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ABSTRACT

The first intelligent tutoring systems for computer program-
ming have been proposed more than 30 years ago, mostly fo-
cusing on well defined programming tasks e.g. in the context
of logic programming. Recent systems also teach complex
programs, where explicit modelling of every possible pro-
gram and mistake is no longer possible. Such systems are
based on data-driven approaches, which focus on the syn-
tax of a program or consider the output for example cases.
However, the system’s understanding of student programs
could be enriched by a deeper focus on the actual execution
of a program. This requires a suitable data representation
which encodes information of programming style as well as
its functionality in a suitable way, thus offering entry points
for automated feedback generation.

In this contribution we propose a representation of com-
puter programs via execution traces for example input and
demonstrate the power of this representation in three key
challenges for intelligent tutoring systems: identifying the
underlying solution strategy, identifying erroneous solutions
and locating the errors in erroneous programs for feedback
display.
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1. INTRODUCTION

Teaching computer programming has been a long-standing
goal of intelligent tutoring systems research. The earliest
example, the LISP tutor, has been released in 1985 [1] and
since then many different approaches have evolved, such as
learning by examining and manipulating examples, by sim-
ulation and debugging, by dialogue with the system, by col-
laboration with peers or by feedback [7]. Most of these ap-
proaches rely on extensive domain knowledge about program
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structure, typical mistakes (so-called buggy rules) and syn-
tactic concepts, which is expensive to obtain and difficult to
encode [5, 10]. In particular, such approaches get infeasible if
the space of possible programs (and mistakes) gets too large,
and if the goal of the computer program is ill-defined [8]. To
push the boundaries of intelligent tutoring systems towards
such scenarios, data-driven approaches have been developed
which provide feedback to students based on example pro-
grams handed in by other students, e.g. by highlighting the
difference of the student solution and a similar, correct pro-
gram [2, 16]. However, such approaches focus strongly on
the syntax of programs, which is problematic because the
relation between a programs functionality and its syntax is
highly non-linear.

As an example, consider the Java code shown in Figure 1.
The programs on the left and on the middle are both (cor-
rect) sorting programs, which have a very similar syntactic
structure. Both sort the array via two nested loops, com-
pare the current element to its successor and swap them if
the order is incorrect. However, the programs implement dif-
ferent algorithms, namely BubbleSort (left) and Insertion-
Sort (middle). Thus, minor syntactic changes correspond
to major changes in terms of function [14]. If an intelligent
tutoring system provides feedback based on a functionally
dissimilar example (e.g. a different underlying algorithm)
the system might recommend changes to the student’s pro-
gram which lead the learner away from her intended strat-
egy. Such feedback might be detrimental to the student’s
learning success.

This poses a challenge to educational datamining research.
How do we estimate the similarity between programs on a
functional level, without exceeding effort in knowledge en-
gineering? We propose to represent computer programs by
their execution traces, to compare such traces using sequence
alignment and to define the similarity between programs
based on the alignment distance. An execution trace is a
sequence of variable states for each step of the program’s
execution for some input. They are a usual representation of
computer programs for debugging purposes and can provide
insight into the dynamic behaviour of programs [6]. In par-
ticular, traces and alignments of traces have been success-
fully applied in educational programming environments to
offer students an alternative view on their own program for
self-reflection [17, 18]. We build upon this research by uti-
lizing the trace representation for educational datamining,
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public static int[] bubblesort(int[] A) { public static int[] insertionSort(int[] A) {

final int 1 = 0O;
final int r = A.length - 1;
for (int i =r; i>1; i--) {
for (int j = 1; j < i; j++) {
if (A[J] > A3 + 11) {
final int tmp = A[]j];
A[J] = A[J + 1];
A[j + 1] = tmp;
} }
} 3
} }
return A; return A;

} }

final int 1 = 0O;
final int r = A.length - 1;

if (A[J] > A3 + 1]) {
final int tmp = A[]j];
A[J] = A[J + 1];
A[j + 1] = tmp;

for (int 1 = 1; i < r; i++) {
for (int j =i -1; j>=1; j--) {

public static int[] insertionSort(int[] A) {
final int 1 = 0O;
final int r = A.length - 1;
insertionSort(A, 1, r);
return A;

private static void insertionSort(int[] A, int 1, int r) {
if (1<) {
insertionSort(A, 1, r - 1);
insert(A, 1, r);

}
}
private static void insert(int[] A, int 1, int r) {
if (1 <r) {
if (A[r - 1] > A[r]) {
final int tmp = A[r - 1];
Alr - 1] = A[r];
A[r] = tmp;
insert(A, 1, r - 1);
3

Figure 1: Three correct sorting programs in Java code. Important syntactic constructs and variable ini-
tializations are highlighted. The corresponding code parts between all three programs are visualized via
background highlighting. Left: An iterative BubbleSort implementation. Middle: An iterative InsertionSort
implementation. Right: A recursive InsertionSort implementation.

Bubble Insertion  recursive
[47 77 27 1] [47 77 27 1] [47 77 27 1]
[47 27 77 1] [47 27 77 1] [47 27 77 1]
[47 27 177] [27 47 77 1] [27 47 77 1]
[2747 177] [2747 177] [2747 177]
[271747 7] [271747 7] [271747 7]
[1,2,4,7] [1,2,4,7] [1,2,4,7]

Table 1: The execution traces for the three pro-
grams from Figure 1 for the input array A = [4,7,2,1].
Only the values for the variable A are shown and
intermediate steps that do not manipulate A have
been omitted.

that is, for automated classification and analysis of student’s
computer programs in order to provide helpful, automated
feedback.

As an example, consider the programs from Figure 1 again.
Their execution traces for the input array A = [4,7,2,1] are
shown in Table 1. Despite the apparent syntactic similar-
ity, the implementations of BubbleSort and InsertionSort do
indeed map to different traces, while the iterative and recur-
sive implementation of InsertionSort map to the same trace.
This indicates that traces have a more direct relationship to
the semantics of the underlying program, making them a
promising representation for intelligent tutoring systems.

The main contributions of our work are as follows: First, we
introduce execution traces with the purpose to capture syn-
tactic as well as semantic aspects of the underlying program
(Section 3). Second, we provide an efficient methodology
for automatically comparing such traces via edit distances
and inferring a measure of similarity for further datamin-
ing applications (Section 4). Finally, we evaluate our ap-
proach in comparison with the state of the art in syntactic
representation in three key challenges for educational data
mining: 1.) identifying the student’s underlying algorith-
mic approach (Section 5.2), 2.) identifying erroneous im-
plementations (Section 5.3), and 3.) detecting the location
of errors for feedback (Section 5.4). To our knowledge, no
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data-driven approach exists to date which tackles all three
challenges. Syntax-based representations have been success-
ful in identifying the programming strategy [11, 13] but fail
in identifying erroneous solutions as well as error locations
(as we will show later). On the other hand, test case-based
evaluations are very successful in identifying erroneous solu-
tions but treat programs as a black box and thus can make
no claims regarding the implemented strategy or the loca-
tion of the error [17].

2. BACKGROUND AND RELATED WORK

2.1 Tutoring Systems for Computer Program-
ming

In a review of Al-supported tutoring approaches for com-
puter programming, Le and colleagues found six categories
of approaches, namely: 1.) displaying examples of programs
in order to learn to construct programs of a similar type
or modify examples; 2.) simulating the execution of a pro-
gram in a micro-world and visualizing it to the user; 3.)
providing a dialogue environment in order to complete a
programming task in an interactive dialogue with the sys-
tem; 4.) presenting buggy example code in order to learn
via program analysis and debugging; 5.) providing feedback
to students during development of their program in order
to guide them towards a correct solution and detect errors;
and finally 6.) providing a collaborative work environment
in which students can help each other in developing a pro-
gram, guided by the system’s group model [7]. We note that
Le and colleagues do not yet consider recent data-driven ap-
proaches, which are mostly feedback-based systems, such as
the FIT Java Tutor [2], BOTS [4] and ITAP [16]. Our own
approach is targeted mainly at such feedback-based systems
working on examples. We analyze the execution trace of a
student’s program in order to find similar programs for feed-
back purposes and we intend to locate errors in the student’s
program to help her correct them. However, our approach
also bears similarity to simulation-based approaches as we
consider the execution of the program’s statements as the
main characteristic of a program.

184



2.2 Representations of Computer Programs for

Data-Driven Systems

Most existing data-driven systems for computer program-
ming represent programs as abstract syntax trees, which
are subjected to some form of canonalization in order to
abstract from mere stylistic differences [15]. Recently, Piech
and colleagues have criticized this approach and judged syn-
tax trees not sufficiently discriminative to capture the strong
functional consequences of small syntactic changes [14]. In-
stead, they propose a neural network-based approach to infer
a vectorial representation of programs, such that standard
machine learning methods can be applied in the resulting
Euclidean space. Similar to our approach, Piech and col-
leagues intend to represent a programs function (or seman-
tics) in opposition to its syntax. However, they focus on a
direct mapping between input and output of program seg-
ments, while the trace representation provides more proce-
dural (or dynamic) insight into the programs function.

2.3 Edit Distances on Computer Programs
Computing similarities and dissimilarities between computer
programs is a crucial step towards data-driven intelligent
tutoring system [9]. Edit distances have been particularly
prominent in this regard. For example, Rivers and Koedinger
used tree edit distances to compute similarities between syn-
tax trees of Python programs to identify adjacent states [16].
Gross and colleagues similarly applied edit distances on syn-
tax trees to infer clusters of computer programs and select
the most similar sample solution for feedback [2, 3]. Finally,
Paaflen, Mokbel and Hammer have identified the underly-
ing algorithm of sorting programs using machine learning
techniques based on alignment distances and adapted the
parameters of those alignment distances to yield better clas-
sification results [11, 13]. Note that all these approaches rely
on alignment distances on program syntaz, not on execution
traces. Striewe and Goedicke applied sequence alignment on
execution traces, but did not apply the alignment distances
for further datamining purposes [18].

2.4 Classification of Computer Programs
Recently, the value of classification methods for feedback
provision in intelligent tutoring systems for computer pro-
gramming has been recognized. Such machine learning meth-
ods enable tutoring systems to infer e.g. the underlying pro-
gramming strategy of a learner with explicit human labelling
only for a small example set [13]. Piech and colleagues report
multiplication factors of up to 214, that is, a human tutors
annotation for one program permits inference of said anno-
tation for up to 214 other programs [14]. Of course, such
approaches rely on a representation of computer programs
in a format that can be fed into machine learning methods,
such as pairwise similarities and dissimilarities [9, 13] or an
explicit vectorial embedding [14]. In this contribution, we
employ a classification paradigm to distinguish between dif-
ferent algorithmic approaches, as well as between erroneous
and correct solutions.

3. REPRESENTING COMPUTER PROGRAMS

VIA EXECUTION TRACES

In general, execution trace recordings can be defined as the
“detection and storage of relevant events during run-time,
for later off-line analysis” [6]. More specifically, we consider
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executions of statements in the program as relevant events,
which we characterize by the value of variables of interest
after the statement has been executed. This is equivalent to
a step-wise execution of the program in a debugger, where we
record the state of an interesting variables in each step [17].
As an example, consider traces in Table 1 for the programs
in Figure 1.

Only modest technical requirements have to be fulfilled to
apply a trace representation. 1.) The programming lan-
guage has to offer a debugging environment which permits
monitoring of a program’s execution; 2.) a valid and non-
trivial example input for the task has to be available; and 3.)
the student’s program has to compile and execute without
errors on the example input [17]. Thus, the trace repre-
sentation is more demanding compared to the very flexible
syntactic representation of computer programs, but has less
prerequisites compared to extensive knowledge engineering.
In that sense, the trace representation can be seen as a “mid-
dle road” between entirely data-driven approaches and sys-
tems based on expert knowledge.

4. COMPARING EXECUTION TRACES

If a student’s program is analyzed via test cases, the output
is compared with the pre-defined reference value via a simple
equality test. However, such a strict equality test is not a
viable option for the comparison of execution traces. For
example, the traces on the left and the middle in Table 1
are not equal. But they are more similar to each other than
to an erroneous program that does not sort the input array
at all. Therefore, we require a more flexible measure of
similarity or dissimilarity between traces [9].

Similarities and dissimilarities on sequential data can be ob-
tained via alignment distances or edit distances. The over-
arching scheme is to extend both input sequences such that
there length becomes equal and similar elements of both se-
quences become aligned. The alignment distance is then de-
fined as the summed cost over all aligned elements [13]. The
choice of alignment algorithm depends on the extensions of
input sequences that should be permitted. In case of exe-
cution traces we intend to abstract from sequence elements
that leave the relevant variables unchanged. As an exam-
ple, consider lines two and three of the program in Figure 1
(left). These two lines could be removed from the program
without changing its function, if all expressions of r and [
are replaced by their value in the rest of the program. A
classic edit distance scheme would punish this with a higher
dissimilarity between the shorter and the longer version of
the program. Instead, we propose that the same state of the
relevant variables may be copied without cost. This corre-
sponds to the dynamic time warping dissimilarity Dprw for
speech processing, first introduced by Vintsyuk [20]. Given
two traces Z = (z1,...,2m) and § = (y1,...,yn) as well as
a dissimilarity measure d(z;,y;) between the variable states
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[417/2/1] d(xi,yj)) =0 [4/7/211]
[4171211] d(xi,yj)) =0 [4121211]
[4.7,21] 40, [42,71]
[4,2,2,1] [4,2,7,1]
[4,2,7,1] dxiyp =05 [2,2,7,1]
[4121711] d(xi:Yj)=1 [2141711]
[4,2,7,1]

[4,2,1,1]

[4,2,1,7]

Figure 2: An illustration of the dynamic time

warping distance between two traces. Aligned ar-
ray states are connected by yellow background.
Mismatching parts of the aligned variable states
are highlighted in red. The dissimilarity between
aligned array states is shown in the middle.

z; and yj, it is defined recursively as:

Dprw ((9617 e 7$i),(y1,~--:y]‘)) =d(zi,y;) + min{ (1)
Dprw ((951, s iz1), (Y1, - ~7yj—1)),
Dprw ((J»‘la s i), (Y- .,y]-)),
DDTW((J»‘h i), (Y- .,y]-,l))}

DDTW((J;I)7 (y1)> =d(z1,y1) (2)

This can be calculated efficiently in O(M - N) via dynamic
programming (Dprw is tabulated for all prefixes of Z and

9)-

An illustration of the dynamic time warping dissimilarity
between two example traces is shown in Figure 2. The first
three array states of the left trace are just repetitions and
thus are aligned with the first array state of the right trace.
This occurs again for the fourth to sixth array state of the
left trace. Only afterwards the array states differ and lead
to a non-zero dissimilarity between both traces. Note that
the explicit alignment of array states between two compared
traces in dynamic time warping can be retrieved efficiently
via backtracing in linear time.

As other edit distances, the dynamic time warping algorithm
crucially relies on a dissimilarity measure between variable
states. If prior knowledge regarding the interesting variables
is available, defining such a measure becomes fairly straight-
forward (e.g. a Hamming-distance on arrays, just counting
the number of unequal entries). In absence of such prior
knowledge, defining a dissimilarity on variable states be-
comes a challenge in itself. One has to infer a semantic
matching between the variables in both programs, deter-
mine their relevance (as some variables might be less central
to the semantic function than others) and then compute the
relevance-weighted distance between all matched variables.
As a first step in this direction, we propose a simple sum-
mary scheme. We build a histogram H,., in each state x;
that counts the number of variables of each type t € T, and
compare these histograms with a normalized L1 distance:

Z o, (0 = Hyy O

d(xﬁ y) =
J 2 1., 0] + |y, ()]
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Note that we consider only types ¢t which occur in both pro-
grams at least once.

5. EXPERIMENTS

Our experimental evaluation concerns three key challenges
for data-driven intelligent tutoring systems: 1.) Identifying
the underlying algorithmic approach, 2.) identifying erro-
neous programs, and 3.) detecting the location of an error,
once a program is identified as erroneous. We compare the
performance on these tasks between the trace representa-
tion (with dynamic time warping as dissimilarity measure)
and the state-of-the-art in terms of syntax representation:
syntax-trees with learned edit distance parameters via ma-
chine learning techniques [13]. As implementation of the
alignment techniques we applied the T'CS Alignment Tool-
boz [12].

5.1 Datasets

For our evaluation, we use two benchmark datasets. The
palindrome data set consists of 48 (correct) programs decid-
ing whether all words in an input sentence are palindromic,
using one of eight different programming strategies [9]. We
used the histogram-approach to define a dissimilarity be-
tween variable states and generated traces using the input
sentence “OTTO ANNA MOPS”. As this data set does not
contain erroneous programs, we only used it for the first
experiment.

The second dataset is an extended version of the sorting
dataset from [11]. It consists of 126 (correct) sorting pro-
grams collected from various web sources, each implement-
ing one of six sorting algorithms (35 BubbleSorts, 29 Inser-
tionSorts, 15 MergeSorts, 17 QuickSorts, 20 SelectionSorts
and 10 ShellSorts). For each of the programs we created an
erroneous counterpart, with one or more semantic errors,
that is, errors that are neither detected by the compiler nor
do they lead to a program crash (e.g. due to an index being
out of bounds). Thereby, we focused on errors that are non-
trivial to detect for technical systems. As a dissimilarity
between variable states we employed a Hamming distance
on the array to be sorted. As input we generated a uniform
random array of 10 integers in the range [0, 99].

Both datasets are available online at http://doi.org/10.
4119/unibi/2900666 and http://doi.org/10.4119/unibi/
2900684 respectively.

5.2 Classifying Programming Strategies

Our first experiment concerns the identification of the un-
derlying sorting algorithm. We assume that a human expert
has already labelled some example programs and want to in-
fer the correct label for some new, unlabelled program. We
evaluate the classification accuracy of an 1-nearest neighbor
classifier for the syntactic as well as the trace-based represen-
tation in a crossvalidation with 6 folds (for the palindrome
dataset) and 10 folds (for the sorting dataset) respectively.

The results are shown in Table 2. For the palindrome dataset,
the accuracy for the trace representation is more than 10%
higher compared to the syntactic representation. Yet, likely
due to the small sample size, this difference is not significant
(Wilcoxon rank-sum test). In case of the sorting data set,
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Figure 3: The sorting dataset embedded in 2 dimensions via t-stochastic neighborhood embedding (t-SNE)
[19]. The sorting algorithms are indicated by color. On the left side, the embedding is shown for adapted, syn-
tactic edit distances [13]. On the right side, we show the embedding for dynamic time warping dissimilarities

on traces.

palindromes sorting
method acc. std. dev. acc. std. dev.

syntax  0.875 0.158 0.812 0.068
traces 0.979 0.051 0.954 0.040

Table 2: The mean classification accuracy and its
standard deviation of a l-nearest neighbor classi-
fier distinguishing six different sorting algorithms.
Mean and standard deviation are calculated across
6 (for palindromes) and 10 (for sorting) crossvalida-
tion trials.

we gain an increase in accuracy of more than 14%, which
is highly significant (p < 0.01, Wilcoxon rank-sum test).
This is also reflected in the corresponding dissimilarities.
In Figure 3 we show 2-dimensional embeddings of the sort-
ing dataset according to syntax-based (left) and trace-based
(right) dissimilarities. The trace representation yields more
compact clusters corresponding to the correct class label,
thereby making classification easier. Interestingly, closer in-
spection of the misclassified data points for the trace rep-
resentation revealed that the 1l-nearest neighbor classifier
correctly identified a BubbleSort implementation the pro-
grammers had wrongly labelled as an InsertionSort.

In order to apply a classification algorithm in praxis, labelled
data is required. To reduce human work, one would like to
reduce the amount of labelled data necessary. We tested the
required amount of labelled data experimentally, by reduc-
ing the number of labelled data points (and increasing the
number of unlabelled points). The results are displayed in
Figure 4. For the palindrome data set, only two data points
per class are sufficient to achieve good performance. For
the sorting data set, about 40 labelled programs suffice to
achieve a classification accuracy of 90% using the trace rep-
resentation, while the classification accuracy for the syntac-
tic representation saturates at 80% for about 60 programs.

5.3 Classifying Erroneous Programs
We phrase the identification of erroneous problems as a clas-
sification task as well: We assume that a human expert

T T ]
1 | .
0.9+ .
oy
3 0.8+ .
o
: il
3 0.7+ .
&
06 —— syntax ||
0.5 —— traces ||
! ! I I
10 20 30 40
no. labelled data points
T T
1 - —
0.9+ .
>
3 0.8+ .
-
=}
3 0.7 s
&
06 —— syntax ||
0.5 traces ||
! I
50 100

no. labelled data points

Figure 4: The classification accuracy on the strat-
egy classification task using the syntactic as well as
the trace-based data representation if the number
of available labelled data points is reduced and the
number of unlabelled points is increased. The upper
plot displays the result for the palindromes dataset,
the lower plot for the sorting dataset. The error-
bars mark the standard deviation across 6 and 10
crossvalidation trials respectively.
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method Accuracy std. dev.

syntax 0.211 0.107
traces 0.861 0.086

Table 3: The mean classification accuracy and its
standard deviation of a 1-nearest neighbor classifier
distinguishing erroneous from correct sorting pro-
grams. Mean and standard deviation are calculated
across 20 crossvalidation trials.

1 T T |
0.8 %%HJFH“PH‘H’IH .
oy
& 0.6 - N
—
=)
Q
2 0.4 B
02— syntax i
—— traces
T |
0 100 200

no. labelled data points

Figure 6: The classification accuracy on the error
classification task using the syntactic as well as the
trace-based data representation if the number of
available labelled data points is reduced and the
number of unlabelled points is increased. The error-
bars mark the standard deviation across 20 crossval-
idation trials.

has labelled a few example programs as correct and erro-
neous respectively. Then, we want to infer the label for new
programs. We evaluate the classification accuracy of an 1-
nearest neighbor classifier in a 20-fold crossvalidation.

The results are shown in Table 3. As expected, the syntactic
information is not at all sufficient to judge the correctness
of a program. The trace-based representation, on the other
hand, identifies correct and false solutions in most cases
(about 86% accuracy). Again, we can observe the difference
between both representation in 2-dimensional embeddings.
Figure 5 shows embeddings for the syntactic-based (left) as
well as the trace-based dissimilarities (right). While erro-
neous and correct solutions are almost indistinguishible for
the former representation, we observe a much clearer sepa-
ration of the classes for the latter representation.

We also tested the classification performance if less labelled
data is available (see Figure 6). Interestingly, the classifi-
cation accuracy of the syntactic representation decreases if
more labelled data is available. This is likely due to the fact
that we created the erroneous programs based on the cor-
rect ones, such that the nearest neighbor from a syntactic
point of view often was the respective counterpart solution,
such that errors get more prevalent if more of such neighbors
are available for classification (also refer to Figure 5). Con-
versely, the trace representation steadily increases in perfor-
mance and reaches 80% accuracy at about 50 labelled data
points.
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5.4 Detecting Error Locations

As a final challenge, we try to locate the errors within the
erroneous programs. More precisely, the challenge is to iden-
tify a set of lines of code in an erroneous program, such that
all errors are included, but few other lines are included. Such
a set of lines can then be utilized in an intelligent tutoring
system. The identified lines can be highlighted such that
the student is able to find the error in her program. We
apply two strategies based on alignment algorithms, one on
the syntactic representation and one on the trace represen-
tation.

Syntax-Based Error Detection. We select the nearest cor-
rect neighbor and retrieve a syntactic alignment of the er-
roneous program and the correct program via backtracing.
Thereby we obtain the contribution of each line of code in
the erroneous program to the overall alignment distance. In
order to identify contributing neighbors as well, we apply
Gaussian blur to this distribution and then select the line of
code with the highest contribution as well as its neighbors,
if their contribution is sufficiently high (at least half as high
compared to the maximum).

Trace-Based Error Detection. Our trace-based strategy
is similar to the syntax-based one. We again select the near-
est correct neighbor and retrieve a trace alignment of the
erroneous program and the correct program via backtrac-
ing. However, we can apply additional domain knowledge.
We assume that an erroneous program has the wrong out-
put given the input. The output of the program includes
the value of the relevant variables at the end of the trace.
Therefore, we can start from the end of the trace alignment
and work back until the state of the relevant variables is
equal to the state in the correct program. This is the point
where the error in the program influences the programs ex-
ecution negatively. However, it is not sufficient to highlight
this particular line of code, because the actual error might
be earlier in the code (e.g. a wrongly set index). Therefore,
we select not only this line, but the most frequently exe-
cuted five lines of code until the last change of the relevant
variables.

Further, we included three trivial baseline strategies for com-
parison: 1.) Selecting a line of code at random, 2.) selecting
a line of code at random according to its distribution in the
trace, and 3.) selecting all lines in the program that occured
in the trace.

We evaluated all five strategies in a 20 fold crossvalidation.
For each erroneous program, we excluded the correct coun-
terpart from the available neighbors in order to make the
scenario more realistic.

The results are shown in Table 4. We report the classic
pattern recognition measures precision (how many of the se-
lected lines of code contain an error?), recall (how many of
the erroneous lines of code have been selected?) and F1-
score (harmonic mean of precision and recall). In terms of
F1-score, the trace-based error detection method clearly out-
performs the syntax-based one (p < 10~%, Wilcoxon rank-
sum test). Further, as expected, both random baseline meth-
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method precision std. dev. recall std. dev. F1 score std. dev.
traces 0.183 0.071 0.520 0.211 0.269 0.104
syntax 0.103 0.086 0.134 0.100 0.115 0.091
traces_random 0.157 0.122 0.119 0.098 0.134 0.107
syntax_random 0.121 0.116 0.095 0.095 0.105 0.103
traces_all 0.103 0.022 0.976 0.050 0.186 0.037

Table 4: The mean classification accuracy and its standard deviation of a l-nearest neighbor classifier dis-
tinguishing erroneous from correct sorting programs. Mean and standard deviation are calculated across 20

crossvalidation trials.

ods seldomly select an erroneous line, thereby limiting the
recall. However, selecting all lines of code occuring in a trace
provides a strong baseline to compete with (F'1 = 0.186).
Still, the trace-based error location method performs signif-
icantly better (p < 0.01, Wilcoxon rank-sum test).

6. DISCUSSION

In this contribution we introduced an alternative representa-
tion of computer programs for classification and error detec-
tion in intelligent tutoring systems (ITSs), namely execution
traces. On two example data sets we have demonstrated
that this representation can improve upon state-of-the-art
syntax-based representation in terms of strategy classifica-
tion, error classification and error detection. In a full-blown
ITS for computer programming, the trace representation can
thus be applied to help students in solving programming
tasks. As soon as a student has managed to reach a working
state (without syntax errors and program crashes) we can
generate a trace and compare it with the traces of differ-
ent programs. The resulting (dis-)similarity measure can be
used to identify possible partners for peer-review and peer-
tutoring by matching students that apply the same approach
in their solution attempt. Further, the trace representation
can be applied to identify erroneous programs, enabling an
ITS to detect whether a student has finished a task or still
needs to continue. Further, as not only the end result is
checked but the whole execution, the trace representation
can be utilized for detecting unusual or deceptive solutions
that are geared towards the test cases without actually im-
plementing the desired function. Finally, if an error is still
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present in a student’s program but the error is not obvious,
the trace representation may help to identify and highlight
the location of the error in the program code, thereby pro-
viding scaffolding to students that get stuck in searching for
their error.

Overall, the trace representation appears to be highly useful
for data-driven I'TSs on computer programming. However,
important challenges remain. If no a priori knowledge re-
garding the relevant variables in the program is available,
computing a dissimilarity on variable states is not trivial.
We have suggested a first attempt using a histogram of vari-
able types. This representation, however, disregards the
content of variables and thus is likely not sufficiently power-
ful in many applications where differences in variable values
are important markers of program semantics. A solution
might be to match variables probabilistically according to
the alignment distance a certain matching produces. This is
an interesting direction to pursue in further research.

Finally, we note that the trace representation does not have
to be the sole source of information for an ITS. A syntactic
representation is necessary when a program does not yet
compile or crashes and wherever the high level of abstraction
applied by a program trace is not helpful (e.g. when teaching
certain syntactic constructs). Fusing the strengths of both
representations is likely to lead to the best learning outcomes
for students.
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