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ABSTRACT 

We analyze results from paired pre- and post-instruction 

administration of the Mechanics Baseline Test to 2238 students in 

introductory mechanics classes. We investigate pairs of specific 

wrong answers given with unusual frequency by students on the 

pretest.  We also identify transitions between pre- and post-test 

answers on the same question which elucidate student learning due 

to instruction. We define criteria for excess transitions above a 

random response model. Some common transitions are found to be 

associated specifically with students within a particular range of 

skills. Further, transitions from pre- to post-test revealed that 

incorrect pretest answers that were frequently repeated on the post-

test often correspond to known misconceptions from physics or 

math. Thus, our data mining techniques can elucidate common 

student misunderstandings of mechanics concepts and how 

instruction affects these misunderstandings. This opens the way for 

finding improved interventions for specific misunderstandings 

revealed by analyzing results from pre- and post conceptual tests.  

Keywords 

Pre- and post- Testing; Common Student Misconceptions; 

Educational Data Mining; Analyzing Wrong Answers. 

1. INTRODUCTION 
The Force Concept Inventory [9] by Hestenes group 

revolutionized physics instruction by showing that students trained 

mostly on end-of-chapter problems in standard textbooks did not 

learn to answer easy (so teachers thought) questions based on 

fundamental concepts in the domain.  This has led to tremendous 

reform of physics instruction worldwide and a series of concept 

tests covering introductory physics and astronomy [7].  The present 

study uses another research-based assessment, the Mechanics 

Baseline Test ("MBT").  The MBT is designed for students with 

more physics background and is appropriate for introductory 

students at MIT.  

 

 

 

 

 

 

 

 

 

 

 

 

Research-based assessments such as concept inventories and 

surveys are typically developed by first administering the questions 

in open response format.  Analysis often reveals clusters of related 

responses which are then made into distractors in a multiple-choice 

version of the assessment. Since these assessments typically center 

only a particular subdomain, e.g. force and motion, a part of 

Newtonian mechanics, it is expected that common misconceptions 

(also called alternate conceptions and misunderstandings) will 

manifest as correlated selections of distractors to different 

questions.  We searched for these, as well as for statistically 

significant deviations of specific learning transitions from a random 

guessing hypothesis.  

 
This paper addresses several questions relative to the deep 

assessment of students' knowledge structure based on results on the 

Mechanics Baseline Test.  Our objective is to find the ‘atomic’ 

student conceptions and abilities that underlie their answers to the 

questions (possibly incorrectly)?  Our approach is data mining on a 

large sample of pre and post-tests, and concentrates on these 

research questions  

• Are there pairs of wrong answers to different questions 

that reveal common misunderstandings?  

• Are there exceptionally prevalent transitions from pre- to 

post-test that seem to indicate learning some specific 

knowledge?  

• Can we suggest new questions or improvements to 

existing ones that will improve the assessment?  

 

We are not the first to attempt to extract actionable analysis from 

concept tests.  Indeed, the FCI has been analyzed using factor 

analysis [4]; however, that analysis has been questioned [5].  The 

MBT has been refined using Item Response Theory analysis 

[3].  Recently Brewe et al. [2] have applied Network analysis to the 

FCI to predict post scores. The Colorado Learning Attitudes about 

Science Survey [1] has a nice web-based multicategory analysis 

based on factor analysis that is used.  But it’s fair to say that most 

concept tests are not analyzed beyond the score and whether it 

seems appropriate for each particular class based on quality of 

students & instructional style [8].  This provides a good 

characterization of the students’ (and class) overall knowledge and 

gives a useful indication of the amount of learning if the assessment 

is administered both pre- and post-instruction.    Unfortunately, 

such one-dimensional analysis ignores the category-specific 

information that the method of construction of these assessments 

would seem to generate.  Therefore, administering these 

assessments neither informs the student about which concept(s) 

they know well or poorly nor informs the teacher about the areas in 

which they most need to improve their instruction.  
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The goal of finding specific difficulties and misconceptions of 

students continues to appear reasonable yet remains tantalizingly 

out of reach.  The progress made here shows the promise of analysis 

of learning data at scale. But while our findings are clearly 

revelatory, they beg for further development to make them 

useful.  We discuss ways of closing this gap in the last section: 

Future.  

 

Table 1: The students in our dataset represent five years of 

an introductory mechanics course at MIT. Since some 

students lack either a pre- or post-test score, we have 

calculated grades and normalized gain using only those 

students who took both tests. The pretest was administered at 

the beginning of the semester, and the post-test was 

administered – often as part of the final exam - at the end of 

the semester. 

year  #pre  #post  #both  fraction pre  fraction post  gain  

2005  485  509  438  .57±.15  .66±.13  0.34  

2007  356  356  355  .56±.15  .76±.12  0.46  

2008  414  414  410  .58±.15  .79±.12  0.51  

2009  612  565  527  .58±.14  .75±.12  0.41  

2010  589  554  508  .60±.18  .78±.12  0.44  

all  2456  2398  2238  .58±.15  .75±.15  0.40  

 

2. CORRELATIONS ON PRE- AND POST-

TESTS  
Assuming that there are fundamental misconceptions shared by 

many students, the question becomes “how can we detect these in 

the test results”.  Since the MBT was designed with distractors 

compiled from open responses to those questions, one would expect 

that a specific misconception would lead students to give a specific 

wrong answer. If a misconception leads to wrong answers on two 

(or more) questions, we expect that students with this 

misconception would submit this particular pair of wrong answers 

with more than random frequency. We seek to detect such 

correlated pairs of wrong answers by looking for statistically 

excessive pairs of wrong answers, and that these will offer insight 

into the nature and prevalence of specific student  

 

Table 2: Correlations between wrong answers on MBT 

pretest.  For each pair of correlated wrong answers we show 

the overall correlation coefficient, the fraction of all students 

who gave the paired response, the Student’s t-statistic, and the 

p-value. X indicates that a student did not answer the question 

(this is considered as a specific response). 

Responses 1&2 Correlation 

[%] 

Fraction 

[%] 

t p-value 

Q1A   Q2E  67  13  15.1  ~10-37  

Q4D   Q5C  41  19  9.3  ~10-18  

Q11X Q12X  57  7  8.5  ~10-14  

Q9X   Q11X  48  8  7.4  ~10-11  

Q9X   Q12X  47  7  6.8  ~10-10  

Q13A Q14A  52  5  6.0  ~10-8  

Q13X Q14X  60  2  4.7  ~10-5  

Q20B Q21C  35  7  4.6  ~10-5  

Q20D Q22D  44  4  4.6  ~10-5  

Q20A Q22C  19  15  3.5  0.001   

Q16C Q16D  18  13  3.0  0.004   

misconceptions.  We examine only correlations between wrong 

answers, since correct answers do not provide much information 

about misconceptions.  

 

We examined all possible wrong answer pairs, defining a binary 

variable for each possible wrong answer, specifying whether a 

particular student did or did not give that answer. We calculated the 

tetrachoric correlation between every pair of answers, as well as the 

amount by which the observed number of students giving the paired 

wrong answers exceeded the number expected assuming that each 

wrong answer was selected independently at random with the 

observed answer probability distribution for each question alone. 

All pretest correlations found to be significant at the p = 0.01 level 

are displayed in Table 2.  

 

Because students with very low skill may have weak or inconsistent 

preconceptions and students with very high skill presumably have 

few misconceptions of any sort, we expect that certain 

misconceptions will be held primarily by students lying within a 

limited range of overall ability or perhaps in students only of low 

ability.  To test this hypothesis, we divided the students into 7 equal 

partitions sorted by overall score and calculated correlation 

coefficients for each partition independently. 

 

Figure 1: Questions 1 & 2: Velocity and 

Acceleration Graphs, correlation of 1A and 

2E. The tetrachoric correlation and excess paired responses 

are plotted in each of seven cohorts divided by overall score. 

In Questions 1 and 2, shown in Figure 1, the paired errors both 

correspond the same misinterpretation of a stroboscopic image of 

an accelerating object.  The very high correlation coefficient 

implies that roughly 90% of the students who answered 1A also 

answered 2E.  This suggests that the students determined the 
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acceleration (Q2) from the answer to the velocity (Q1), thereby 

making the same time-base error. This hypothesis is supported by 

the fact that the better cohorts made relatively fewer mistakes 

carrying out this prescription, hence had (even) higher correlations, 

as did all students on the post-test.   

 

 

Figure 2: Question 4 and 5: Direction of Acceleration on 

Ramp - correlation of 4D with 5C. 

Correlated wrong answers on Questions 4 and 5, shown in Figure 

2, both correspond to ignoring real forces when applying F=ma. It 

is apparent that the prevalence of this error maximizes at score 

levels ~ 0.6 suggesting a specific misconception that shows some, 

but not too much, knowledge.  

Correlated responses 13A and 14A both correspond to confusing 

the mass of a system with the force required to support it. This 

correlation is very strong (R ~ 0.9), but the probability of making  

 

 

Figure 3: Questions 13 & 14: Elevator with Two Hanging 

Blocks – correlations between 13A and 14A. 

this error drops dramatically with score, reflective of the fact that 

the associated error is virtually at a random rate with prevalence < 

½% for all students scoring above 75% (where the correlation has 

huge errors).  This seems to be an error predominantly made by 

low-ability students, and we suggest that it results from omitting 

g=10 m/s2 when calculating weight from mass.  

 

Figure 4: Questions 20 & 22: Pushing Different Masses the 

Same Distance with the Same Force, correlation of 20A & 

22C.  
The triplet of questions 20 through 22, Pushing Different Masses 

the Same Distance with the Same Force, yields several highly 

correlated pairs of wrong answers.  These problems, particularly 20 

and 22, are among the most difficult on the test, with respectively 

36% and 47% of students answering them correctly on the pretest. 
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Figure 5: Questions 20 & 21: Pushing Different Masses the 

Same Distance with the Same Force, correlations 

between 20B and 21C.  
The correlated pair consisting of 20A and 22C correspond to 

confusing the change in energy of a system with the change in 

momentum.  About 4% of students showed this excess pairing on 

the pretest, rising to 10% on the post-test, the most dramatic of the 

only two increases in excess correlated responses found in this 

study.  There is clear evidence that this excess correlation has a 

peak, probably around score 75%.  Together with the dramatic 

increase in excess correlated responses on the post, we argue that 

this paired response requires confusion of work with impulse 

augmented by some understanding of momentum.  

 

Similarly, the responses 20B and 21C, shown in Figure 5, seem to 

correspond to the idea that equal force results in equal acceleration, 

regardless of mass. This response decreases with increasing score 

and also from pretest to post-test.  The correlation coefficient 

increases dramatically with score on both pre- and post-test.  

 

The final correlated pair that comes from questions 20-22 is 20D 

and 22D, shown in Figure 6. These answers are both "too little 

information" to calculate the energy and momentum of two pushed 

pucks.  Not surprisingly, this paired response shows the greatest 

decrease from pre- to post-test (~ 5:1), presumably because 

most students learn about either energy or momentum during the 

course. 

 
Figure 6: Questions 20 & 22: Pushing Different Masses the 

Same Distance with the Same Force: correlation 

between 20D and 22D.  

3. TRANSITION ANALYSIS: PRE →POST 

ON THE SAME QUESTION 

3.1 Robust Wrong Answers: Null Hypothesis 

and Findings 
 

If a certain wrong answer on the pretest corresponds to an 

entrenched misconception, students should give that same answer 

on the post-test.  We therefore use a baseline null hypothesis for 

comparison that assumes that students answer the post-test 

independently of their response on the pretest. We search for 

“excess” transitions above this null.  When looking for wrong 

answers which are unusually strongly held (what we call “robust 

wrongs”), for example, our null hypothesis is that the student is 

unaffected by instruction and would answer with the same 

probability on the post-test as on the pretest.  If 30% of all students 

answered correctly on the pretest, this would imply a 9% robust 

rate.  This null hypothesis would reflect reality if all students were 

guessing on both pre and post.  

 

The most robust wrong answer seen in Table 3, answer E on 

question 12, is “none of the above” on a numerical question, which 

does not suggest a specific physics misconception. The next two 

correspond to the same error in interpreting the motion diagram in 

a related pair of questions, namely reversal of the time axis. The 

fourth corresponds to claiming that the middle of the range of a 

graphed function is its average value. The fifth indicates that 

students have erroneously used the mass of part of a system instead 

of the total mass of the system in F=ma, and the sixth involves 

treating the speed of an object as its acceleration in an F=ma 
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problem. The first four of these give little insight into physics 

misconceptions, though they do seem to highlight mathematical 

deficiencies, but the robust wrong responses in Q17 and Q13 reveal 

difficulty with applying Newton’s Second Law. Confusing speed 

and acceleration is a well-known student misconception.  

 
Table 3: Six wrong answers were given by students on both 

the pre- and the post test at rates which were significantly 

greater than chance at the p<0.0001 level. Here we present the 

p-values for each of these responses and the frequency with 

which these responses were given as a percentage of all 

responses to the questions. 

 

p-value Question % 

~10-9 Q12E 14 

~10-8 Q1A 6 

~10-7 Q2E 5 

~10-6 Q25B 4 

~10-5 Q17C 10 

~10-4 Q13C 3 

3.2 Wrong to Correct: Null Hypothesis and 

Findings 
 

Since the wrong answers on the MBT are designed to represent 

specific misconceptions, the question arises of whether students 

who give certain wrong answers on the pretest might be more or 

less likely than other students to subsequently provide the correct 

answer on the post-test. In other words, we wish to ascertain 

whether some misconceptions are more resistant to instruction than 

others. In calculating the excess (or deficit) relative to chance of 

students making a transition from a wrong answer to the correct 

answer, our null hypothesis is again that a student’s likelihood of 

answering correctly on the post-test is independent of the answer 

they gave on the pretest. However, we must take into account that 

a non-trivial fraction of the students answer any given problem 

correctly on both pre- and post-test not by chance but because they 

understand the relevant physical concepts-- in some cases as many 

as 80% of students answered a problem correctly on both tests. We 

therefore use a slightly different null hypothesis that eliminates 

students who do not change their answer after instruction.  This 

posits that the conditional probability of a student offering the 

correct answer to a particular problem given that they gave a 

particular incorrect answer to that problem on the pretest should be 

equal to the ratio of the number of students who transitioned to the 

correct answer from any incorrect answer over the total number of 

students who changed their answer in any direction.  The most 

statistically significant wrong to correct transitions are displayed in 

Table 4 and discussed below.  

 

3.2.1 Q1 and Q2: Find velocity and acceleration 

from a graph 
Both transitions have moderate excess probability (~ 60%) of 

switching to the correct answer, and very small probability that the 

wrong is robust.  This suggests that these wrongs are mainly due to 

careless errors in reading the graph.  

3.2.2 Q14: Force from lower rope on top block of 

two hanging in stationary elevator 
About 6.5% answered D (20N, twice the answer) or A (forgot 

multiplying by g) and at least 80% of both switch to correct.  This 

generally shows strong growth on applying Newton’s 

Laws.  (Although most students probably saw this example in the 

course.)  The very small number of robust wrongs shows that the 

initial answers may have been mostly due to lack of full 

understanding of tension rather than strongly held 

misconceptions.   

3.2.3 Q23: Average acceleration from graph of 
velocity versus time 
The two most attractive wrong answers, taking v=0 at t=0 (p < 10-

4) and “none of above” (p < 10-3) both exhibited excess transitions 

to the correct answer.  Students with pre-answers switched to 

correct with 78% and 80% likelihood.  This is a graphing question, 

so possibly learning about graphs is reinforced due to 

complimentary instruction on graphs of functions in the 

introductory calculus courses which a majority of students are co-

registered for. NOTE: 14% of those who were correct on the pretest 

answered incorrectly on the post.  

 

Table 4: Wrong to correct transitions which occur 

significantly more frequently than would be expected due to 

chance. We display the p-values and the overall frequency 

with which the transition occurred for all such transitions 

with p<0.001. 

 

p-value Transition Freq. [%] 

~10-6 Q2E2D 10 

~10-5 Q1A2B 11 

~10-4 Q23C2D 9 

~10-3 Q14D2B 8 

 

4. CONCLUSIONS AND DISCUSSION 

4.1 Excess Correlated Wrong Responses 
“Excess correlated responses” (ECR) are in addition to those that 

would occur if the correlated questions were independently 

answered randomly with the observed frequency of wrong 

answers.  Correlated wrong answers between different questions 

were detected and described in two ways: by the 

excess fraction of students who selected both wrong answers (vs. 

assuming independently answered questions), and by the fraction 

of students who selected one wrong answer who also selected the 

other (tetrachoric correlation).  Both quantities varied considerably 

with the overall ability of the students as measured by their overall 

fraction correct (score) on the assessment.  For this reason, we 

discuss only results specific to student overall score.  
The correlated wrong answers found here are surprisingly 

prevalent, with ~10% or more of the students in one of the score 

groups selecting both of the paired wrongs in all cases except the 

last two which have the lowest statistical significance.  Our most 

important findings are:  
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1. The percentage of correlated wrongs always drops for 

students with score >0.7, and typically decreases to 1% or 

lower for the top score group on the post-test.  

2. In the two cases suggesting a real misconception, force 

from ramp and kinetic energy of masses, the percentage of 

correlated wrongs also decreased for the lowest-scoring 

groups.    

 

The tetrachoric correlation measures the “purity” of the observed 

correlations.  In every case presented, it reaches or exceeds 0.8 for 

groups with high test scores.  This shows that essentially every 

skilled student giving one of the paired wrong answers also gives 

the other.  Equivalently, the mistake or misconception is the main 

cause of the wrong answers on both questions.  In cases where low-

skill students appear to lack the correct physics knowledge 

(energy/momentum and direction of force on curved ramp), the 

correlation decreases to well below 0.5.  Low tetrachoric 

correlation probably indicates that students are using a variety of 

incorrect reasons in their responses, so that many are led to answer 

one of the paired wrong answers but not the other.  
In summary, the search for excess correlated answers has revealed 

two cases where the excess peaks for students in a particular range 

of overall score.  This is a clear guide for instruction: if you teach a 

class is in this score range, then you should carefully address 

situations like this to tease out and rectify the underlying 

misconception.  Additionally, the dramatic increase in mistaking 

work as the source of momentum on the post-test indicates that our 

instruction has to be clarified on this point.  We find that the 

correlation of all wrong answer pairs increases for better students - 

indicating that this misconception is the main reason for these 

wrong  answers and is being consistently applied to both questions 

I.e. skillful students don’t make errors on just one of the problems 

due to some reason unrelated to the identified misconception.  

4.2 Excess and Robust Transitions 
We found that the none of the transitions from wrong to right 

indicated that that particular wrong answer was conceptually 

closely related to the correct answer; rather it seemed that the 

wrongs were due to careless responses or fuzzy thinking.  On the 

other hand, several of the robust wrong answers seemed to reflect 

physics misconceptions.  

 

5. SUMMARY 
The probability of each particular ECR varies substantially with 

the overall ability (measured by total score) of the students, ranging 

up to a maximum of  4,5,8,10, and 11%.  Although it always drops 

to ~ 1% or less at the highest ability, we find examples where the 

probability of ECR peaks at low and at medium student score.  In 

all cases, the fraction of students giving one wrong answer who also 

give the other exceeds 80% for the highest-scoring students.  This 

suggests that teachers concentrate on remediating ECR’s common 

to their students’ scores. ECR's seem to be a good method to 

detect significant misconceptions or missing knowledge held by 

students of a particular ability.  
The transition analysis showed that robust wrongs often reflected 

misconceptions in math or physics, but that excess transitions from 

wrong to correct generally reflected carelessness rather than a 

mindset primed for learning the correct response.  
 

6. FUTURE DIRECTIONS 
The present work offers a new method for finding excess 

correlations of wrong answers between different questions, and 

particularly common (or uncommon) learning transitions within 

one question from pre- to post-test.  Two future directions seem 

important to explore:  

1. This method should be compared with network analysis 

which has a similar objective [2].  

2. The students at MIT are significantly stronger than most 

who take the MBT.  It is therefore important to extend the 

analysis to students with lower overall ability as evidenced by 

lower overall scores on the pre-test.  

3. We have a new way to assess misconceptions; this should 

enable us to find better ways to remediate them. 
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