possession of partial under-
standings of both decimal and fraction magnitudes was positively
related to the subsequent acquisition of a good understanding of
fraction magnitudes. These parallel findings suggest that for both
fractions and decimals, the ability to recognize that the quantitative
relationship between particular digits and the overall magnitude of
the representation depends on the location of the digit may con-
stitute an important insight, supporting subsequent development
toward a normative understanding. Even though children with
partial understanding of decimal magnitude misuse rule-based

strategies, they are more likely to shift to good understanding of
later fraction magnitude than are those who persist with faulty
whole number strategies.

The finding that having only a partial understanding of decimals
predicts later fraction understanding highlights the potential im-
portance of transitional knowledge. That is, the type of partial or
transitional knowledge that students hold as they become more
knowledgeable in a specific area may help determine whether
students are on their way to developing accurate representations of
decimals or if some kind of intervention is needed. Relatedly,
Loehr and Rittle-Johnson (2017) taught third- and fourth-grade
students decimals, such as 0.25, using formal place value labels
(e.g., referring to the decimal as “two tenths and five hundredths”),
informal labels (e.g., referring to the decimal as “point two five”),
or having no labels. Students exposed to formal labels correctly
solved more decimal magnitude comparison items that required an
understanding of the role of zero within decimals as well as
place-value structure (e.g., 0.4 vs. 0.40). However, they also had
lower performance on a decimal number line estimation task than
did those who were exposed to no labels. Loehr and Rittle-Johnson
(2017) suggest that the lower performance on certain decimal
outcomes for students exposed to formal labels may indicate a
disruption or change in their conceptualization of decimals, rem-
iniscent of Piaget’s concept of disequilibrium (Piaget, 1964). Ex-
posure to formal decimal labels may have challenged students’
way of thinking in a way that helped them notice place-value
structure within decimals. Although children developed the under-
standing of the role of zero, this new knowledge was intermediate
or transitional along the way to a more complete understanding of
decimals. Students understood that adding a zero to the end of the
decimal string did not increase its magnitude, but their represen-
tation of its exact magnitude on a number line was still limited.
McNeil (2007) also noted that U-shaped development of children’s
performance on mathematical equivalence problems (e.g., 7 
 4 

5 � 7 
 ___) indicates a transitional period during which the
nature of children’s understanding of equivalence is changing.

In the present study we found that students with a partial
understanding performed differentially depending on the particular
type of decimal understanding being assessed by block (e.g., the
role of zero to the immediate right of the decimal point as opposed
to the role of zero at the end of the decimal string). We detailed
three specific classes of response patterns that indicated qualita-
tively different forms of decimal understanding, each more sophis-
ticated than the next, which predicted future fraction understanding
and mathematics achievement. As proposed by overlapping waves
theory (Siegler, 1996), both frequency and use of strategies or
ways of thinking about a specific concept shift overtime with
increased experience. Incorrect or inefficient strategies should
reduce in frequency of use with more efficient correct strategies
and ways of thinking becoming more prominent. Our results are
consistent with this progression, such that those with partial
decimal understanding demonstrated a basic understanding that
adding a zero immediately to the right of the decimal point
decreases its value without understanding the role that a zero
added to the end (right) of the decimal string plays. Even still,
these students are more likely to have an accurate understanding
of fractions later on than those who fully rely on whole-number
rules.
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Effects of Covariates on Decimal Comparison Latent
Class Membership

Different covariates predicted membership in Class 1 and Class
2 versus Class 3. Accuracy in whole number line estimation and a
larger receptive vocabulary each predicted membership in Class 1
(good understanding), but not membership in Class 2 (partial
understanding). This suggests children in Class 1 are using accu-
rate magnitude representations to solve the decimal comparison
task. A strong representation of whole number magnitudes, as
reflected by WNLE acuity, provides an organizational structure for
reasoning about decimal and fraction magnitudes (Hansen, Jordan,
Siegler, et al., 2015; Resnick et al., 2016). The finding that whole
number line estimation skills did not predict possession of a partial
understanding of decimals (vs. a poor understanding) suggests that
students with partial or poor decimal magnitude knowledge may
have inadequate mental number line representations or do not
access their mental number line when completing decimal com-
parison tasks.

Rather, students in Class 2 had better nonverbal ability and
understanding of fraction magnitude compared with Class 3. This
suggests an important relationship between fraction and decimal
magnitude understanding in particular, beyond what whole number
magnitude can contribute. This relation may center on the use of
rules to solve comparison problems in the absence of the ability to
construct holistic magnitude representations. Understandings of
rational number magnitudes that are specific to decimal and frac-
tion formats may mutually support one another as children learn to
integrate new numerical representations into their mental number
lines.

Whole number line estimation, receptive vocabulary, nonverbal
reasoning, and fraction magnitude understanding have been widely
implicated in the development of whole number and fraction
understandings in previous research (e.g., Bailey, Siegler, &
Geary, 2014; Fuchs et al., 2006; Geary et al., 2008; Hansen et al.,
2017; Hecht & Vagi, 2010; Vukovic et al., 2014). Two previous
studies that examined cognitive predictors of decimal understand-
ing yielded largely convergent findings. Seethaler, Fuchs, Star, and
Bryant (2011) found that calculation skill, nonverbal reasoning,
concept formation, working memory with numbers, and language
ability all uniquely predicted rational number computation. How-
ever, because their measure of rational number computations in-
cluded both fractions and decimals, it is difficult to determine
specific contributions to decimal skill. In the other study, Malone,
Loehr, and Fuchs (2017) found that nonverbal reasoning was
associated with correct use of place value labels but not reasoning
about decimal magnitudes. Overall, despite using different mea-
sures, our findings as well as those of other researchers generally
suggest that a variety of mathematics competencies and cognitive
abilities are intertwined with the development of rational number
knowledge.

Effects of Early Decimal Comparison Latent Class
Membership on Later Mathematics Achievement

Early decimal comparison class membership, fraction compar-
ison class membership, and whole number line estimation acuity
each uniquely predicted performance on a statewide standardized
achievement test in sixth grade. The relative independence of the

predictors suggests that reasoning about magnitudes is not a single
skill, but rather is dissociable based on the form of the numerical
representation and children’s prior knowledge of those represen-
tations. Understanding whole number magnitudes may support
later mathematics achievement because early whole number com-
petencies allow children to make connections among mathematics
relations and procedures (Gersten, Jordan, & Flojo, 2005). Under-
standing fraction magnitudes may support prealgebra and algebra
performance specifically because of their bipartite structure (Booth
& Newton, 2012; DeWolf et al., 2015), and mathematics achieve-
ment more generally because understanding fractions requires
students to reorganize, and subsequently deepen, their understand-
ing of numerical properties (Siegler et al., 2011). Understanding
decimal magnitude may similarly provide students with an oppor-
tunity to deepen their understanding of numerical properties as
students learn the rules for how decimals operate, particularly rules
related to place value. Indeed, whole number, fraction, and deci-
mal magnitude understanding may all independently contribute to
mathematics achievement because each involves the need to flex-
ibly apply different sets of numerical rules in different situations to
properly represent the magnitudes of numerical representations.

Limitations

We aimed to assess students’ early conceptions of decimal
magnitudes. Although we observed some differences, a slightly
older sample (e.g., at the end of fourth grade, after decimal
instruction) and more sensitive measures (e.g., open-ended inter-
views) might increase variability in useful ways. Open-ended
interviews, or think aloud protocols, would shed light on students’
explicit problem-solving strategies. Additionally, we were unable
to document precisely when systematic fraction and decimal in-
struction took place within the classroom. However, the Common
Core State Standards in mathematics, which our participating
schools followed, stipulate that fractions be taught intensively
throughout fourth grade and decimals be introduced only later in
the fourth-grade year (National Governors Association Center for
Best Practices, Council of Chief State School Officers, 2010),
which is typical of U.S. classrooms (Tian & Siegler, 2017). More-
over, further data on children’s experiences outside of school
might reveal that early understanding of decimals is associated
with parental involvement and experiences with decimals at home.

In the present study, we assessed decimal magnitudes at a single
time point using a single measure. More longitudinal data are
needed to examine the developmental progression from poor to
partial to normative understanding. Future research should exam-
ine whether learning decimal magnitudes begins with learning
rules, and whether learning of those rules follows a developmental
sequence, which in turn would support the learning of an analog
representation of magnitude. In addition, items on our decimal and
fraction comparisons measures were blocked by shared features
(e.g., all items that involved both a whole number bias and a place
value bias were blocked together). This design may have made
certain features, and subsequently associated rule-based strategies,
more salient, encouraging students to use a specific strategy they
might not have otherwise used.

A final consideration is that because the sixth-grade state math-
ematics achievement measure used in the present study was con-
sistent with grade-level benchmarks, it surely contained fraction

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

12 RESNICK, RINNE, BARBIERI, AND JORDAN



and decimal content. Unfortunately, we did not have access to the
individual items from the school district. We do know, however,
that the mathematics achievement measure contained a wide range
of topics, such as numeric reasoning, algebraic reasoning, geomet-
ric reasoning, and quantitative reasoning. Future work can address
these issues by using a mathematics achievement measure that is
free of specific fraction or decimal content. Measures of motiva-
tion and informal decimal and fraction knowledge also might be
included.

Implications and Conclusions

The current findings have practical as well as theoretical impli-
cations. First, the finding that children’s level of decimal under-
standing is associated with later fraction knowledge, even after
controlling for prior fraction knowledge, has implications for in-
structional sequencing of mathematical content. Fractions are typ-
ically taught before decimals in many countries, including the
United States (Tian & Siegler, 2017). Some researchers suggest
that decimals are easier to learn compared with fractions and, thus,
advocate for decimals to be taught before or in concert with
fractions (DeWolf et al., 2014, 2015; Hurst & Cordes, 2016;
Iuculano & Butterworth, 2011; Zhang, Wang, Lin, Ding, & Zhou,
2013). A recent review concludes there is no research that directly
supports this assertion (Tian & Siegler, 2017). Our data, however,
do provide correlational evidence that decimal knowledge, which
relies on understanding of place value, may support fraction learn-
ing. Understanding of place value, the knowledge that the spatial
location of a given numeral within a multidigit set provides infor-
mation regarding the relation between digits and the overall mag-
nitude, may help students see there is a meaningful relation be-
tween the spatial location of the numerator and denominator. In
addition, because decimals are more readily mapped onto a mental
number line compared with fractions (DeWolf et al., 2014, 2015),
learning decimals first, and then mapping fractions onto decimals,
may help extend the continuous representation of decimals onto
fractions, better connecting fractions to the number line. It seems
likely that the relation between decimal and fraction knowledge is
bidirectional, with each skill supporting the other (Rittle-Johnson,
Schneider, & Star, 2015). More research using an experimental
design is required to systemically assess order of instruction.

Our work also highlights the potential usefulness of decimal
magnitude comparison tasks for characterizing how students rea-
son about magnitude. As noted earlier, children and adults use a
variety of strategies to reason about magnitude and use them
adaptively based on task demands (e.g., Schneider & Siegler,
2010; Siegler, 1996). Magnitude comparison tasks complement
number line approaches by using item characteristics to identify
the strategies students use when reasoning about magnitude when
their number line knowledge may be incomplete, hard to access, or
not the most efficient strategy. Our decimal comparison task was
designed to identify the presence of whole number bias and un-
derstanding of place value. However, comparison tasks can be
used to identify other strategies and representations (e.g., misap-
plying fraction or negative properties to decimals).

In conclusion, our study is the first to provide evidence that
early decimal magnitude knowledge uniquely supports later math-
ematics achievement, over and above fraction and whole number
magnitude knowledge. The findings underscore the need for ex-

amining how understandings of different symbolic representations
of numbers are distinct from one another, yet related, and how
each kind of representation can be used to support more complex
mathematics learning.
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