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ABSTRACT 
Educational games have become hugely popular, and educational 
data mining has been used to predict student performance in the 
context of these games. However, models built on student 
behavior in educational games rarely differentiate between the 
types of problem solving that students employ and fail to address 
how efficacious student problem solutions are in game 
environments. Furthermore, few papers assess how the features 
selected for classification models inform an understanding of how 
student behaviors predict student performance. In this paper, we 
discuss the creation and consideration of two models that predict 
if a student will develop an elegant problem solution (the Gold 
model), or a non-optimal but workable solution (the Silver 
model), in the context of an educational game. A pre-determined 
set of features were systematically tested and fit into one or both 
of these models. The two models were then examined to 
understand how the selected features elucidate our understanding 
of student problem solving at varying levels of sophistication. 
Results suggest that while gaming the system and lack of 
persistence indicate non-optimal completion of a problem, gaining 
experience with a problem predicts more elegant problem solving. 
Results also suggest that general student behaviors are better 
predictors of student performance than level-specific behaviors.  
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1. INTRODUCTION 
Educational games can be a great way to enhance learning; in 
some cases games lead to better learning than standard 
instructional activities [5, 22]. Yet while understanding how 
students learn in educational games is important, not much work 
has been done on modeling student learning in educational games 
that are open-ended, where students have a lot of freedom to 
explore. Furthermore, although there has been work on modeling 
behavior in games and educational learning environments to 
predict performance in these environments [6, 10, 13, 14, 16, 20] 
or more generally in school [4], there is not a lot of work that 
specifically looks at student problem solving strategies in games. 
Analyzing how students solve complex problems is a key part of 
understanding student learning in a domain [1, 3, 12], especially 
in open-ended environments [2]. For this reason, we are 
investigating student problem solving techniques in order to better 
understand the nature of student behavior and performance in 
open-ended educational games.  
One key problem solving skill for learning is the ability to 
produce elegant solutions as well as workable solutions [8, 17], 

especially as one of the key markers of expertise in a field is the 
ability to solve problems more elegantly than a novice [11]. Even 
though there has been research on how to model different student 
approaches to problem solving [7] there has not yet been 
sufficient work on modeling the behaviors associated with elegant 
problem-solving vs. creating workable but less-optimal solutions 
to problems, especially in game environments. This paper 
examines how students solve problems to create elegant versus 
non-optimal, workable, solutions to problems in open-ended 
educational games. We study this issue in the context of Physics 
Playground, an open-ended discovery based learning game where 
students learn about Newtonian physics while trying to solve 
problems.  

2. THE GAME: PHYSICS PLAYGROUND 
Physics Playground, formerly called Newton’s Playground [19], is 
an educational game that measures and supports knowledge of 
conceptual physics for middle and high school students. The game 
requires students to draw simple machines (consisting of ramps, 
levers, pendulums, and springboards) that act in accordance with 
Newton’s laws of force and motion. In each level of the game, 
students are tasked with freehand drawing these machines, which 
are used to get a green ball to hit a red balloon. In addition to 
drawing machines, students can draw objects that interact with the 
ball directly in order to get the ball to reach the balloon. For 
example, students can draw objects made to fall and hit the ball 
directly, causing the ball to move. These objects are called 
“divers” in the context of the game. Students can also draw 
objects through the ball to move it up slightly. This technique is 
called “stacking” and is considered a form of “gaming the system” 
[21]. Similarly, students can click on the ball to “nudge” it 
forward slightly, if need be, without drawing an object at all. 
When students finally find a way to hit the red balloon with the 
green ball, they have completed the level, and are awarded a 
badge based on their performance.  

Students can either receive a gold badge, silver badge, or no 
badge, depending on their performance in any given level. Badges 
are awarded according to the efficiency of the student’s solution 
to a problem — determined by the number of objects a student 
draws in his or her attempt to solve a given problem. For most 
levels, gold badges are awarded if the student solves the problem 
by drawing three or fewer objects. Silver badges are awarded if 
the student solves the problem, but draws more objects. Each level 
is designed so that one simple machine (a ramp, springboard, 
pendulum or lever) will optimally solve the given problem. 
Accordingly, badges for performance are also tied to the type of 
machine that a student drew in the given level. For example, if a 
student creates an efficient solution to a level using a ramp, then 
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the student would be awarded a “gold ramp” badge upon 
completion of the level. Badges are awarded as a means to give 
students feedback about the efficiency of their solution, so 
students can reflect on their solution quality. Badges are not 
necessarily constructed for motivational purposes. Student badges 
are referred to as “trophies” in the context of the game, and are 
displayed in the top right hand side of the screen upon level 
completion.  
The game consists of seven “playgrounds”, or game worlds, that 
each contains 10-11 problems. In total there are 74 problems in 
the entire game. Problems are ordered by difficulty, and problem 
difficulty is determined by a number of factors including the 
location of the ball to the target, the magnitude and location of 
obstacles between the ball and the balloon, the number of agents 
required to get the ball to the balloon, the novelty of the problem. 
Students do not have to move through the game in a linear 
fashion. All levels are unlocked and accessible to students when 
the game starts (i.e., level access does not depend on a student’s 
performance or progress in the game). Therefore, students can 
choose to go to any playground and work on any problem that 
they wish. That being said, there is a logical ordering to the levels, 
and many students do choose to go through the game in a linear 
fashion. 

3. METHOD 
3.1 The Study 
This project is based on data collected during a prior study using 
Physics Playground. A more detailed description of the study 
population and methods can be found in [9, 18]. 

3.1.1 Participants 
This data is from a study on 137 8th and 9th grade students who 
attended a diverse K-12 school in the southeastern United States.  

3.1.1.1 Procedure 
Students played the game in class for about 2.5 hours across four 
days of the study. Days 1 and 4 of the study consisted of student 
assessments, including a pretest and isomorphic posttest of 
students’ knowledge of physics concepts. Learning data will not 
be discussed in the context of this paper [for learning data see 9, 
18]. Days 2 and 3 of the study, as well as the first half of Day 4, 
consisted entirely of gameplay.  

3.1.1.2 Measures 
Physics Playground captured student log data during gameplay. 
The final data set consisted of 2,603,827 lines of action codes 
across the 137 students. Data collected included over seventy 
variables including information on student progression through 
the game, time stamps for actions, metrics on student drawings, 
gameplay actions, and badge awards. Across the 137 students, 919 
levels were completed, 203 gold badges were awarded and 500 
silver badges were awarded.  

3.2 Model Selection 
Two models were built for the purpose of distinguishing which 
features indicate elegant problem solving, and which indicate non-
optimal problem solving. The first model was built to classify the 
award of a gold badge, where problem solutions are optimal (Gold 
Model). The second model was built to classify the award of a 
silver badge, where students solve a level, but in a non-optimal 
way (Silver Model). Levels that a student attempted but did not 

complete (levels where the student was not awarded a badge) 
were not used in this analysis.  

By building two models, we were able to more effectively 
differentiate between features that predict elegant problem solving 
and features that predict non-optimal problem solutions more 
effectively. For example, creating two models allows for the 
identification of features that positively load onto one model but 
negatively load onto another. In turn, understanding these 
distinctions allows for a deeper understanding of how different 
levels of various features are indicative of the two types of 
problem solving.  Badges were used as labels because they are the 
game’s proxy for assessing student problem solution quality by 
marking the efficiency of a student’s solution. Although badges in 
many modern games are used for motivational purposes, for the 
purpose of this project, we were only interested in what badges 
indicated about the elegance of a student’s problem solution. 
Features were created, tested, and iteratively improved upon, 
across a variety of classification algorithms. During this process, 
the J48 algorithm, which is Weka’s implementation of the C4.5 
algorithm [15], consistently provided the strongest predictive 
power, while protecting against over fitting. For this purpose, 
when it came to final feature selection and model creation, J48 
was the sole algorithm used.  

The models were built on less than half of the student data (61 
students) so that the remaining test set could later be used to 
validate and test the final models. In order to validate the models 
during model creation and feature selection, batch level cross-
validation was used. Each student was randomly assigned into 1 
of 10 batches, and 10-fold validation was used to assess model 
goodness. Kappa was used as a measure of model fit. 

3.3 Feature Selection 
To make the two models, gold and silver labels were made. The 
gold label had a value of 1 if the student was awarded a gold 
badge, and a value of 0 if the student was awarded any other kind 
of badge (or no badge). A label for silver was created in the same 
way. The original log data tied each badge to the type of machine 
it awarded a badge for, but for the purpose of this project badge 
color and machine type were separated into two different features. 
This was done in part because we wanted to see if machine type 
affected which type of badge was awarded and in part because 
making machine type part of the label would result in models 
predicting what machine the student was building. Instead, we 
wanted to simply assess how successful students were at solving 
any given problem, regardless of the nature of the problem given.  

Over fifty features were created and assessed for their goodness in 
predicting badge awards on any given level. The feature 
engineering process started with a restructuring of the raw student 
data logs to the problem-level (raw logs came at the action level) 
because the label of interest categorized student performance at 
the problem-level grain size. This process was then followed by a 
descriptive analysis of the variables that came out of this re-
structured data, followed by structured brainstorming to elicit 
ideas about the types of features that could be built out of this 
data. Features were then created to measure certain constructs 
(e.g., time on task, gaming the system behavior, etc.) and 
behaviors of interest. Once a core set of features was created, 
colleagues and system experts were consulted about the quality, 
interest, and potential effectiveness of those features. Features 
were then iterated on. New features were created in an attempt to 
both measure constructs in more ways (e.g., measuring time on 
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task by looking at time on level, standardized time, or just time 
spent drawing objects) and to measure different student behaviors 
and constructs that the first set of features failed to measure. 
Features were then refined based on colleague and system expert 
feedback and used in single feature models to assess feature 
quality. An iterative process of feature creation, peer consulting, 
and feature refinement then continued for several more cycles 
until the final set of fifty features had been created.  

Once all features had been created, single-feature models were 
used to choose the seventeen features that were the best predictors 
of any given construct. For example, Time on Level in minutes 
was determined to be a better classification of the amount of time 
that a student spent on a level than standardized time.  

The final seventeen features were then ordered in terms of their 
goodness within a single-feature J48 model, under student-level 
cross-validation. The best feature was added, and then a recursive 
process was used where additional features were tested in the 
same order to determine whether adding that feature improved 
model goodness, as measured by an increase in kappa. Only 
features that improved kappa were added. The final gold model 
contained fourteen features, and the final silver model contained 
nine features.  

3.4 Feature Descriptions 
The final seventeen features used for model creation are listed and 
described below in addition to which model they ended up being 
included in. Features are listed in the order that they were tested 
and selected.  

Sum Elapsed (silver): The total amount of time that a student 
spent actively drawing objects up until that point in the game. For 
example, if a student spends 90 seconds actively drawing objects 
in Level 1, and then 30 seconds drawing during Level 2, then Sum 
Elapsed by the end of Level 2 would have a value of 120 seconds. 

Time on Level (both): The total amount of time spent playing the 
level that the student is being awarded the badge for (in seconds).  

Nudge Count (gold): The total number of times that the student 
pressed the ball to nudge it forward a little in the level.  

Number of Objects (both): The total number of distinct objects 
(machines, random lines, weights, etc.) the student drew in the 
level.  

Diver Count (none): The total number of divers that a student 
created in the level.  

Pause Before End (both): Binary indicator of whether or not the 
student hit the pause button as their last action before the level 
ended. Usually this happens when students wants to exit out of a 
level before completing the level. In this case, students would 
neither be awarded a gold badge nor a silver badge.  

Ball Count (both): The number of balls a student uses in a level. 
If a student knocks a ball off the screen or if the ball provided to 
the student falls to the bottom of the screen, then it disappears and 
the student gets a new ball to try again.  

Max Velocity Y (both): The maximum velocity that any ball a 
student used in a level traveled in the y direction (up and down). 
Velocity values in the Physics Playground system are given in 

meters-kilogram-second (MKS) units. 

Max Velocity X (gold): The maximum velocity that any ball a 
student used in a level ever traveled in the x direction (left and 
right). 

Erased Object Count (silver): Number of objects that a student 
drew, and then erased in the level. Students can erase an object 
that they have drawn by clicking on it. 

Stack Count (both): Number of times student drew an object 
through the ball in order to move the ball up.  
 

Badge Before (gold): Binary indicator of whether or not a student 
has received a badge (of any color) on this level before. 

Played Before (gold): Binary indicator of whether or not a 
student has played this level before. 

Average Free-fall Distance (gold): Free-fall distance is a 
measure of how far any divers fell before striking a ball. This 
feature averages across all those distances in the level. Units are 
percentage of the game screen. So if the diver falls half the 
distance of the game screen, this would have a value of 0.5.   

Restart Count (gold): The number of times a student re-started 
the level. 

Play Count (gold): The number of times that a student has played 
the current level before. Restarts are not included in this count. A 
student has to have either completed the level or made an attempt 
at the level, left the level, and then returned, in order for it to 
contribute towards this play count.  

Machine (both): The type of machine that should be created to 
optimize movement of the ball to the target. There is one machine 
per level and they can take the form ramp, lever, pendulum, or 
springboard. 

3.5 Final Models 
The final J48 gold classification model with ten-fold student batch 
cross-validation, which was built on half the data, had a Kappa 
value of 0.69, and the silver classification model had a Kappa of 
0.83. The other half of the data was held out for future analysis 
comparing the models developed here to other, future models. As 
is evident from the features mentioned above, seven features fit 
into both the gold and silver classification models. Those features 
were Time on Level, Number of Objects, Pause Before End, Ball 
Count, Max Velocity Y, Stack Number, and Machine. Seven 
features only fit the gold classification model; those were Nudge 
Count, Max Velocity X, Badge Before, Played Before, Average 
Free-fall Distance, Restart Count, and Play Count. Finally, two 
features only fit the silver classification model. Those were Sum 
Elapsed and Erased Object Count.   

3.6 Qualitative Analysis of Models 
The primary goal of this project was to use classification models 
to help elucidate how student behavior predicts gold and silver 
badge acquisition differently. For this reason, we take a more 
qualitative look at which features were included in each model, 
which were included in both, and which were included in neither. 
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Table 1 indicates how each of the features loaded onto each of the 
models when used in a single-feature model (machine type does 
not have a numeric value, so it is not included in the table). Since 
both models were built using J48 decision trees, this is simply a 
proxy for the general loading of each feature on the model 
outcomes, and not a comprehensive measure of how each feature 
fits into each model.   

Table 1. Feature loadings onto each model 
Feature Gold Model Silver Model 

Sum Elapsed - Negative 

Time on Level Negative Positive 

Nudge Count Negative - 

Number of Objects Negative Positive 

Diver Count - - 

Pause Before End Negative Negative 

Ball Count Positive Negative 

Max Velocity Y Negative Positive 

Max Velocity X Positive - 

Erased Object Count - Positive 

Stack Count Negative Positive 

Badge Before Negative - 

Played Before Negative - 

Average Free-fall Distance Negative - 

Restart Count Positive - 

Play Count Positive - 
 

3.6.1 Features included in both models 
Features that were included in both models mostly helped indicate 
whether the student was able to achieve optimal performance or 
simply workable solutions. For the majority of the features that 
were in both models, the value was higher for non-gold and higher 
for silver, indicating that these behaviors were typical of students 
who developed workable yet non-optimal solutions. 

For example, Time on Level was a good indicator of which 
students produced non-optimal, yet workable solutions. Students 
who spent a very short time on the level could have entered a 
level and then immediately quit, so they were likely to not receive 
a badge. However, longer time in level is associated with a badge 
but not a gold badge. This loading is likely because students who 
spend a long time on a level are struggling more or drawing more 
and those students are therefore less likely to develop the most 
optimal solution in a single level attempt. 

Other features that were higher for non-gold and silver were 
Number of Objects, Max Velocity Y, and Stack Count. It makes 
sense that students who drew more objects would get silver, 
because they are doing more work than students who quit the 
level (no badge) and students who developed optimal solutions 
(gold badge). Also, badges are awarded in accordance with the 
number of objects a student draws in his or her attempt to solve a 
given problem, so it makes sense that this feature would be a 
significant indicator of performance. Stack Count could have been 
a good indicator of whether students solved a problem optimally 
or non-optimally because students who are stacking a lot could be 

trying to game the system, likely because they don’t know how to 
solve the problem more effectively using machines. These 
students are likely to get a silver badge if they complete the 
problem, because stacking requires drawing many objects.  

Only one feature that appeared in both models was higher for both 
non-gold and non-silver, Pause Before End. This is likely because 
students who paused before the end of the level were quitting, and 
therefore did not receive a badge at all. However, that was not 
always the case. 
It is curious that students who had a higher Ball Count per level 
were more likely to produce optimal solutions; the value for ball 
count was higher for gold and non-silver indicators. This may be 
because students who created optimal solutions were 
experimenting more, and therefore going through more balls, but 
without spending too much time or drawing too many objects. 
This behavior could be indicative of students who are quickly 
iterating on a single idea, or thinking of what to do before drawing 
objects. (On some levels balls keep dropping down until you draw 
an object underneath to catch the ball, so the longer you spend 
without drawing an object, the more balls you use).   

3.6.2 Features that only fit the gold model 
Features that only fit the gold model are interesting because they 
specifically separate those who were able to solve problems 
elegantly as opposed to students who could not find an optimal 
solution to the problem. The features fit three general categories, 
relative to whether or not they indicate experience, shallow 
strategies, or efficiency. 

Features that indicate experience include Badge Before, Played 
Before, Play Count, and Restart Count. It is interesting that Badge 
Before and Played Before, which are both binaries, indicate non-
Gold performance while Play Count and Restart Count indicate 
gold performance. This indicates that if a student is working on a 
problem they have completed or played once before, they are not 
likely to develop an optimal solution, but the more they play a 
level, the closer they are to get to an optimal solution. Students 
who have played the level before have some experience with the 
problem space, even if they did not complete the level previously 
and that experience could help them determine an optimal 
problem solution. Play Count and Restart Count tell the model the 
precise amount of experience the current student has had with a 
level. Students who re-start or play a level more often might be 
optimizers, aiming to iterate several times on their problem 
solution in an attempt to find the best approach to solving the 
problem. They might be thinking more critically about the choices 
they are making and choosing to come back to a level or start it 
again when they’ve determined that they have acquired the skill or 
knowledge necessary to now perform more effectively. Resetting 
also enables students to clear their screens of all objects, and start 
over, so they can approach the problem afresh. This can be a good 
strategy for students who want to try going in a different direction 
instead of iterating on an earlier idea, and it can lead to more 
efficient problem attempts later. 

Nudge Count is a feature that indicates shallow strategies, or even 
potentially gaming the system. Students who nudge the ball a lot 
are trying to make the ball move without using a drawn machine 
to move the ball. This could lead to effectively moving the ball 
without drawing more objects, which could lead to a problem 
solution despite a low object count, which would result in a gold 
badge. Or, it could indicate a student who is nudging because they 
are struggling a lot with the problem, perhaps because they have 
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already drawn many objects, but are unable to get the ball to move 
effectively, so they try to nudge it along.  

The other features associated with gold badges but not silver 
badges measure how efficiently students are building machines. 
These include Average Free-fall Distance and Max Velocity X. 
Max Velocity X is a predictor of gold badges while Max Velocity 
Y can predict gold and silver badges, because Max Velocity X is a 
more effective measure of how well a student has constructed his 
or her machine. If a ball is dropped from the starting point, then 
regardless of how effective the student’s machine is, the ball will, 
in many cases, hit the same maximum velocity as it falls because 
all balls in the Physics Playground interface follow the laws of 
physics, and therefore accelerate at g. However, how fast a ball 
moves in the x direction is a direct result of how well a student’s 
designed machine moved the ball in that direction. Likewise, 
Average Free-fall distance measures student machine efficiency, 
because students have to carefully choose where to draw divers so 
that they have a desired effect on ball movement. Divers that are 
positioned too far away might not hit the desired target, requiring 
another driver to be drawn for the desired effect. Therefore, both 
these features are found in this model because they are able to 
successfully classify effective and efficient student construction 
choices. 

3.6.3 Features that only fit the silver model 
Only two features were associated with silver badges but not gold 
badges. They were Sum Elapsed and Erased Object Count. Both 
of these features describe the behaviors of students who are 
tinkering to iterate to a solution. Sum Elapsed negatively loads on 
the model, suggesting that it indicates ineffective tinkering, while 
Erased Object count positively loads on the model, suggesting that 
it indicates effective yet inefficient tinkering. Sum Elapsed is a 
measure of how much effort a student has put into the game, up 
until that point in time. A student who has spent a lot of time 
drawing objects across all prior game levels will have a higher 
Sum Elapsed value. This is higher for non-silver badges, maybe in 
part because students who spend a lot of time drawing on levels 
are less likely to complete the level they are on. This could be 
because students are making long strokes while doodling, or doing 
other off task work. On the other hand, students who erase many 
objects are more likely to get a silver badge. This might be 
because students who erase a lot are pruning their work if they 
drew too many objects or made mistakes. These students are more 
dedicated to completing the current problem, to acquire a badge, 
but they are not likely to solve the problem in an optimal manner. 
Therefore Erased Object Count measures an effective problem 
solving strategy that is not efficient. 

3.6.4 Features that fit neither model 
It is important to consider not only the features that fit into the 
models, but also the features that failed to improve either of the 
models when added. These included Diver Count and a host of 
other features that were discarded during the feature engineering 
process, due to the features’ low predictive power for behaviors of 
interest. Interestingly, more specific features involving specific 
machines or operators were less predictive of student performance 
than more general variables. Concrete behavior-specific features 
like Diver Count and Pin Count (pins are small dots that students 
can add to a drawing to tack an object in place or create a point 
for an object to rotate around) were less associated with outcomes 
than were general features like Object Count and Sum Elapsed, 
which describe student behaviors that span across several actions 
or several levels. (Note that divers are objects, so when talking 

about a distinction between these features Object Count is a more 
general category than Diver Count). It could be that student 
performance on any particular problem was not as predictive of 
their problem-solving efficacy as that student’s overall behavior. 
This could suggest that problem solving scaffolding and teaching 
should focus more on students’ overall strategies, rather than level 
specific strategies. On the other hand, it may simply indicate that 
none of the more specific features, by themselves, are as 
predictive as the more general categories that cut across and 
combine different specific features. It is also important to note 
that in addition to improving prediction, using more general 
features also reduces the risk of models over-fitting. 

4. DISCUSSION AND CONCLUSION 
This analysis of two models built to predict optimal student 
performance and non-optimal student performance gives us some 
interesting insights about the kinds of behaviors that predict 
student performance, and also about the kinds of features that best 
fit these types of models. Models that describe student 
performance more generally are more predictive when fed into a 
J48 decision tree, which can make cutoffs at different values of 
those feature variables in order to differentiate students who are 
solving levels optimally, sub-optimally, and not solving levels at 
all. In turn, features that differentiate optimal performers from all 
others focus on student experience with the problem space, 
shallow strategies, and gaming behaviors in addition to measures 
of student problem solving efficiency. Classifiers of successful 
but sub-optimal performance tend to describe more exploratory, 
tinkering behavior while classifiers of elegant problem solving 
seem to highlight the value of student exposure to a problem and 
measures of problem-solving efficiency.  

These findings give insight into future designs of Physics 
Playground and other games and open-ended learning 
environments. To encourage more elegant student problem 
solving, the learning environment can encourage students to 
revisit problems, especially after they’ve created a workable 
solution, but failed to create an elegant one. Additionally, student 
feedback about how effective their solution is or what kind of 
metrics are needed for an optimal solution (e.g., a prompt 
indicating that for the ball to reach the target it must hit a certain x 
velocity) could aid students in understanding what more proximal 
goals they need to fulfill in order to ultimately solve the problem 
at hand in the most efficient way. 

Future work can explore whether similar features are effective for 
predicting student problem solving in other games. The models 
discussed here were built on only one game with a unique form of 
gameplay and specific design constraints, so the study is limited 
in its generalizability. However, there is the potential for the 
results of this paper to be used for constructing models for 
classifying student performance to differentiate between elegant 
and non-optimal problem solving strategies in other games or 
open-ended learning environments.  
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