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Abstract 

The present study explored the bidirectional and longitudinal associations between executive 

function (EF) and early academic skills (math and literacy) across four waves of measurement 

during the transition from preschool to kindergarten using two complementary analytical 

approaches: cross-lagged panel modeling and latent growth curve modeling (LCGM). 

Participants included 424 children (49% female). On average, children were approximately 4.5 

years old at the beginning of the study (M = 4.69, SD = .30) and 55% were enrolled in Head 

Start. Cross-lagged panel models indicated bidirectional relations between EF and math over 

preschool, which became directional in kindergarten with only EF predicting math. Moreover, 

there was a bidirectional relation between math and literacy that emerged in kindergarten. 

Similarly, LGCM revealed correlated growth between EF and math as well as math and literacy, 

but not EF and literacy. Exploring the patterns of relations across the waves of the panel model 

in conjunction with the patterns of relations between intercepts and slopes in the LGCMs led to a 

more nuanced understanding of the relations between EF and academic skills across preschool 

and kindergarten. Implications for future research on instruction and intervention development 

are discussed. 

Key words: Executive function, mathematics, literacy, preschool, kindergarten 
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Examining the relations between executive function, math, and literacy during the transition to 

kindergarten: A multi-analytic approach 

 Over the last decade, there has been increased focus on children’s executive function 

(EF)—specifically on its development and how it relates to other school readiness domains. One 

reason for this surge of interest is that EF in early childhood has been connected to a range of 

critical developmental outcomes, including physical health, social-emotional well-being, and 

occupational attainment in adulthood (Moffitt et al., 2011). Of particular interest are the 

significant and direct relations found between early EF and academic achievement. Findings 

from a number of studies indicate that individual differences in EF measured in early childhood 

predict concurrent and long-term math and literacy achievement (Duckworth, Tsukayama, & 

May, 2010; Fuhs, Nesbitt, Farran, & Dong, 2014; McClelland, Acock, Piccinin, Rhea, & 

Stallings, 2013; Monette, Bigras, & Guay, 2011) as well as growth in children’s higher-level 

reasoning strategies (Richland & Burchinal, 2013).  

 Although the predictive link between EF and early achievement is established, it is less 

clear whether early academic skills also predict the development of EF. Recent evidence 

indicates that there may be a bidirectional association between EF and academic skills, 

particularly for math (Fuhs et al., 2014; Welsh, Nix, Blair, Bierman, & Nelson, 2010). However, 

these studies were limited to just three time points over the course of the preschool and 

kindergarten years and by the analytic approach employed (i.e., only panel models were used). 

Further, it is unclear whether growth trajectories in EF are related to growth trajectories in other 

domains (e.g., math). The overarching goal of the current study was therefore to examine the 

longitudinal relations between EF and academic skills across four waves of measurement during 

the transition from preschool to kindergarten. We had two specific aims. First, we investigated 
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the bidirectional relations between EF and academic skills (math and literacy) through a 

longitudinal panel model that tested whether relative standing on the domains at each time point 

was related to changes in relative standing on the other domains. Second, we examined relations 

between growth in EF, math, and literacy using latent growth curve models that tested whether 

the rate of absolute change across all time points on the domains was correlated. The two models 

provide unique information by identifying when early skills are most related to subsequent skill 

development (i.e., panel models), and to what extent children’s overall growth on skills during 

this developmental period are related (i.e., latent growth curve models). 

Importance of Executive Function for Academic Achievement 

 EF emerges early in life and develops across the life span; however, structural changes in 

the prefrontal cortex between ages two and five allow for dramatic increases in EF skills during 

early childhood (Zelazo & Ulrich, 2011). Evidence suggests that EF involves three related, yet 

distinct, cognitive processes (Miyake, Friedman, Emerson, Witzki, & Howerter, 2000): working 

memory (holding information in mind while processing other information; Gathercole, 

Pickering, Knight, & Stegmann, 2004), inhibitory control (overriding a dominant response; 

Dowsett & Livesey, 2000), and cognitive flexibility or attention shifting (maintaining focus and 

flexibly adapting to changing goals; Rueda, Posner, & Rothbart, 2005). When children enter 

kindergarten, they must adapt to new, more formal, and structured educational contexts that may 

require greater EF to navigate, compared to the less formal and structured educational 

environments experienced earlier.  

 The transition from preschool to kindergarten is not only an important developmental 

period for EF, it is also a time when early academic skills develop rapidly. Similar to EF, a 

substantial body of research highlights the importance of the preschool years for the 
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development of early literacy (e.g., National Early Literacy Panel, 2008; Whitehurst & Lonigan, 

1998) and math skills (e.g., Ginsberg, Klein, & Starkey, 1998; National Mathematics Advisory 

Panel, 2008), and it is well known that early academic skills are precursors to later academic 

success (e.g., La Paro & Pianta, 2000; NICHD ECCRN, 2005; Stevenson & Newman, 1986). 

Furthermore, evidence supports an association between early math and reading (Duncan et al., 

2007; Jordan, Kaplan, Oláh, & Locuniak, 2006; LeFevre et al., 2010; Purpura, Hume, Sims, & 

Lonigan, 2011). These two academic domains are related over time and children who 

demonstrate difficulties in one area are at elevated risk for having difficulties in the other 

(Barberisi, Katusic, Colligan, Weaver, & Jacobsen, 2005). Theory and research suggest that 

aspects of literacy may be foundational for math development. Children may need to draw upon 

vocabulary skills in order to learn number words and complete math tasks that are inherently 

language based (LeFevre et al., 2010; Purpura et al., 2011). Although EF, early math, and 

emergent literacy appear to develop during the same time frame, some scholars argue that EF is 

foundational for academic achievement (Blair & Raver, 2015; McClelland, et al., 2007; Raver et 

al., 2011). Furthermore, children’s EF is related to both their own and their peers’ acquisition of 

academic skills (Skibbe, Phillips, Day, Brophy-Herb, & Connor, 2012). For example, Skibbe and 

colleagues (2012) found that children demonstrated greater gains in literacy skills during the 

academic year when they were part of classrooms where their classmates had higher levels of 

EF. 

Theoretical and empirical perspectives support the connection between EF and math and 

literacy skills. In order for children to take advantage of learning opportunities in classroom 

contexts, they must be able to pay attention, persist on challenging tasks, and avoid distractions 

(Blair & Raver, 2015; McClelland, Geldhof, Cameron, & Wanless, 2015). Specifically, strong 
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EF may be critical for aspects of early math development such as cardinality or formal addition, 

which require children to flexibly shift attention from procedural to more conceptual problem 

elements and inhibit previously learned rules. Similarly, EF may be needed for growth in 

emergent literacy skills, such as phonological awareness, because children must have the ability 

to hold letter sounds in mind and switch between combining and separating sounds and words. 

Studies suggest there is a predictive relation between EF and math and literacy achievement in 

diverse samples of young children, even after controlling for relevant socio-demographic factors 

(e.g., maternal education, child IQ) and initial achievement scores (Bull, Espy, & Wiebe, 2008; 

Duncan et al., 2007; McClelland, Acock, & Morrison, 2006). Findings from a recent study 

demonstrate a long-term relation between EF and achievement, such that children who were 

rated higher on aspects of EF (e.g., attention and persistence) during preschool were more likely 

to complete college (McClelland et al., 2013). Even among children with academic difficulties 

(i.e. those who experienced grade retention), EF appears to play a role in subsequent math and 

reading growth. For example, Chen, Hughes, and Kwok (2013) found that, among children who 

had been held back a grade, those who exhibited patterns of more rapid academic growth 

displayed higher EF skills.  

Although prior evidence suggests EF is associated with both math and literacy in early 

childhood, the concurrent and predictive relation between EF and math seems to be stronger than 

the relation between EF and literacy in young children (Blair & Razza, 2007; Blair, Ursache, 

Greenberg, Vernon-Feagans, & the Family Life Project Investigators, 2015; Cameron Ponitz et 

al., 2009; Schmitt, Pratt, & McClelland, 2014). Furthermore, EF skills may mediate the 

development of math skills across the early elementary years, but not the development of literacy 

skills (Hassinger-Das, Jordan, Glutting, Irwin, & Dyson, 2014). Several interpretations 
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explaining these differential associations have been introduced in recent literature. For example, 

one interpretation is that math content and activities place more cognitive demands on children 

than does literacy content. Math skills, therefore, may require stronger EF skills to acquire (Bull, 

Espy, & Wiebe, 2008; Clark et al., 2010; Espy et al., 2004; Willoughby, Blair, Wirth, & 

Greenberg, 2012). Evidence from the neuroscience literature also indicates an overlap between 

the brain regions that support EF and math development (Klingberg, 2006), sugggesting that 

growth in EF may strongly facilitate growth in math while having a weaker influence on the 

development of literacy. A second interpretation is that this relation results from instructional 

content (or lack thereof) provided in early childhood classrooms (Fuhs et al., 2014). Preschool 

teachers spend significantly more time engaged in direct literacy instruction than in math 

instruction (Hofer, Farran, & Cummings, 2013), suggesting that children may need to seek out 

their own independent math activities which may be influenced by their EF skills. For example, 

children who have stronger levels of EF may choose more complex and difficult math activities 

during free play (or may be directed to by teachers and parents) because they may be more 

cognitively ready to do so. A third interpretation is that EF provides a foundation for the 

development of reasoning abilities or fluid mental capacities (e.g., problem solving), which are 

typically required to do well on many math assessments (Blair et al., 2015). In contrast, many 

literacy assessments are more knowledge-based, making stronger demands on crystallized 

mental abilities (e.g., vocabulary) and fewer demands on EF and fluid mental abilities.  

Bidirectional Relations Between EF and Academic Skills 

 Although EF is considered by some to be foundational for the development of academic 

skills, recent analyses have investigated these relations by exploring the bidirectionality between 

EF and achievement (Fuhs et al., 2014; Welsh et al., 2010). Indeed, early academic skills may be 
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important for the development of EF, just as EF is important for the development of early 

academic skills. Although the ability to pay attention, remember complex rules, and persist on 

challenging tasks likely helps children perform better academically (Blair et al., 2007, Blair & 

Raver, 2015), strong academic skills may also contribute to children’s ability to sustain attention, 

remember a series of rules, and inhibit incorrect responses on complex tasks (Fuhs et al., 2014). 

Engaging in a complex math activity, for example, requires children to identify the quantities of 

multiple sets, retain those quantities in memory, and compare them.  

Recent empirical evidence has suggested that there may be a bidirectional relation 

between direct assessments of EF and academic skills. In one study assessing developmental 

associations between EF and academic skills during the prekindergarten year, EF at the 

beginning of the year predicted gains in math and literacy; however, math at the beginning of 

prekindergarten also predicted gains in EF (Welsh et al., 2010). In a second study, Fuhs and 

colleagues (2014) found reciprocal associations between EF and math. These associations were 

maintained across preschool, and, although EF continued to predict math through kindergarten, 

the predictive relation of math on EF dissipated between the end of preschool and end of 

kindergarten. However, it was not clear when during this year the predictive association of math 

on EF faded. Results from Fuhs and colleagues’ (2014) study also indicated a reciprocal relation 

between EF and oral comprehension skills across the prekindergarten year, but not for other 

literacy skills. These findings provide initial evidence for a bidirectional relation between EF and 

early achievement; however, the analyses utilized in these studies were limited to three time 

points (fall and spring of preschool and spring of kindergarten). The addition of a fourth time 

point at the beginning of kindergarten is needed to understand these relations more thoroughly; 

significant changes in children’s experiences and in the development of EF and academic skills 
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may occur between the spring of preschool and the spring of kindergarten. Further, the addition 

of a fourth time point allows us to determine when early EF, math, and literacy interventions 

may be most beneficial and likely to facilitate cross-domain growth. Identifying more specific 

and precise times at which these relations may change could have applied implications as 

children enter and move through kindergarten. Moreover, the relations between these variables at 

different ages remain unclear.  

Correlated Growth between EF and Academic Skills  

 In addition to a need for more research on the bidirectional relations between EF and 

academic skills, there is a dearth in extant literature exploring whether the rates of change in 

these domains are correlated during the transition to kindergarten. Understanding whether 

growth in one domain is related to growth in another has theoretical as well as practical 

implications for instruction and intervention. From a theoretical standpoint, exploring correlated 

growth across domains will help us understand the potential that improvements in one domain 

lead to improvements in another domain or that other individual or environmental factors may be 

influencing EF math, and literacy development similarly over time (Floyd et al., 2010; 

Willoughby, Kupersmidt, & Voegler-Lee, 2012), rather than earlier skills in and of themselves. 

Some have suggested that the relation between EF and math may be attributable to other factors 

such as IQ (Floyd et al., 2010), but there is also evidence showing that EF is separate from IQ 

(e.g., Blair, 2006). From a practical standpoint, if improvements in EF are associated with 

improvements in math, instruction or intervention efforts focused on EF may also have a 

beneficial effect on children’s math development. Likewise, instruction or intervention efforts 

focused on math or literacy could have beneficial effects on children’s EF development. For 

example, engaging in math activities may not only support the development of math concepts, 



RELATIONS BETWEEN EF, MATH, AND LITERACY 
	

10 

but doing so may also allow children to practice EF skills (e.g., attending to details, remembering 

instructions). Similarly, retaining details of a story in memory while simultaneously attending to 

new developments in the plotline in order to comprehend the broader story also may provide 

children an opportunity to practice EF skills. 

To our knowledge, no studies to date have examined dual trajectory latent growth curves 

between EF and academic skills. In one related study, fixed effects models were used to explore 

whether intra-individual change on measures of EF predicted intra-individual change in math, 

literacy, and vocabulary during the transition to kindergarten. Results indicated that growth in EF 

on some, but not all, of the measures predicted growth in math, and that growth on one measure 

of inhibitory control was related to vocabulary development (McClelland et al., 2014). The 

current study extends these analyses by using latent growth curve modeling (LGCM). Although 

using fixed effects models can be informative, this type of analysis only explores relations 

between intra-individual changes over time between the domains. In the current study, we 

attempted to more accurately measure children’s trajectories using LGCM, which estimates 

associations across domains on random intercepts and linear and quadratic slopes. Further, 

LGCM is able to estimate the associations between the EF, math, and literacy slopes, conditional 

on differences in their intercepts. However, the LGCM is not able to determine whether one 

domain contributes to or is causally related to development in another, or whether other factors 

simultaneously influence multiple domains of development (e.g., high quality early math 

instruction). Once correlated growth is established, follow-up studies would be needed to further 

elucidate the relations between cross-domain growth trajectories. 

Multi-Analytic Approach 
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 Previous work exploring longitudinal relations between EF and early academic skills has 

typically taken a single-analysis approach, and this approach has primarily been panel models 

(e.g., path analysis). Although findings from single-analysis studies have been useful, they 

provide limited information on the development of these important skills. As Greene and 

colleagues noted more than two decades ago, "all methods have inherent biases and limitations, 

so use of only one method to assess a given phenomenon will inevitably yield biased and limited 

results" (Greene, Caracelli, & Graham, 1989, p.256; see also Campbell & Fiske, 1959; Symonds 

& Gorard, 2010). Thus, we took a multi-analytic approach to address our overarching research 

goal: examining the longitudinal associations between EF and achievement. We first 

implemented a cross-lagged panel model using a latent EF factor to determine how children’s 

relative standing on measures of EF, math, and literacy was related over time. That is, stability 

and cross-lagged effects in cross-lagged panel models determine the stability of participants’ 

relative standing on a variable without regard for whether the sample (or individual participants) 

actually exhibited gains in absolute magnitude. High stability indicates that participants who 

scored higher than the sample mean at one time point tend to score higher on the sample mean at 

the previous time point, regardless of whether that sample mean increased, decreased, or 

remained the same (see also Wu, Selig, & Little, 2013).  

Previous work examining the bidirectional associations between EF and academic skills 

using cross-lagged panel models (e.g., Fuhs et al., 2014) has relied on factor scores rather than 

modeling latent associations directly. The use of factor scores as dependent variables is known to 

produce biased regression slopes and standard errors (Muthén, 2011; Skrondal & Laake, 2001). 

The extent that previous findings are biased by a reliance on factor scores therefore remains 

unclear, and we overcome this limitation by modeling EF directly as a latent factor.  
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We also addressed our research goal using a series of latent growth curve models 

(LGCMs) that examined absolute changes (i.e., sample- and individual-level growth) in EF, 

math, and literacy. By examining absolute changes, the LGCMs allowed us to paint a more 

complete picture of how EF, math, and literacy co-develop by demonstrating to what extent 

growth in one domain is related to growth in another domain during the same time frame. Thus, 

the panel models allowed us to examine the bidirectional relations between EF and achievement 

and whether relative standing on one domain predicts relative standing on another domain at the 

subsequent time point, and the LGCMs allowed us to examine changes in absolute magnitude 

and relations between growth trajectories across all four time points (Wu, Selig, & Little, 2013).	

The Present Study 

 The goal of the present study was to clarify and expand upon prior work (e.g., Fuhs et 

al., 2014; McClelland et al., 2007) that has examined the longitudinal relations between EF, math 

and literacy across the transition to kindergarten (preschool-kindergarten). More specifically, we 

aimed to paint a broader picture of how EF, math and literacy are associated over time. Based on 

recent theoretical and empirical evidence indicating that EF and math may be tightly coupled 

constructs and reciprocally related (Fuhs et al., 2014; McClelland et al., 2015), we hypothesized 

that EF would significantly predict math in preschool and kindergarten, and also that math would 

predict EF. Further, we expected that EF and math growth trajectories would be correlated, 

although previous research on associations between intra-individual change between the two 

domains is mixed (McClelland et al., 2014; Willoughby, Kupersmidt et al., 2012). Previous 

research has shown inconsistent links between EF and literacy (Blair & Razza, 2007; Cameron 

Ponitz et al., 2009; Schmitt, Pratt, & McClelland, 2014), non-significant bidirectional 

associations (Fuhs et al., 2014), and non-significant associations for intra-individual change 
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models (McClelland et al., 2014). We therefore did not expect that this same reciprocal 

association would emerge for EF and literacy, nor did we expect the EF and literacy growth 

trajectories to be correlated. We also hypothesized a bidirectional relation as well as correlated 

growth between math and literacy due to the noted strong relation between early math and 

literacy skills over the preschool and kindergarten years (Duncan et al., 2007; Jordan et al., 2006; 

LeFevre et al., 2010; Purpura et al., 2011).  

Findings from this study will contribute to the existing literature in multiple ways. In 

contrast to other studies, we have four data points (fall and spring of preschool and 

kindergarten), which will allow us to explore changes in the relations as well as growth 

trajectories between these skills during the school year and at critical junctures throughout the 

transition from preschool to kindergarten at a more fine-grained level. This could have important 

practical implications for children as they enter and progress through kindergarten. Other studies 

examining bidirectional associations between EF and early achievement (e.g., Fuhs et al., 2014) 

were limited to just one data point in kindergarten (end of the year). This additional time point is 

important in extending previous work because it allows us to better identify at which point 

between the end of preschool and end of kindergarten the relations between EF and math may 

change. That is, modeling change in relations across four waves of data collection will allow a 

better understanding of whether change occurs primarily during the school year (i.e., between 

Times 1 and 2 and between Times 3 and 4), or if the change is relatively constant across time. In 

addition, we modeled latent associations directly rather than relying on factor scores that may 

produce biased results. Finally, no studies to date have examined whether growth trajectories of 

EF, math, and literacy are correlated using LGCM. Our multi-analytic approach also allows us to 

examine the same overarching research question using two types of analyses, allowing us to 
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better distill a single story from multiple models that acknowledge diverse ways development 

can manifest while reducing methodological biases. Results from the present study will further 

our understanding of the complexity of the relations between EF, math, and literacy, which could 

have theoretical implications as well as implications for the design and timing of instruction and 

intervention efforts in preschool and early elementary school. 

Method 

Participants and Procedure 

Children and families (N = 435) were recruited from 38 classrooms in 17 preschools in a 

small city in the Pacific Northwest to participate in a federally funded study focused on refining 

and evaluating the Head-Toes-Knees-Shoulders task, a direct assessment of EF, as a screening 

tool for children ages 4-5. As part of this study, several measures of EF as well as a math and 

literacy assessment were collected at 4 data points from 2011 to 2014. There was no intervention 

included as part of the larger study that would influence the interpretation of our results. To 

recruit schools, the principal investigator contacted preschool directors via telephone, e-mail and 

via individual meetings to invite preschools to be a part of the study. Preschools were selected 

using a convenience sampling approach (i.e., preschools that were accessible and willing to 

participate in the study). Children were excluded if they were younger than 4 years old (n = 5) or 

older than 5.5 years old (n = 1) in the fall of preschool. Additionally, children were excluded if 

they did not participate in the study in the fall of preschool (n = 5). The remaining 424 eligible 

children were included in the sample in the current study. 

Parents signed a written informed consent statement to allow their child to participate in 

the study that was approved by the university Institutional Review Board. Children gave verbal 

assent prior to participating in direct assessments. After consenting to the study, children were 
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assessed in two to three sessions (lasting 10 to 15 minutes each) during the fall and spring of 

their preschool and kindergarten years (4 waves total). At each wave of data collection, families 

received a $20 gift card for their participation. In the fall of preschool, 55% of the children were 

enrolled in Head Start and 15% were primarily Spanish speakers (all Spanish speakers were 

enrolled in Head Start). Teachers identified which children in their classrooms were Spanish-

speaking and should receive the assessments in Spanish. We chose this method for identifying 

Spanish speakers because teachers have the most experience with children in their classroom 

context and to avoid over-testing children by administering assessments in both languages. 

Parent demographic questionnaires were collected during the first wave of the study (in Spanish 

when applicable; n = 372, 88% response rate). The sample was predominantly reported as White 

(63%), followed by Latino/Hispanic (19%), multiracial (13%), Asian/Pacific Islander (3%), and 

other ethnicities (2%). Self-reported parent (87% maternal) education ranged from 0 to 30 years, 

with an average of approximately two years in college (M = 14.40, SD = 3.68). Children enrolled 

in Head Start had parents with significantly lower reported years of education (M = 11.58, SD = 

3.06) than the parents of children not enrolled in Head Start (M = 17.34, SD = 3.14; t(351) = 

17.48, p < .001). Among children enrolled in Head Start, the primarily Spanish speaking children 

had parents with significantly lower reported years of education (M = 9.08, SD = 3.12) than their 

English-speaking peers (M = 12.59, SD = 2.38; t(178) = 8.17, p < .001).   

Measures 

 At each wave of the study, children were assessed on executive function (EF), literacy, 

and math skills. EF was assessed with four measures: the Head-Toes-Knees-Shoulders (HTKS) 

task, a Card Sort task, the Auditory Working Memory subtest from the Woodcock-Johnson III 

Tests of Cognitive Abilities, and the Simon Says task. Literacy skills were assessed with the 
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Letter-Word Identification subtest from the Woodcock-Johnson III Tests of Achievement 

Abilities. Math skills were assessed with the Applied Problems subtest from the Woodcock-

Johnson III Tests of Achievement Abilities.  

Head-Toes-Knees-Shoulders (HTKS). The HTKS was used to assess children’s 

cognitive flexibility, working memory, and inhibitory control through gross motor responses 

(McClelland & Cameron, 2012; McClelland et al., 2014). In previous research, the measure has 

been significantly related to measures of cognitive flexibility, working memory, and inhibitory 

control (see McClelland et al., 2014). There are two parallel forms of the HTKS, which only 

differ for part one of the assessment (McClelland et al., 2014). The measure includes three 

sections of ten items each, with the task becoming progressively harder. In part one, children 

were instructed to touch their toes (knees in the parallel form) when told to “touch your head 

(shoulders in the parallel form)” and vice versa. In parts two and three, rules were changed and 

added, increasing the complexity of the task. Possible scores range from 0 to 60, with a total of 

30 test items receiving scores of 0 (incorrect), 1 (self-correct), or 2 (correct). Previous research 

indicates high inter-rater agreement (k > .90) and evidence supports convergent and predictive 

validity of this measure when assessing children’s EF in culturally diverse samples and in 

different languages (McClelland et al., 2007; McClelland et al., 2014; Suchodoletz et al., 2013; 

Wanless, McClelland, Acock, Chen, et al., 2011; Wanless, McClelland, Tominey, & Acock, 

2011). In the current sample, this measure demonstrated strong internal consistency across all 

waves (Cronbach’s a: wave 1 = .96, wave 2 = .96, wave 3 = .96, wave 4 = .95). 

Card Sort task. Children’s cognitive flexibility was assessed using a Card Sort task 

similar to the traditional Dimensional Change Card Sort measure (Blackwell, Cepeda, & 

Munakata, 2009; Frye, Zelazo, & Palfai, 1995; Zelazo, 2006). Administration procedures were 
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similar to those described by Hongwanishkul, Happaney, Lee, and Zelazo (2005). The Card 

Sorting task consisted of up to 24 items, with each sorting trial having 6 items. During this task, 

children were asked to sort colored picture cards of a dog, fish, or bird on the basis of three 

dimensions: color, shape, and size. Four sorting boxes with target cards (either a dog, fish, bird, 

or frog) affixed on them were placed directly in front of children. The frog target card was meant 

to be a distractor, and thus, there were no picture cards with frogs on them. The same target and 

test cards were used for all participants. Children were given one practice trial prior to testing 

trials. During all test trials, children were given a test card (that had the same picture on it as one 

of the target cards) and asked the question, “Where does this one go?” and they were to place the 

card in one of the boxes. No feedback was given. For the first six items (pre-switch trial), 

children were to sort on the basis of shape (e.g., the dog cards go in the sorting box with the dog 

card affixed). For the second six items (post-switch trial), children were told they were going to 

play a new game and would now sort on the basis of color. For the third six items (post-switch 

trial), children were told they were going to play a new game and would now sort on the basis of 

size. If children scored five or more points on the third section, a fourth set of items were 

administered which consisted of a new rule: when the card had a black border on it, children 

were to sort on the basis of size. When the card did not have a black border, children were to sort 

on the basis of color. All items were weighted equally (including pre-switch trial items). 

Children were given a score of 0 for an incorrect response and 1 for a correct response, with 

scores ranging from 0 to 24. This assessment demonstrated strong internal consistency in the 

current sample across all waves for all sections (Cronbach’s a: wave 1 = .95, wave 2 = .93, wave 

3 = .91, wave 4 = .88). 
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Auditory Working Memory. The Auditory Working Memory subtest from the 

Woodcock-Johnson III Tests of Cognitive Abilities (Woodcock, McGrew, & Mather, 2001b) or 

the Bateria III Woodcock- Muñoz (Muñoz-Sandoval, Woodcock, McGrew, & Mather, 2005b) 

was used to assess children’s working memory. The task required children to repeat back to the 

experimenter things and numbers in a specific order. That is, children had to hold information in 

mind and then reproduce it in a different order. This standardized task demonstrates strong 

internal consistency for English-speaking and Spanish-speaking preschool children (Mather & 

Woodcock, 2001a). In the current sample, internal consistency was good across all waves for the 

full sample (Cronbach’s a: wave 1 = .87, wave 2 = .89, wave 3 = .85, wave 4 = .82), and for the 

English-speaking children only (Cronbach’s a: wave 1 = .89, wave 2 = .88, wave 3 = .86, wave 4 

= .81) and the Spanish-speaking children only (Cronbach’s a: wave 1 = .92, wave 2 = .83, wave 

3 = .85, wave 4 = .91). 

Simon Says task. The Simon Says task was used to assess inhibitory control (Carlson, 

2005; Strommen, 1973). The Simon Says task has been identified in previous research as an 

advanced anti-imitation task and a measure of inhibitory control in that it requires children to 

inhibit a prepotent response (i.e., do all requested actions) in favor of a different response (i.e., 

only do the action if experimenter says “Simon Says;” Carlson, 2005). Specifically, children 

were asked to perform an action only if the experimenter said, “Simon says,” but to remain still 

otherwise. Of the 10 total trials, five trials required inhibitory control. These trials were scored 

and children were given a proportion score of the number correct (items requiring inhibitory 

control). In previous studies, this measure has been significantly correlated with other 

assessments of inhibitory control (McClelland et al., 2014). Internal consistency for this 
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assessment was good across all waves (Cronbach’s a: wave 1 = .87, wave 2 = .89, wave 3 = .85, 

wave 4 = .82). 

Reliability of EF. Using the factor loadings presented below and discussed later, we 

computed composite reliability (ω; McDonald, 1970, 1999; Raykov, 1997; Werts, Linn, & 

Jöreskog, 1974) for each EF construct. ω is identical to Cronbach’s (1951) coefficient α, except 

that it relaxes the assumption of essential tau equivalence (i.e., an assumption that all items have 

equal factor loadings onto the latent construct)1. Reliability for the EF factors was weak but 

acceptable and increased across the four waves of the present study (ω = .69, .74, .74, .78, for 

Waves 1 through 4, respectively).  

Measures of Academic Achievement. Children’s literacy and math skills were assessed 

using the Woodcock Johnson Psycho-Educational Battery-III Tests of Achievement (WJ-III; 

Woodcock, McGrew, & Mather, 2001a) in English or the Batería III Woodcock-Muñoz (Muñoz-

Sandoval, Woodcock, McGrew, & Mather, 2005a) in Spanish. In a study using a large and 

diverse sample of 2000 children, cross-language equating procedures were employed using item-

response theory (IRT) methods. Results suggested that the WJ-III and the Woodcock-Muñoz 

assess the same competencies and can be combined appropriately for use in cross-language 

studies (Woodcock & Muñoz-Sandoval, 1993). Woodcock-Johnson W-scores were used because 

they utilize Rasch-based measurement models to create equal-interval scale characteristics, with 

the W-score centered at 500 as the approximate average performance of a 10-year-old (Mather & 

Woodcock, 2001).   

																																																								
1	Willoughby, Pek, & Blair (2013), have advocated for the use of maximal reliability—the 
reliability of an optimally-weighted composite—when examining latent EF factors.  However, 
recent simulation evidence has drawn the usefulness of maximal reliability into question 
(Geldhof, Preacher, & Zyphur, 2014). We therefore do not include estimates of maximal 
reliability in the present study. 
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Letter-Word Identification. Children’s literacy skills were measured using the Letter-

Word Identification subtest of the WJ-III (Woodcock et al., 2001a) or the Bateria III Woodcock-

Muñoz (Muñoz-Sandoval et al., 2005a). This test measures letter identification and word-reading 

skills through expressive and receptive items and had strong internal consistency for both the 

English-speaking (Cronbach’s a: wave 1 = .92, wave 2 = .92, wave 3 = .94, wave 4 = .94) and 

Spanish-speaking children (Cronbach’s a: wave 1 = .83, wave 2 = .80, wave 3 = .83, wave 4 

= .90) in the present sample. Although these two subtests have been deemed comparable in 

rigorous cross-language validation studies in terms of content and difficulty (Woodcock & 

Mather, 1993), they could not be appropriately combined to provide full-sample reliabilities 

because children receive different items to ensure cultural relevance. 

Applied Problems. Children’s math skills were measured using the Applied Problems 

subtest of the WJ-III (Woodcock et al., 2001a) or the Bateria III Woodcock-Muñoz (Muñoz-

Sandoval et al., 2005a). This measure assesses children’s early mathematical operations (e.g., 

counting, addition, and subtraction) through practical problems and had good internal 

consistency for the full sample (Cronbach’s a: wave 1 = .86, wave 2 = .87, wave 3 = .85, wave 4 

= .83), for English-speaking children only (Cronbach’s a: wave 1 = .80, wave 2 = .81, wave 3 

= .79, wave 4 = .81), and for Spanish-speaking children only (Cronbach’s a: wave 1 = .86, wave 

2 = .82, wave 3 = .82, wave 4 = .80). 

Analytic Approach 

We examined longitudinal relations between EF and two academic domains: math and 

literacy. As described above, we explored these relations using two separate sets of analyses (i.e., 

cross-lagged panel models and latent growth curve models) to obtain a more complete 

understanding of our data than could be provided by either analysis alone. Although we had 
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specific hypotheses for our research questions, we did not favor one analytic approach over the 

other when interpreting the models that were used to answer our research questions. Instead, we 

chose two analytic models because each model provides a unique perspective on the data at hand 

and to our overarching research question. Treating each model as equally informative allows for 

a fuller understanding of the developmental processes impacting EF and academic achievement.  

Participating children were nested in classrooms at each wave, and we computed ICCs 

for all target variables (i.e., EF indicators as well as math and literacy scores). The models for 

these ICCs specified wave-specific clustering, such that ICCs for Wave 1 variables used Wave 1 

classrooms as the clustering units, ICCs for the Wave 2 variables used Wave 2 classrooms as the 

clustering units, et cetera. We anticipated that between-classroom differences would be strongly 

related to socio-demographic factors, and we supplemented our examination of ICCs with 

computation of conditional ICCs. To obtain conditional ICCs, we first regressed all EF and 

academic achievement variables on participant age (at Time 1), Head Start Status, and ELL 

status in a single-level regression model and stored the residuals from these models (i.e., residual 

centering, Lance, 1988). We then fit a saturated two-level path analysis (i.e., freely estimating all 

item variances and covariances at both levels) for each wave of data and obtained conditional 

ICCs for the EF and academic achievement variables.  

As Table 1 shows, all variables exhibited substantial variability at the between-classroom 

level (i.e., all ICCs > .05), but this variance was largely accounted for by the demographic 

covariates. Only kindergarten literacy retained a substantial amount of between-classroom 

variance. Appropriately modeling the longitudinal observations as nested in children and also 

cross-classified in wave-specific classrooms would complicate our results and detract from 

model interpretability. Given that controlling for the covariates using single-level regression 
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largely accounted for between-classroom variation in the measures, we present single-level 

models that control for the same covariates included when computing conditional ICCs. The 

caveat, therefore, is that the standard errors for paths involving kindergarten literacy may be 

slightly biased.  

Data Screening. Both sets of analyses used robust maximum likelihood estimation 

(MLR in Mplus) to deal with non-normality and missing data (Muthén & Muthén, 1998-2015). 

Skewness ranges for the four EF tasks and achievement measures were -1.23 to 1.97 at Wave 1, -

1.20 to 0.83 at Wave 2, -1.85 to 1.02 at Wave 3, and -2.37 to 0.74 at Wave 4. Kurtosis ranges 

were 1.29 to 5.87 at Wave 1, 1.72 to 6.16 at Wave 2, 1.44 to 7.07 at Wave 3, and 1.63 to 8.58 at 

Wave 4. For children participating in the study at any given wave (i.e., missing data not due to 

children leaving the study in between waves of data collection), there was less than 6% missing 

data on direct assessments and no missing data on age, gender, Head Start status, or language 

status (see Table 2 for the number of observations for every variable). Once missing data due to 

attrition was factored in (i.e., children leaving the longitudinal study and resulting in a loss of 

data at later waves), the range of missing data was 0-30.66% for individual measures (average 

missingness was 15.34%). Two variables had 30.66% missing data at wave four (i.e., the Simon 

Says task and Auditory Working Memory; 294 observations out of the original sample size of 

424). Because most missing data occurred due to participant attrition, we created binary 

variables (0 = did not leave study, 1 = did leave study) to test whether any of our covariates were 

related to attrition throughout the study. None of our covariates were related to attrition that 

occurred within the school years (i.e., Wave 1 to Wave 2 and Wave 3 to Wave 4). For attrition 

between Waves 2 and 3 (i.e., the transition from prekindergarten to kindergarten), we found that 

Head Start status (b = 0.72, p = .005) and parent education (b = -0.08, p = .015) were 



RELATIONS BETWEEN EF, MATH, AND LITERACY 
	

23 

significantly related to attrition when running bivariate logistic regression models. In other 

words, children in Head Start and children of parents with fewer years of education were more 

likely to leave the study between the spring of prekindergarten and fall of kindergarten. 

However, when both predictors were used to predict attrition, neither was significant, suggesting 

substantial shared variance in their relation to attrition (i.e., reduction in size of coefficient and 

increases in standard errors). Thus, all models included Head Start status (as opposed to parent 

education, which had substantial missing data), along with child age and language status as time-

invariant covariates.  

Cross-lagged panel model. We used a cross-lagged panel model to examine whether 

changes in relative standing on each construct (EF, math, literacy) were related over time. The 

cross-lagged panel models specifically tested whether children whose EF, math, and literacy 

scores were higher (or lower) than their peers at earlier waves were also higher (or lower) than 

their peers at subsequent times of measurement (i.e., a test of stability). After controlling for the 

stability of relative standing, these analyses also allowed us to test whether relative standing on 

one variable at earlier waves predicted changes in relative standing (not changes in absolute 

magnitude) on a different variable at subsequent waves. For each cross-lagged effect (e.g., EF 

predicting changes in math), we simultaneously examined the reciprocal relation (e.g., math 

predicting changes in EF) as a test of bidirectionality. 

We first specified a longitudinal Confirmatory Factor Analysis (CFA), controlling all 

indicators for participants’ age at the beginning of the study, ELL status, and Head Start 

enrollment status. This approach to controlling for covariates allows minor differences between 

indicators and the covariates to not impact overall model fit (see also Geldhof, Pornprasertmanit, 

Schoemann, & Little, 2013). The initial CFA allowed us to examine the structure of EF because, 
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although there is strong evidence in younger children that EF is best described as a unitary 

construct (Hughes, Ensor, Wilson, & Graham, 2010; Wiebe, Espy, & Charak, 2008), there is also 

evidence that it becomes more differentiated over time (Huizinga, Dolan, & van der Molen, 

2007; Lehto, Juujarvi, Kooistra, & Pulkkinen, 2003). Good fit for a CFA that specified a single 

EF factor per time point would support the underlying assumption of our analyses—that EF is 

reasonably unidimensional as it was measured in this sample. 

We scaled all latent variables in the initial CFA by fixing latent means of zero and latent 

variances to one. We modeled math and literacy as single-indicator factors by freely estimating 

the factor loading for each indicator onto its respective construct and additionally fixing the 

indicators’ residual variances to zero. To account for correlated residuals over time, we estimated 

residual covariances within each indicator of EF (e.g., all HTKS indicators were allowed to 

covary, independent of their relations implied by the stability of EF as a latent construct). Figure 

B.1 in the Technical Appendix provides a partial path diagram that illustrates the EF component 

of this model.  

We established measurement invariance of the EF construct across waves using the 

change in CFI criterion suggested by Cheung and Rensvold (CFI decreases by < .01; 2002). 

Modeling invariance requires equating factor loadings (weak invariance) and intercepts (strong 

invariance), allowing for differences at the latent level (i.e., latent variances and means, 

respectively; see Little, 1997 for a discussion). Thus, latent variances for EF in Times 2 through 

4 were freely estimated in the weak invariance model, and latent means for EF in Times 2 

through 4 were additionally freed in the strong invariance model. These tests ensured that the 

qualitative meaning of EF remained stable across the four waves of data collection rather than 

EF being strongly indicated by one measure in earlier waves and strongly indicated by a different 



RELATIONS BETWEEN EF, MATH, AND LITERACY 
	

25 

measure in later waves. Invariance could not be tested for math or literacy because those factors 

had only one indictor per time point (e.g., equating factor loadings for math over time would 

result in three additional degrees of freedom that would then be lost by freely estimating the 

latent variances for math at Times 2 through 4, resulting in no change in model fit). 

After establishing measurement invariance, we specified a longitudinal Structural 

Equation Model (SEM) that included single-lag stability regressions (e.g., EF at Time 1 

predicting EF at Time 2) and single-lag cross-construct regressions (e.g., EF at Time 1 predicting 

math at Time 2). We freely estimated all within-wave covariances (e.g., EF at Time 1 covaried 

with math and literacy at Time 1). The cross-lagged panel model assumes no longitudinal 

covariances except those specified by the longitudinal regression coefficients, and we tested this 

assumption by first estimating all covariances between constructs separated by more than one lag 

(e.g., EF and Time 1 covaried with math at Times 3 and 4). The latent variable covariance matrix 

was therefore completely saturated, and our initial SEM model had identical fit to our strong-

invariance CFA model. We then tested the assumption of no longitudinal covariance by 

removing all covariances between constructs separated by more than one lag and performing a 

likelihood ratio test.  

Latent Growth Curve Models (LGCM). To examine whether rates of change in EF, 

math, and literacy were correlated in our data, we estimated the associations between the growth 

parameters for each construct in a three-trajectory latent growth curve model. Based on the 

assumption that growth in the target variables, especially EF (Zelazo et al., 2013), may be 

nonlinear, we specified quadratic growth curves for all target constructs. The model then 

examined how initial standing (i.e., the random intercepts) and the rates of change and 

acceleration (i.e., the random linear and quadratic slopes) were correlated. The LGCM treated EF 
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as a latent factor, meaning the growth model for that construct was technically a curve-of-factors 

model (McArdle, 1988; see also Hancock, Kuo, & Lawrence, 2001). We imposed the same 

invariance constraints from the panel model on the EF factor in the growth model, although 

factors in the growth model were identified by constraining the factor loading of HTKS to one 

and fixing the intercepts for all HTKS indicators to zero. Latent intercepts for EF were also fixed 

to zero to identify the growth component of the model (see also Figure 1 in Hancock et al., 

2001). Due to model complexity, and to acknowledge that the covariates were between-persons 

variables, we controlled for all covariates at the level of the growth parameters. Figure B.2 in the 

Technical Appendix provides a partial path diagram of the EF component of this model. 

For the sake of comparability to our panel models, we used wave in the study as loadings 

for these models (i.e., loadings for the linear slope were 0, 1, 2, and 3, for Waves 1, 2, 3, and 4, 

respectively). This approach allowed us to model each wave of data as a discrete time point 

rather than taking the more traditional approach of modeling each observation of each child as 

occurring at the child’s unique age at the assessment. Given participants’ relatively narrow age 

range, very few children in later waves were younger than children measured in earlier waves. 

That is, child ages did not substantially overlap across waves.  

Results 

Descriptive statistics are presented in Table 2. Overall, and as expected, children 

improved at each wave of the study on EF tasks, math, and literacy.  

Panel Models 

The initial CFA fit the data well (fit for all panel models is presented in Table 3) and had 

statistically significant factor loadings for all indicators of EF (all ps < .001). Modification 

indices did not indicate areas of localized misfit. An initial test of weak (i.e., loading) invariance 
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substantially decreased model fit (Δ CFI = -.02), with modification indices suggesting that the 

relation between EF and the Card Sort total score changed across waves and that the relation 

between Working Memory and EF was significantly different at wave 4 than in the other waves. 

Freely estimating the Card Sort factor loading for waves 1 and 2 and the Working Memory factor 

loading in wave 4 resulted in a model that supported partial weak invariance (Δ CFI = -.005; Δ 

BIC = -3.65). Equating the intercepts across waves in this model further supported partial strong 

factorial invariance (Δ CFI = -.003; Δ BIC = -28.75). Table 4 presents factor loadings and 

intercepts from the strong invariance model and highlights which parameters were freely 

estimated versus equated across time. This model shows that HTKS was a relatively strong 

indicator of EF across waves, Working Memory was a stronger indicator of EF in wave 4 

(relative to other waves), and the Card Sort was an especially strong indicator of EF at wave 1. 

Latent variances and correlations from this model are presented in Table 5, with actual (rather 

than latent) means and variances provided for the math and literacy scores.  

We next specified a cross-lagged panel SEM and tested the assumption of no longitudinal 

covariances above and beyond those specified by the lag-1 structural regressions. A likelihood 

ratio test comparing models that did versus did not allow longitudinal covariances between EF, 

math, and literacy measures separated by two or more lags (e.g., EF at Time 1 and math at Time 

3) supported this assumption (Δ χ2 (df = 27) = 30.70, p = .28; Δ BIC = -130.28). The structural 

component of this final model is illustrated in Figure 1. This path diagram omits nonsignificant 

regression estimates and within-wave covariances. These additional details are provided in 

Figure B.3 and Table B.1 of the Technical Appendix. 

Results suggest that (a) relative standing on all variables was stable (i.e., all 

autoregressive paths were statistically significant at p < .001), with EF displaying especially high 
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stability (βs ranged from .75 to .86); (b) that changes in relative standing on EF and literacy were 

essentially unrelated across waves (i.e., low cross-lagged regression coefficients); (c) that EF and 

math were mutually influential in preschool and this relation shifted in kindergarten, such that 

only EF predicted math; and (d) that math and literacy were not consistently related across time.  

Latent Growth Curve Models 

The initial three-trajectory model indicated a non-positive-definite latent covariance 

matrix caused by collinearity between the EF intercept and quadratic slope and by non-

significant residual variances for the linear slope for literacy and the quadratic slope for math. 

These nonsignificant residual variances suggest an overfitted model. We therefore eliminated the 

collinearity by regressing the quadratic slope for EF on the intercept for EF and constraining the 

residual variance of the quadratic slope to zero. We also fixed the nonsignificant residual 

variances to zero. These constraints did not significantly reduce model fit (Δ χ2 (df = 23) = 29.68, 

p = .16; Δ BIC = -107.65) and the resulting model fit the data well (χ2 (df = 277) = 574.57, p 

< .001; RMSEA = .05 [.05, .06]; CFI = .95; TLI = .93). An examination of the modification 

indices did not reveal areas of extreme local misfit. Table 6 contains the estimated means and 

variances for the latent growth parameters from this model and clarifies which growth 

parameters were estimated in which ways (i.e., fixed versus random variances). All growth 

parameters with freely estimated variances were regressed on the covariates and allowed to 

covary among themselves. Partial correlations among these parameters are presented in Table 7. 

Fixed growth parameters were regressed on the control variables (i.e., age, Head Start status, and 

ELL status) but did not have freely estimated variances and did not covary with any other growth 

parameter. The correlations in Table 7 highlight strong associations among the intercepts and 

between the intercept and slope parameters. Average growth trajectories are plotted in Figure 2. 
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To better understand how the constructs at Wave 1 (estimated as the intercepts) may have 

impacted the results of the LGCMs, we took the additional step of regressing all three random 

slopes on all three random intercepts. This final model allowed us to examine how absolute 

changes in each variable were correlated after controlling for initial standing on each (i.e., all 

three random intercepts). As shown in Table 8, the residual random slope for math was 

significantly correlated with both other slopes, although the correlation between the EF and 

literacy slopes was not statistically significant. Thus, after children’s initial standing was 

accounted for in the LGCM, the results suggested growth in EF and math were associated during 

this developmental period.  

Discussion 

 The overarching aim of the current study was to examine the longitudinal relations 

between EF, math, and literacy across four waves of measurement spanning preschool and 

kindergarten. We employed a multi-analytic approach, first using a cross-lagged panel model to 

test the extent to which relative standing on EF, math, and literacy were related across time. We 

then used LGCMs to test whether growth in our constructs were associated. As expected, results 

generally demonstrated significant reciprocal relations and correlated growth between EF and 

math as well as math and literacy, but not between EF and literacy. Notably, results from our 

panel models indicated that these significant relations may change over time. For example, EF 

predicted math but math did not predict EF during the kindergarten school year. These findings 

contribute to the current literature by demonstrating a bidirectional association and correlated 

growth between EF, a more domain-general set of cognitive processes, and math, a domain-

specific skill. These results have implications for research on curriculum development and 
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intervention design. Further, this study adds to the theoretical discourse surrounding the 

development of EF and academic skills in early childhood. 

Bidirectional Relations Between EF, Math, and Literacy: Cross-Lagged Panel Models 

Consistent with previous research (Blair & Razza, 2007; Bull et al., 2008; Bull, Johnston, 

& Roy, 1999; McClelland et al., 2007), our panel models suggested that EF is a significant 

predictor of math in preschool and kindergarten. These findings provide support for the notion 

that EF may be foundational for the development of important early math skills. In addition, and 

also consistent with a recent study (Fuhs et al., 2014), these results demonstrated reciprocal 

associations between EF and math during preschool and as children transition into kindergarten 

(i.e., from the spring of preschool to the fall of kindergarten). These findings suggest that EF 

may not only be important for the development of math, but that math may also be important for 

the development of EF during this time. Thus, it is possible that math skills are foundational for 

growth in EF. Essentially, the ability to pay attention, remember complex rules, and persist on 

challenging tasks may help children perform better on math tasks (McClelland et al., 2007) and, 

conversely, strong math skills (e.g., solving complicated math problems) may contribute to 

children’s ability to sustain attention, remember a series of rules, and inhibit incorrect responses 

on complex EF tasks (Fuhs et al., 2014).  

With the addition of a fourth time point at the beginning of kindergarten (in comparison 

to prior research), we were able to extend the existing literature and identify at which point 

during preschool and kindergarten relations between EF and math may change. Findings 

revealed that although math and EF were reciprocally related during preschool and during the 

transition to kindergarten, this bidirectional relation faded during the kindergarten year. 

Specifically, during the kindergarten year (between Waves 3 and 4), EF in the fall remained a 
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significant predictor of math in the spring, but not vice versa. Changes in the relations between 

EF and math may be due to factors associated with preschool and/or kindergarten instruction. In 

kindergarten, children are charged with more challenging math tasks and they may need to call 

upon EF skills to resist the natural inclination to either give up and abandon a task or use a less 

efficient previously learned rule (Bull et al., 1999). In contrast, mathematics instruction in 

preschool is often limited in complexity and focused around a narrow range of activities (e.g., 

counting; Ginsburg, Lee, & Boyd, 2008). It may be the case that, in preschool—where limited 

mathematics instruction is provided—children who have higher levels of math skills are engaged 

in instructional activities that provide the opportunity for them to develop higher EF skills and, in 

turn, those children with higher levels of EF are better able to acquire the limited mathematics 

instructional information that is provided. These instructional differences may explain why the 

bidirectional relationship (EF ßà math) emerges during preschool and fades during 

kindergarten, when children begin experiencing more uniform and frequent math instruction 

during kindergarten.  

Taken together, these findings have potential implications for the development and 

evaluation of instructional strategies and interventions that are designed to improve either EF or 

math. In preschool, it may be more beneficial for children if teachers target both EF and math 

simultaneously, whereas in kindergarten, focusing instructional efforts on EF as a foundational 

skill set may be more important. Additionally, these findings suggest that children who enter 

kindergarten with low levels of EF may be at risk for academic difficulties and in need of extra 

instructional supports or intervention. Critically, the causal nature of such instructional strategies 

need to be evaluated experimentally. 
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In contrast to math, the panel model indicated that relative standing on EF and literacy 

were essentially unrelated across waves. These findings are not surprising given inconsistent 

links between EF and literacy in previous studies (Blair & Razza, 2007; Blair et al., 2015; 

Cameron Ponitz et al., 2009; Schmitt et al., 2014) and non-significant bidirectional associations 

in recent work (Fuhs et al., 2014). Several speculations as to why associations are stronger for 

EF and math than EF and literacy have been introduced in recent literature. For example, some 

argue that math content and activity place more cognitive demands on children and, thus, require 

stronger EF skills to master (Bull, Espy, & Wiebe, 2008; Clark et al., 2010; Espy et al., 2004; 

Willoughby, Blair, Wirth, & Greenberg, 2012). A second explanation is that EF is a foundational 

skill set that supports growth in reasoning abilities (Richland & Burchinal, 2013). Higher-order 

reasoning skills are necessary to succeed on math tasks that require children to solve complex 

story or word problems (e.g., “Katie had three balls. One of them rolled away. Now how many 

does she have?”; Blair et al., 2015). In contrast, literacy tasks typically assess children’s 

knowledge, making fewer demands on reasoning abilities and EF. Others argue that differences 

in academic focus in early childhood classrooms could play a role in explaining differences in 

the development of math versus literacy (Cameron Ponitz et al., 2009). Extant research suggests 

that preschool teachers spend more time engaged in literacy instruction compared to math 

instruction (Layzer, Goodsen, & Moss, 1993; Skibbe, Hindman, Connor, Housey, & Morrison, 

2013). Children may, therefore, have to engage in math activities (e.g., patterning during free 

play) spontaneously and independently during the school day, which may require higher levels of 

EF. Similarly, parents report engaging in significantly more literacy activities at home than math 

activities (Cannon & Ginsburg, 2008; Skwarchuk, Sowinski, & LeFevre, 2014). Parents who 

believe their children are more academically ready may engage their children in more 
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cognitively demanding math activities at home (DeFlorio & Beliakoff, 2014). The greater 

consistency of literacy activities at home and school may contribute to its overall distinction 

from growth in EF.  

Another aspect of our research question was to investigate bidirectional relations between 

math and literacy skills across the preschool and kindergarten years. Somewhat contrary to our 

expectations, these relations were weaker in preschool and became bidirectional during the 

kindergarten year. These differences in the findings compared to expectations also are likely due 

to instructional practices. In contrast to the divergence of the relation between math and EF, 

there may be a convergence in the relation between math and literacy as instruction in both 

domains becomes more parallel in quantity. In preschool, children are generally exposed to more 

literacy instruction compared to math instruction. In contrast, in kindergarten, math and literacy 

instruction become more uniform and consistent, and all children are typically exposed to the 

same quantity of instruction for both academic domains. This parallel exposure likely allows 

children to draw on concepts learned from the instruction in the other domain (e.g., being able to 

read a word problem allows children to complete the math task) and thus, the relation between 

math and literacy may be strengthened. 

Correlated Growth Between EF, Math, and Literacy: Latent Growth Curve Models 

To further investigate the longitudinal associations between EF, math, and literacy, we 

employed a second analytic approach: Latent Growth Curve Models. Consistent with prior 

evidence (e.g., McClelland et al., 2007), these models indicated that the latent intercepts (a proxy 

for where children started) for EF, math, and literacy were all significantly correlated, suggesting 

that performance relative to peers was consistent across measures. Also, consistent with prior 

research (McClelland et al., 2007; Schmitt et al., 2014), initial levels of EF and math were more 
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highly correlated than EF and literacy. However, whether the coupling of the three variables is a 

result of unidirectional causality, bidirectional causality, or the result of unmeasured third 

variables is not clear.  

In terms of cross-domain relations in growth, the final LGCM indicated that, after 

controlling for initial standing on each construct (i.e., all latent intercepts), the latent EF and 

math slopes were positively correlated. In contrast, results revealed a non-significant relation 

between growth in EF and literacy. This finding is in line with prior studies demonstrating that 

the longitudinal association between EF and math is more robust than EF and literacy (Blair et 

al., 2015; Cameron Ponitz et al., 2009). This finding also supports our earlier assertion that 

engaging in math activities may be a context in which children are able to expand their EF and 

that domain-specific differences in instruction during the preschool and kindergarten years may 

account for these differential patterns of growth. For example, over the last two decades, there 

has been a strong emphasis on early literacy instruction in both preschool and kindergarten. 

Indeed, previous research indicates a strong schooling effect for children’s literacy development 

(Burrage et al., 2008; Christian, Bachman, & Morrison, 2001). Due to this emphasis on literacy 

instruction, children may not need to call upon their EF as much when engaging in literacy 

activities, and thus, improvement in EF would be less likley to be related to improvement in 

literacy during this time frame. Finally, the latent math and literacy slopes were significantly 

related, providing additional evidence that early math and literacy skills co-develop over the 

preschool and kindergarten years (Duncan et al., 2007; Jordan et al., 2006; LeFevre et al., 2010; 

Purpura et al., 2011).  

Conclusions from the Integration of Both Analytic Approaches 
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Results from the two analytic approaches provide a similar story with regard to our 

overarching research question. Both the panel model and the LGCM suggested positive 

correlations between initial levels of EF, math, and literacy. Thus, and consistent with previous 

research (McClelland et al., 2007; Schmitt et al., 2014), there is strong evidence that these three 

constructs are tightly coupled by the time children enter preschool. However, both sets of results 

also suggest that EF and math are consistently related over time, whereas the association 

between EF and literacy is weak. Taken together, the LGCM and panel model therefore suggest 

that some early factor (math or an outside variable) likely helps explain the correlation between 

EF and literacy. The development of EF and literacy seem to be driven by separate processes 

during the transition to kindergarten, however. 

Limitations and Future Directions 
 

Although this study extends existing literature on the relations between EF and early 

academic skills, there are also several limitations. First, we utilized several measures of EF in our 

study but only one measure each for math (Applied Problems) and literacy (Letter-Word 

Identification). These subtests measure specific components of math (e.g., counting, calculation) 

and literacy (e.g., decoding, word-reading) and may therefore not represent comprehensive 

growth in these broader academic domains. It will be important for future studies to include 

additional measures of early academic skills to further our understanding of how complex skills 

like math and literacy develop. For instance, other research has shown that the relations between 

EF and math differ based on the distinct subcomponents of math that were measured (Lan, 

Legare, Cameron Ponitz, & Morrison, 2011; Purpura & Ganley, 2014). A comparison of more 

targeted relations was not possible in the current study due to our use of only one measure each 

for math and literacy. Moreover, utilizing multiple measures of math in future studies will help 
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elucidate the extent to which EF actually differentially predicts components of math at different 

ages. Indeed, as the Applied Problems subtest becomes more challenging, demands on EF 

become stronger. Changes in the relations between EF and math at different ages may not 

necessarily mean EF is a better or worse predictor of math, but that changes in these relations are 

related to the mathematics concepts targeted within specific assessment measures.  

 Second, as noted above, the quantity of instruction may have varied across time for 

specific domains (particularly for math), and these differences may have altered the relations 

between domains. For example, more time spent engaging in math instruction may affect the 

development of math, which, in turn, could change the relations between math and EF or 

between math and literacy. In the current study, math and literacy instructional practices, 

activities in schools and at home, or active learning in these domains were not assessed. 

Moreover, other contextual factors as well as individual child characteristics not measured in this 

study, such as parenting practices, early language abilities, or motor development, may be 

contributing to growth in EF and academic skills (McClelland et al., 2015). Further research that 

includes contextual factors and additional child characteristics may enhance our understanding of 

the linked development across these domains.  

 Third, recent research suggests that cross-lagged panel models can produce biased 

estimates due to unmodeled trait-like stability (e.g., Hamaker, Kuiper, & Grasman, 2015). 

Although the present analyses used a likelihood ratio test to show no evidence of additional trait-

like stability (i.e., by constraining the correlations between factors separated by more than one 

lag to be zero), it will be critical for future research to explore alternative model specifications 

when investigating EF and academic outcomes over time. Future studies should also test for 
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mediating effects (e.g., via panel models), as our findings suggest that EF may partially mediate 

the relation between math in preschool and math in kindergarten. 

Fourth, it is important to note that there was attrition across the four waves of data, 

particularly as children were transitioning from preschool to kindergarten (between Times 2 and 

3). Although we accounted for missing data by using robust maximum likelihood and included 

Head Start status in all of our models (which predicted missingness between these waves), 

different patterns of reciprocal relations in preschool and kindergarten may be due to attrition.  

Finally, although our sample was diverse in terms of socioeconomic status, it was less 

ethnically diverse. We relied on a convenience sample for the present analyses, and future 

research is needed to replicate our findings with more representative and ethnically diverse 

samples to determine whether or not the findings generalize to other populations. 

Conclusions 

 Findings from this study have potential implications for instruction and intervention 

development that need to be investigated in a more targeted manner. It may be important to 

consider the EF demands on mathematical instruction at these ages. The relation between EF and 

math may be something that can be capitalized on through instruction. Integrating the domains at 

a very targeted level (e.g., that includes appropriate individual scaffolding) may be a useful 

mechanism for enhancing success across domains. Further, intervention efforts focused on EF 

(or math) may also have a beneficial effect on children’s math (or EF) development. Although 

our analyses preclude causality, the bidirectional associations, as well as correlated growth 

trajectories, between EF and math suggests that interventions and programs that contain both EF 

and academic training, particularly in math, may be a potential avenue for affecting change 



RELATIONS BETWEEN EF, MATH, AND LITERACY 
	

38 

during the transition to kindergarten. Future research examining causal connections between 

these domains at a more nuanced level is needed. 

 Findings from this study also suggest that, without intervention, children’s relative 

standing on EF, math, and literacy assessments are fairly stable over time. This finding has 

implications for future theoretical work examining the development of these constructs. More 

research is needed to identify predictors of these skills prior to and during preschool at the 

biological, familial, and socioeconomic levels. 

In sum, the current study replicates and extends current literature exploring EF, math, and 

literacy. Unlike previous work, we used a multi-analytic approach and found converging 

evidence for the longitudinal relations between EF and math and weaker relations between EF 

and literacy. These findings expand upon what was found in the study conducted by Fuhs and 

colleagues (2014). With the addition of a fourth time point at the beginning of kindergarten, we 

were able to contribute to current research by improving the specificity of the relations between 

EF and academic skills by identifying at which points the relations change during the transition 

to kindergarten at a more fine-grained level. Changes in these relations may be due to factors 

within the preschool and kindergarten classrooms, such as instructional methods and alignment 

to children’s needs, or due to the constructs being assessed at those ages. This change in relation 

is important for the development of instructional strategies and interventions that aim to improve 

either EF or math. In preschool, it may be more efficacious to target both EF and math 

simultaneously, whereas in kindergarten, targeting EF as a foundational skill set may be more 

important. Alternatively, there may be differential relations between aspects of EF and 

mathematics where EF is only related to certain mathematics skills (Lan et al., 2011; Purpura, 

Schmitt, Ganley, 2017; Purpura & Ganley, 2014) that affect this relation. These differential 
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relations may need to be accounted for in intervention and curricular development. Nonetheless, 

findings from both sets of analyses suggest that fostering the development of EF and early math 

skills during the transition to kindergarten may be a potentially important avenue for promoting 

school readiness and fostering academic success that needs to be investigated more thoroughly.   
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 Table 1 
 
ICCs for all items by wave-specific cluster 
Construct     UNCONDITIONAL         CONDITIONAL 
 Indicator W1 W2 W3 W4 W1 W2 W3 W4  
 

EF  
 Working memory .09 .12 .14 .12 .04 .00 .01 .06  
 Simon says .06 .09 .10 .11 .02 .02 .03 .06  
 HTKS .12 .19 .13 .10 .06 .03 .02 .02  
 Card sort .11 .11 .13 .07 .03 .00 .01 .02  
Literacy .21 .21 .17 .12 .05 .02 .14 .15  
Math .19 .17 .19 .19 .01 .04 .05 .03  
Note. Conditional ICCs control for age (at Time 1), Head Start status, and ELL Status. 
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Table 2 
 
Descriptive Statistics for all study variables  

 Prekindergarten (Year 1) Kindergarten (Year 2) 

 Fall (wave 1) Spring (wave 2) Fall (wave 3) Spring (wave 4) 

 N M (SD) N M (SD) N M (SD) N M (SD) 

Age 424 4.70 (0.30) 394 5.15 (0.30) 308 5.67 (0.30) 299 6.17 (0.29) 

Percent male 424 51% 394 51% 308 50% 299 51% 

Percent Head Start 424 55% 394 54% 308 51%h 299 51%h 

Percent Ella 424 15% 394 15% 308 15% 299 14% 

Parent education 353 14.40 (4.23) 336 14.34 (4.26) 275 14.60 (4.45) 269 14.67 (4.46) 

HTKSb 403 17.41 (17.20) 391 25.15 (18.28) 303 33.17 (17.74) 296 39.22 (16.00) 

Card sort 409 13.64 (6.67) 389 16.49 (5.92) 307 18.60 (4.88) 295 19.78 (3.88) 

Working memoryc 400 450.30 (14.80) 385 456.17 (17.97) 303 464.60 (19.21) 294 473.18 (19.90) 

Simon says 408 0.14 (0.28) 387 0.29 (0.38) 307 0.45 (0.39) 294 0.54 (0.38) 

Mathd 401 410.17 (23.30) 391 419.83 (23.11) 305 431.02 (20.71) 295 442.09 (19.29) 

Literacye 408 335.65 (26.59) 390 349.33 (26.80) 305 366.00 (29.14) 295 400.24 (35.21) 

aEnglish language learner; bHead-Toes-Knees-Shoulders task; cAuditory Working Memory subtest from the Woodcock-Johnson III Tests of Cognitive Abilities; 
dApplied Problems subtest from the Woodcock-Johnson III Tests of Achievement; eLetter-Word Identification subtest from the Woodcock-Johnson III Tests of 
Achievement.
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Table 3 
 
Fit for Panel Models   

     90% C.I. 
 χ2a df RMSEA  (RMSEA) CFI TLI BIC 
 
Initial 284.72 170 0.04 [.03, .05] 0.979 0.96 30786.98 
Weak Invariance 387.09 179 0.05 [.05, .06] 0.962 0.93 30831.28 
Partial Weak Invariance 319.45 176 0.04 [.04, .05] 0.974 0.95 30783.33 
Strong Invariance and 
 Initial SEMb 343.63 185 0.05 [.04, .05] 0.971 0.95 30754.58 
 
aModels were estimated using robust maximum likelihood; χ2 statistics cannot be directly compared. 
bFit for these models was identical because the latent covariance structure of the initial SEM was saturated. 
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Table 4 
 
Factor Loadings and Intercepts from the Strong Invariance CFA Model 
Construct Standardized Raw-Metric Raw-Metric 
 Indicator Loading (SE)a Loading (SE)a Intercepts (SE) 
Time 1 EF  
 Working memory .34* (.04) 0.51 (.06) 45.37 (.10) 
 Simon says .45* (.04) 0.67 (.07) 0.90 (.10) 
 HTKS .45* (.06) 0.49 (.06) 1.36 (.08) 
 Card sort .59* (.04) 1.30 (.09) 5.04 (.15) 
 
Time 2 EF 
 Working memory .40* (.03) equated (T1) equated (T1)  
 Simon says .49* (.03) equated (T1) equated (T1) 
 HTKS .58* (.04) equated (T1) equated (T1) 
 Card sort .55* (.05) 0.76 (.09) equated (T1) 
 
Time 3 EF 
 Working memory .41* (.03) equated (T1) equated (T1) 
 Simon says .52* (.04) equated (T1) equated (T1) 
 HTKS .63* (.04) equated (T1) equated (T1) 
 Card sort .52* (.05) 0.54 (.07) equated (T1) 
 
Time 4 EF 
 Working memory .54* (.04) 0.72 (.09) equated (T1) 
 Simon says .54* (.04) equated (T1) equated (T1) 
 HTKS .66* (.04) equated (T1) equated (T1) 
 Card sort .59* (.04) equated (T3) equated (T1) 
Note. Indicators were divided by constants to make their variances more homogenous, expediting 
model convergence (e.g., Muthén, 2010). For more information, see Online Technical Appendix 
A. 
aLoadings are somewhat attenuated because covariates were controlled at the item level.  
*p < .001.
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Table 5 
 
Means, Variances and Correlations for Strong Invariance Model  
 
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Mean 
1. EF1 1.00            0.00 
2. Math1 .65* 4.03           41.71 
3. Literacy1 .44* .39* 5.45          34.77 

4. EF2 .91* .71* .43* 1.97         1.50 
5. Math2 .68* .74* .40* .74* 3.72        42.71 
6. Literacy2 .36* .41* .77* .40* .41* 5.66       36.16 

7. EF3 .85* .70* .40* .92* .78* .34* 2.36      2.63 
8. Math3 .59* .67* .41* .66* .79* .40* .77* 3.14     43.67 
9. Literacy3 .36* .37* .70* .40* .35* .80* .36* .41* 7.02    37.60 

10. EF4 .71* .64* .32* .83* .69* .32* .92* .71* .34* 2.18   3.24 
11. Math4 .60* .62* .41* .67* .70* .41* .71* .75* .41* .69* 2.79  44.74 
12. Literacy4 .43* .42* .60* .46* .45* .65* .43* .50* .78* .43* .48* 10.69 41.02 
 
Note. Variances on diagonal, correlations below diagonal. Actual (as opposed to latent) means and variances provided for Math and 
Literacy. Indicators were divided by constants to make their variances more homogenous, thus expediting model convergence (e.g., 
Muthén, 2010). For more information, see Online Technical Appendix A. 
*p < .001. 
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Table 6 

Estimated Growth Parameter Conditional Means and Variances	
Parameter Mean (SE) Variance (SE) 
 
Executive function†   
   Intercept 1.299 (.07) *** 0.28 (.05)*** 
   Linear 0.91 (.07)*** 0.05 (.02)* 
   Quadratic -0.13 (.02)*** 0.00 (FIXED) 
   
Literacy   
   Intercept 34.86 (.18)*** 4.26 (.49)*** 
   Linear 0.60 (.17)*** 0.00 (FIXED) 
   Quadratic 0.48 (.05)*** 0.05 (.01)*** 
   
Math   
   Intercept 41.72 (.14)*** 3.18 (.51)*** 
   Linear 0.97 (.12)*** 0.10 (.03)** 
   Quadratic 0.01 (.04) 0.00 (FIXED) 
 
 

Note. Indicators were divided by constant values to create more homogenous indicator variances. 
Values in this table therefore provide meaningful information about the shape of each growth 
trajectory but do not describe scores in their raw metric. 
†Calculated as the estimated intercept (.02) plus the conditional mean of the EF Intercept (1.299) 
multiplied by the regression coefficient regressing the EF Quadratic slope in the EF Intercept 
(-.12). 
*p < .05; **p < .01; ***p < .001. 
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Table 7 
 
Partial Correlations Between Growth Parameters 
 1. 2. 3. 4. 5. 6. 
1. EF – Intercept: 1.00      
2. EF – Linear:   .82*** 1.00     
3. Literacy – Intercept:   .48*** .38** 1.00    
4. Literacy – Quadratic:      .20** .31** .08 1.00   
5. Math – Intercept:   .81***  .82***    .49*** .25* 1.00  
6. Math – Linear:    -.40**    -.17     -.14      .12  -.53*** 1.00 

Note. The raw-metric regression of the EF quadratic slope on the EF intercept was -.12 (p < .01). 
A parallel model that relied on numerical integration provided a standardized coefficient of -.91. 
*p < .05; **p < .01; ***p < .001. 
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Table 8 
 
Correlations Between Slopes, Conditional on Intercepts and Covariates 
 1. 2. 3.    
1. EF – Linear: 1.00      
2. Literacy – Quadratic: .21 1.00     
3. Math – Linear:   .63**  .32** 1.00    

*p < .05; **p < .01; ***p < .001. 
 



RELATIONS BETWEEN EF, MATH, AND LITERACY 
	

60 

 
 
 
Figure 1. Path diagram for our final structural model (standardized coefficients). Within-wave covariances and nonsignificant 
regression paths not shown). Time	1 = fall of preschool; Time	2 = spring of preschool; Time	3 = fall of kindergarten; Time	4 = spring 
of kindergarten. 
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Figure 2. Average growth trajectories from the LGCM. Math and literacy scores were rescaled 
from original values. 
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Technical Appendix 
 

Technical Appendix A:  
SAS Code for Dividing Items by Constants 

 
DATA use; SET use; 

/*DIVIDE HTKS SUMS BY 15*/ 
 htks1 = sum (of htkss1_1  htkss2_1  htkss3_1)/15;  
 htks2 = sum (of htkss1_2  htkss2_2  htkss3_2)/15; 
 htks3 = sum (of htkss1_3  htkss2_3  htkss3_3)/15; 
 htks4 = sum (of htkss1_4  htkss2_4  htkss3_4)/15; 
 

/*DIVIDE DCCS SUMS BY 3*/ 
 dccs1 =  sum (of dccss1_1 dccss2_1 dccss3_1 dccss4_1)/3;  
 dccs2 =  sum (of dccss1_2 dccss2_2 dccss3_2 dccss4_2)/3;  
 dccs3 =  sum (of dccss1_3 dccss2_3 dccss3_3 dccss4_3)/3;  
 dccs4 =  sum (of dccss1_4 dccss2_4 dccss3_4 dccss4_4)/3;  
 
 /*DIVIDE ALL WJ SCORES BY 10*/ 
 wjapw_1 = wjapw_1/10;  
 wjapw_2 = wjapw_2/10;  
 wjapw_3 = wjapw_3/10;  
 wjapw_4 = wjapw_4/10;  
 wjlww_1 = wjlww_1/10;  
 wjlww_2 = wjlww_2/10;  
 wjlww_3 = wjlww_3/10;  
 wjlww_4 = wjlww_4/10;  
 wjpvw_1 = wjpvw_1/10;  
 wjpvw_2 = wjpvw_2/10;  
 wjpvw_3 = wjpvw_3/10;  
 wjpvw_4 = wjpvw_4/10;  
 wjwmw_1 = wjwmw_1/10;  
 wjwmw_2 = wjwmw_2/10;  
 wjwmw_3 = wjwmw_3/10;  
 wjwmw_4 = wjwmw_4/10; 
 
 /*RECENTER AGE AT 4.5 YRS*/ 
 ageyrs_1 = ageyrs_1-4.5;  
 ageyrs_2 = ageyrs_2-4.5; 
 ageyrs_3 = ageyrs_3-4.5; 
 ageyrs_4 = ageyrs_4-4.5; 
 

/*DROP INDIVIDUAL ITEMS, ANALYSIS AT COMPOSITE LEVEL ONLY*/ 
 drop htkss1_1  htkss1_2  htkss1_3  htkss1_4   
 htkss2_1  htkss2_2  htkss2_3  htkss2_4   
 htkss3_1  htkss3_2  htkss3_3  htkss3_4 
 dccss1_1 dccss2_1 dccss3_1 dccss4_1 
 dccss1_2 dccss2_2 dccss3_2 dccss4_2 
 dccss1_3 dccss2_3 dccss3_3 dccss4_3 
 dccss1_4 dccss2_4 dccss3_4 dccss4_4 
 hstart_2 cspan_2 cspan_3 cspan_1 
 ; 
RUN; 
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Technical Appendix B: Additional Tables and Figures 
 
 
Table B.1 
Residual Correlations from Final SEM Model  
 
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 
1. EF1 1.00             
2. Math1 .66*** 4.01            
3. Literacy1 .45*** .40*** 5.46           
4. EF2 na na na .28          
5. Math2 na na na .25* 1.43         
6. Literacy2 na na na .11 .10 2.20        
7. EF3 na na na na na na .29       
8. Math3 na na na na na na .43** 1.11      
9. Literacy3 na na na na na na .05 .16** 2.43     
10. EF4 na na na na na na na na na .40    
11. Math4 na na na na na na na na na .13 1.01   
12. Literacy4 na na na na na na na na na .06 .06 3.76  
Note. na = not estimated. Variances and residual variances on diagonal, correlations below diagonal. Squared factor loadings 
(therefore representing item variances) provided for Math and Literacy. Indicators were divided by constants to make their variances 
more homogenous, thus expediting model convergence (e.g., Muthén, 2010). 
For correlations: * p < .05; ** p < .01; *** p < .001; 
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Table B.2 
Comparison of BIC for final panel model and growth curve.(N = 424) 
Panel Model: 30624.303 
Growth Curve: 30435.914 
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Figure B.1. Path diagram representing the EF component of the initial CFA. Mean structure and indicator residuals are omitted from 
the diagram, but all indicator residuals and intercepts were freely esitimated. All latent means were fixed to zero. All indicators were 
controlled for covariates (not shown). 
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Figure B.2. Path diagram representing the EF component of the initial LGCM. Mean structure and indicator residuals are omitted from 
the diagram, but all indicator residuals were freely esitimated, with factor loadings and indicator intercepts estiamted but equated 
across time. HTKS served as a marker variable, with its loading fixed to 1.00 and intercept fixed to 0.00. All latent means for EF were 
fixed to zero and means for all growth parameters (intercept and two slopes) were freely estimated. All growth parameters were 
controlled for covariates (not shown). 
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Figure B.3. Path diagram for the final structural model (standardized coefficients). Variances, residual variances, and within-wave 
covariances provided in Table B.1. Time 1 = fall of preschool; Time 2 = spring of preschool; Time 3 = fall of kindergarten; Time 4 = 
spring of kindergarten. 
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