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Abstract 

Rising costs of public employee pension plans are a source of fiscal stress in many cities and states 
and have led to calls for reform. To assess the economic consequences of plan changes it is important 
to have reliable statistical models of employee retirement behavior. The authors estimate a 
structural model of teacher retirement using administrative panel data. A Stock‐Wise option value 
model provides a good fit to the data and predicts well out‐of‐sample on the effects of pension 
enhancements during the 1990s. The structural model is used to simulate the effect of alternatives to 
the current defined benefit plan. 
 
Keywords: teacher pensions, school staffing, school finance. 
 
JEL codes: I21, J26, J38.



I. Introduction

Pension costs are a major source of fiscal stress for many states and local governments,

including school districts, which account for nearly half of state and local workers. Most

plans enrolling teachers report large unfunded liabilities.2 In March 2004, employer costs

for teacher pensions averaged 11.9% of salaries. By January 2014 these costs had risen to

18.7%. By contrast, private sector retirement costs for professionals and administrators over

the same period have remained relatively stable at about 11% of salaries.3 Reform of teacher

pensions has been widely discussed in legislatures and in the education policy community.

Changes have been made (usually for new hires) in several states (National Center on Teacher

Quality, 2012). However, reliable estimates of the fiscal and staffing effects of such changes

require, in turn, reliable behavioral models of retirement, which is the focus of this study.

A large literature in labor economics has analyzed the effect of incentives in pension sys-

tems on the timing of retirement decisions, labor turnover, and staffing (e.g., Friedberg and

Webb, 2005; Asch et al. 2005; Ippolito, 1997; Stock and Wise, 1990; Gustman and Stein-

meier, 1986, 2005). However, none of this literature pertains to teachers. While there have

been many studies of the effect of current compensation on teacher turnover and mobility

(e.g., Murnane and Olsen, 1990; Stinebrickner, 2001; Hanushek et al. 2004; Podgursky et al.

2004), the literature on teacher pensions and their labor market effects is slender (Furgeson,

et al., 2006; Brown, 2009; Costrell and McGee, 2010; Friedberg and Turner, 2010). The

issue of teachers and pensions takes on particular importance since teacher quality has been

shown to have a major effect on student achievement (Rivkin et al. 2005 and Chetty et al.

2011).

2National Center on Teacher Quality (2012). Novy-Marx and Rauh (2011) argue that the true liabilities

of these plans are much larger than the reported actuarial values.
3Costrell and Podgursky (2009), updated at

http : //www.uark.edu/ua/der/People/Costrell/Employer − Contributions− Update.pdf
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To date, none of the papers examining teachers estimate structural models that are

standard in the empirical retirement literature (e.g., Stock and Wise, 1990; Berkovec and

Stern, 1991). Given concerns about the fiscal state of the pension funds and staffing schools

with qualified teachers, a study of the effect of teacher pension plan incentives on teacher

retirement behavior has obvious policy relevance. This is a large market, with roughly 3.2

million public school teachers. In addition, other professional staff (e.g., counselors and

administrators) are in the same systems, yielding a total closer to 3.7 million. While the

rules of defined benefit (DB) pension systems vary from state to state, the general structure

of these systems are similar, as are the teachers themselves. Thus we believe that the results

of a single state study like this one would generalize to a much larger universe.4

However, an analysis of teacher retirement has more general research interest. The ad-

ministrative data about the teachers and their pension plans in state data systems are of

high quality and an excellent resource for research on the behavioral effects of plans incen-

tives. The rules of the teacher pension plans are also readily available to outside researchers.

These pension rules subject teachers to large, sharp, and exogenous incentives that allow

researchers to study behavioral responses. Moreover, these rules have changed over time in

ways that are readily documented.5

State administrative data files provide reliable data on teacher employment histories,

salaries, and the exact timing of retirement. These administrative panel data are of high

quality compared to the household survey data that have been used in some other studies.6 In

4Teachers in 23 states participate in consolidated state retirement plans with other state and local workers.
The remaining states are like Missouri, where educators have their own plan. See National Council on Teacher
Quality, 2012, Figure 4.

5For example, “rule of 80” permits regular retirement when age+experience ≥ 80. While one might
expect experience and age to have independent effects on retirement, there is no reason to expect an effect
of the sum of the two passing a threshold of 80 to affect retirement, independent of pension rules. There are
other such rules which produce sharp discontinuities in pension wealth accrual. See Costrell and Podgursky
(2009b) for further discussion.

6There are tradeoffs. These administrative data are rich in information about the teachers, their employ-
ers, and their work histories. Unfortunately, our data file has no information about the teacher’s household.
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modeling retirement in other markets, a worker’s information on future wages or salaries may

substantially differ from that known to the researcher. In contrast, the salaries of teachers

are determined by schedules that are highly predictable. Thus, teachers and teacher data

potentially offer a good laboratory for testing decision models commonly used in retirement

research.

In this paper, we show that structural models of teacher retirement fit the data well

and are a useful tool for analyzing policy alternatives. The empirical regularities on which

reduced-form models rely are the outcomes of pension plan incentives. If those incentives

change in fundamental ways – which they invariably do when major plan redesigns occur

– the empirical regularities change, possibly in complicated ways. Identification of “deep

parameters” provide a basis for researchers and policy-makers to simulate the behavioral

effects of changes in these plans. Transitions from final average salary DB plans to a defined

contribution (DC) or hybrid plans is a good example. The former plans introduce powerful

pull and push incentives to concentrate retirement at certain experience or age combinations

associated with “peak value” pension wealth (Lazear, 1983, Costrell and Podgursky 2009a).

These incentives shape observed retirement patterns. Reduced-form models fit to these

retirement patterns are uninformative about what retirement patterns would look like in a

system with smoother pension wealth accrual and no peak value.

In this paper, we estimate a dynamic option value model developed by Stock and Wise

(1990). We report parameter estimates and show that the model fits our data very well. We

then use the estimated parameters to predict out-of-sample to earlier periods when pension

rules were changed (enhanced) and find that the predictions of changes in retirement patterns

are quite accurate. Finally, we use the estimated structural parameters to simulate the effect

of several DC alternatives.

In particular, we have no information about spousal income, or even whether the teacher is married.
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Institutional Background

Missouri public school teachers, like nearly all public school employees, are covered by

a DB pension system. In fact, Missouri public school teachers are in three different DB

systems. Teachers in the St. Louis and Kansas City districts, less than ten percent of

teachers statewide, are covered by Social Security and are in their own pension systems.

The rest of the public school teachers in the state are not covered by the Social Security

system (as teachers) and are in a state-wide educator plan–the Public School Retirement

System (PSRS).7 Our focus in this paper is on teachers in the PSRS plan.

Under the current rules, Missouri teachers become eligible for a full pension if they meet

one of three conditions: a) they are sixty years of age with at least five years of teaching

experience, b) thirty years of experience (and any age), or c) the sum of age and years of

service equals or exceeds 80 (“rule of 80”). Benefits at retirement are determined by the

following formula (some variant of which is nearly universal in teacher DB systems):

Annual Benefit = S × FAS ×R (1)

where S is service years (essentially years of experience in the system), FAS is final average

salary calculated as the average of the highest three years of salary, and R is the replacement

factor. Teachers earn 2.5% for each year of teaching service up to 30 years. Thus, a teacher

with 30 years experience and a final average salary of $60, 000 would receive 30 × $60, 000 ×

0.025= $45, 000. There are several other minor adjustments to the formula in (1). In order

to provide teachers with assistance in purchasing health insurance, the district contribution

7Missouri teachers are not unique in this regard. Public school teachers in a number of large states are
entirely or mostly outside of Social Security (e.g., California, Texas, Illinois, Ohio). The BLS reports that
72 percent of public school are covered by Social Security. State and local employees were not covered
by the 1935 Social Security Act. Amendments in the early 1950’s permitted these employees to enter the
system. Some groups of teachers (as a group) chose to enter, whereas others did not. The result is a
complicated mosaic. Usually, all teachers in a state are in or out (e.g., California out, Florida in, see Costrell
and Podgursky (2009b)). The Stock-Wise model used in this paper can be adapted to incorporate Social
Security.
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to individual teacher health insurance is included in FAS. Thus, if the average of the highest

three salary years was $60, 000 and the average contribution to health insurance was $3, 000

annually, then FAS would equal $63, 000. Second, there is a “25 and out” option that permits

retirement at a reduced rate if teachers have 25 or more years of experience. Finally, the

value of R used in formula (1) is 2.5% for experience up to 30 years and 2.55% for experience

of 31 or more years. The 2.55% at 31 years is paid on the 30 inframarginal years as well.

Thus the increase in the annuity for the 31st year is 2.55 + .05 (30) = 4.05%.

The rules of the pension system changed numerous times between 1992 and 2001. These

rule changes made the system more generous for teachers and are widely acknowledged to

have passed in response to the booming stock market returns earned by the fund during the

1990’s. The more uneven stock market performance since 2001 has tempered enthusiasm

by the legislature for further generosity and there have been no further enhancements or

significant changes since then.

We will be estimating our structural model under the post-2002 rules. However, since

we will be evaluating the predictive power of our model under prior rules, we briefly review

rule changes prior to 2002. Table 1 chronicles a number of significant rule changes over this

period. At the beginning of the period, 1991-92, regular retirement occurred at 30 years,

the replacement rate (R) in equation (1) was 2.1%, final average salary was computed as the

average of the five highest years of earnings, and cost of living allowance (COLA) increases

were capped at 65% of the initial retirement annuity. Over the next decade all of these rules

were liberalized. The most important change for regular retirement was the introduction of

the “rule of 80” in 2000. The replacement rate rose to 2.5% by 1998 and 2.55% for years

above 30 in 2001. District contributions toward teacher health insurance were added to the

calculation of FAS in 1996. Another remunerative enhancement occurred in 1999, when

calculation of final average salary was changed from the highest five years to the highest
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three years. Finally, the COLA cap increased from 65% to 80% in steps over the period.

II. Modeling the Retirement Decision

Our focus is on the timing of retirement. We assume that an experienced educator who

is teaching in the current year has two choices: teach next year or retire.8 Applying the

Stock-Wise (SW) model to teacher retirement, we first write the teacher’s expected utility

in period t as a function of expected retirement in year m (with m = t, · · · , T and T = 101

is an upper bound on age). In period t, the expected utility of retiring in period m is the

discounted sum of pre- and post-retirement expected utility

IEtVt(m) = IEt{
m−1∑
s=t

βs−t[(ks(1− c)Ys)
γ + ws] +

T∑
s=m

βs−t[(Bs)
γ + ξs]}, (2)

where 0 < ks < 1 captures the disutility of working, Y is real salary, c is the teacher’s

contribution rate to the pension, and B is the real pension benefit. The unobserved innova-

tions in preferences are AR(1): ws = ρws−1 + ϵws, ξs = ρξs−1 + ϵξs. Denote the error terms

νs = ws − ξs, ϵs = ϵws − ϵξs. Then it follows that:

νs = ρνs−1 + ϵs. (3)

We assume ϵs is iid N(0, σ2). This specification assumes that the disutility of work, ks, does

not depend on age. This is a problematic assumption that is at variance with our data.

Following Stock and Wise, we relax this assumption by allowing ks to change monotonically

with age: ks = κ( 60
age

)κ1
. The retirement decision in year t can thus be formulated as

choosing m = t, · · · , T that maximizes IEtVt(m).

The retirement decision is irreversible. Once a teacher retires, she cannot return to the

same job.9 Because the future is uncertain and the teacher is risk averse, there is a value

8In this context “retire” can also mean stop teaching and collect a pension at a future date rather than
immediately.

9Thus, we are ruling out the option of a teacher retiring and returning to a PSRS-covered job (“double-
dipping”). PSRS rules make it very difficult to return to full time covered employment and collect a pension,
although part-time teaching employment (less than half time) is an option.
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associated with keeping the retirement option open, hence this is termed an “option value”

model.10

With a fixed salary schedule there are two sources of uncertainty: the uncertainty of

survival and uncertainty in preference shocks. The latter would include, for example, changes

in own or spouse’s health. To make survival uncertainty explicit, for a teacher alive in year t

we denote the probability of survival to period s > t as π(s|t). To quantify the option value,

write the expected gain from retirement in year m over retirement in the current period t

as:

Gt(m) = IEtVt(m)− IEtVt(t) = gt(m) +Kt(m)νt, (4)

where

gt(m) =
m−1∑
s=t

π(s|t)βs−tIEt(ks(1− c)Ys)
γ +

T∑
s=m

π(s|t)βs−tIEt(Bs)
γ −

T∑
s=t

π(s|t)βs−tIEt(Bs)
γ

is the difference in expected utility between retiring in year m > t and retiring now (in

year t). Because the teacher’s future salary and pension benefits are predictable, in the

empirical analysis we replace the expected salary and benefit in gt(m) with a forecast based

on historical data. In the last term in (4), Kt(m) =
∑m−1

s=t π(s|t)(βρ)s−t depends on unknown

parameters and the AR(1) error term νt given in (3). Let m†
t = argmax gt(m)/Kt(m),

then the probability that the teacher retires in period t (Gt(m) ≤ 0 for all m > t) is

Prob( gt(m†)
Kt(m†)

≤ −νt). The details of the model and the MLE estimation methods are reported

in the appendix.

10The option value model above assumes that a teacher chooses the year of retirement that maximizes
the expected present value of the utility of the salary and benefit flows given current information. In a
dynamic programming setting, a teacher evaluates the expectation of the value of salary and benefit flow
under present and future optimal choices. Hence the option value model does not take into account the value
of options in the future. The gain from this is a simpler derivation of the empirical model. Stern (1997)
shows that the option value model may yield different results from those obtained by dynamic programming.
Lumsdaine et al. (1992) argue that it is not obvious that the more sophisticated dynamic programming
model is more realistic for modeling actual retirement decisions. They find that the predictive performance
of the option value model is comparable to that of a dynamic programming approach. As we will see below,
the SW option value model fits our data very well.
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A “peak value” approach has been used in some applied retirement studies (e.g., Coile

and Gruber, 2007; Friedberg and Webb, 2005). It can be treated as a special case of the SW

model in which the teacher chooses the timing of retirement to maximize the present value

of her expected pension wealth. “Peak value” behavior implies the following restrictions:

κ = 0, γ = 1, σ = ρ = 0. Setting the discount rate β to be the inverse of one plus the

real interest rate, the peak value model corresponds to the SW model where the objective

becomes finding the peak year m that maximizes pension wealth IEt
∑T

s=m βs−mBs, where

the expectation is with respect to survival probability.

Data

The data used for estimation of the option value model consists of a cohort of 16,792

Missouri teachers aged 47-58 at the beginning of the 2002-03 school year. We tracked this

cohort of teachers forward to the 2008-09 school year. Descriptive statistics on this sample

are found in Table 2. In the base year 2002 eighty percent of teachers in the sample are

female and had an average of 19.8 years of teaching experience. Over the six year panel,

roughly half of the teachers in the cohort retired.11

Estimates

Table 3 reports maximum-likelihood estimates of the structural parameters in the retire-

ment model: κ, κ1, β, γ, σ, ρ. We begin with the pooled estimates in the first column. All

of the parameter estimates are statistically significant and of reasonable magnitude. The

parameter β reflects the rate of time preference for the teacher, the β estimate of 0.965

implies a 3.5% annual discount rate. The parameter k measures the value of work versus

leisure (retirement) time. Recall that the disutility of working is modeled as ks = κ( 60
age

)κ1
.

If ks = 1 then there is no disutility associated with teaching. Our estimates are κ = 0.640

11In an earlier version of the paper, we used a sub-sample of teachers of age 50-55 years old and found

similar estimates.
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and κ1 = 0.976, which imply that the disutility of teaching rises with age. At age 55, one

dollar of salary yields the same utility as 70 cents in the retirement benefit. By age 65, this

drops to 59 cents. We find that allowing for age-dependency in the disutility of teaching

substantially improves the fit of the model.

The point estimate of γ is significantly less than unity, indicating risk aversion. The

large value of σ indicates a good deal of heterogeneity in preferences. This is not surprising

since there are no covariates in the model. One might expect various household and personal

factors such a spouse’s pension, health, and preferences for teaching to affect the timing of

retirement. These and other factors are picked up in σ. In addition, these omitted factors

are not transient but tend to persist over time, as indicated by large and significant values

for ρ.12

Table 3 also reports estimates for males and females separately. The point estimates are

fairly similar, with the exception of κ1. In both cases the data support the model with age-

dependent disutility of working. The preference parameter κ1 of male teachers is 1.513 while

that for female teachers is 1.109. This suggests that as male teachers age, their disutility

for teaching relative to retirement rises more quickly than for female teachers. This may

reflect different non-teaching opportunities. It may also reflect different mortality rates.

The mortality rate of males in the general population is higher (0.748% at age 55) than that

of females (0.434% at the same age). Since the DB rules are unisex, this predicts earlier

12The parameter estimates are comparable to those reported by Stock and Wise (1990) on a sample of
older salesmen of an unidentified firm. Their estimates vary with model specifications, with γ being in the
range of 0.7 to 0.8, and β in the range of 0.7 to 0.9 (which implies salesmen are much less patient than
teachers), and one dollar of working generates the same utility as 60 cents of pension benefits. They found
the unobserved heterogeneity is persistent, with ρ being about 0.7. Along with the stratification by gender
in Table 3 we have estimated the model on other subsamples, expecting a further drop in σ. While the basic
model fits subsamples very well, some parameters move about. Interestingly, the σ on subgroups generally
does not decline by an appreciable amount. Our interpretation of this finding is that σ mostly represents
variation in individual unobservables such as health, spouse’s circumstances, and preferences for teaching
rather than observables like race or school factors on which we stratify. Hence there is no reason for σ to
fall when the sample is stratified on observables.
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retirement for males.

As noted above, a number of articles in the literature have estimated peak value models

rather than a full structural model. We also consider the peak value constrained version of

the model: k = 0, γ = 1, σ = ρ = 0, β = 0.96. The constraints are easily rejected under a

likelihood-ratio test.13 In practice, while retirements do concentrate in the neighborhood of

the peak value of pension wealth, the majority do not. Many concentrate at other pension

rule kinks (e.g., 25 and out). Others continue to teach beyond peak value.

Goodness of Fit: In- and Out-of-Sample

The in-sample goodness of fit is quite good. Figures 1 and 2 plot the actual and forecast

distribution by experience and age for the teachers who retired or continued employment to

the end of the period. Visual examination shows that the model provides an excellent fit to

the profiles of retiring and non-retiring teachers for each year and for those who remained

employed at the end of the panel. The χ2 tests on the equality of the observed and predicted

distributions by age or experiences in Figures 1 and 2 easily accept the null. Figure 3 shows

that the model nicely mimics the joint distribution of age and experience for retirees and

non-retirees as well, in particular the “rule of 80” ridge (i.e., age + experience = 80).

These plots use the pooled-sample estimates in Table 3. Using these estimates, we also

examined the profile fit for various subsamples (e.g., men versus women in high and low

poverty schools) and the fit remained quite good, which suggests that the parameters esti-

mated for the entire sample work well for subgroups. Since the pooled estimates perform

well within sample and for subgroups, we use these for the out-of-sample analysis and the

policy simulations below.

As noted in the introduction, a structural model is useful in analyzing the effect of

13A χ2 test on the likelihood ratio of the constrained peak value SW model versus the unconstrained SW
model overwhelmingly rejects the constraints.
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major changes in retirement plans. The current patterns of retirement reflect strong, but

rather arbitrary, incentives built into plan rules. For example, the “rule of 80” provision

creates a ridge of increased retirement probability along the age+experience = 80 line if one

plots retirement rates against age and experience. A similar spike in retirements occurs at 25

years experience. There is no obvious efficiency rationale for these kinks in the intertemporal

budget constraint and it is likely that a more rational retirement plan would eliminate them

in favor smoother life-cycle benefit accrual. Thus it is important to have a model that can

yield accurate behavioral predictions in the absence of such kinks and discontinuities, or

when these kinks are moved around in the age -experience space. Unfortunately, we cannot

test the former but we can test the latter. That is, we can test the forecasting ability of the

model against a very different set of plan design incentives during the 1990’s.

Table 1 reports the enhancements to the pension plan during the 1990’s. Koedel, et al.

(2014) document the pension wealth gains generated by these enhancements. We use the

estimated parameters from the pooled sample in Table 3 to forecast the annual retirements

of teachers aged 50-62 after each of the enhancements between 1995 to 1999. This provides

a robust test of the predictive validity of the model because it is “out of sample” in two

respects. First, this is a different sample of teachers. Second, it is a very different set of

plan parameters.14 Figures 4a and 4b plot the actual and predicted distribution of retiring

teachers by age and experience under the different, and less generous, DB plan rules during

the 1990’s. The structural estimates on the 2002-08 sample provide an excellent fit to the

age and experience distribution of the retiring teachers. Figures 4c and 4d plot the observed

frequencies and predicted retirement probabilities of teachers given the age or experience in

1995. Figures 5a-5h plot the age and experience profiles for 1996-1999 retirees, which reflect

14Because the measurement of unobserved heterogeneity σ depends on salary and the salary during 1995-

1999 is lower than that during 2002-2008, one would expect a lower value of σ as well. Instead of using the

estimated value of 3660 based on the 2002-2008 sample, we adjusted σ as 3660( salary year t
salary 2002 )γ for simulation

of year t between 1995-1999 as per the first term in equation (2) in the text.
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piecemeal introduction of the enhancements. The model fits the experience and age profiles

very well, similar to those in Figures 4a and 4b. The χ2 tests of equality of observed and

predicted distributions easily accept the null for Figures 5 and Figures 4a and 4b. Figures 4c

and 4d show that predicted probabilities of retirement track observed rates, but the model

tends to over-predict retirement.

The in- and out-of-sample predictions of retirement probability are compared with the

observed rates in Table 4. For the in-sample prediction of 2002-2008 data, the first row of

Table 4 shows that the model predicted a 45.0 percent retirement rate over the sample period.

The actual rate was 45.3 percent. The good overall match masks a slight over-prediction of

retirement in the earlier part of the sample (year 2003 and 2004).15 The remaining rows

of Table 4 show that the out-of-sample predictions of retirement in the 1990’s are higher

than the observed ones. Besides the general problem of model mis-specification (e.g., in the

parametric form of the utility function), there are three potential specification issues that

may explain this over-prediction.

First, the patterns of retirement suggest that there may be multiple types of teachers who

differ in preference for teaching. About ten percent of teachers continue teaching even when

pension wealth declines in experience. In Figure 4d, the 1995 data show that teachers with

15The over-prediction of retirements in 2003 and 2004 is likely an artifact of our sampling scheme (i.e.,

teachers aged 47-58 and employed 2002). Our base-year cohort of employed teachers includes teachers who

were eligible for retirement but who chose to wait, but obviously excludes those who chose to retire. Thus,

it is not surprising that our model slightly over-predicts retirement in 2003 and 2004, but the fit improves as

most of these oversampled base-year stayers leave the sample over time. Evidence for this interpretation is

found in the fact that the base year (2002) value of A+E is 80.2 years for 2004 retirees (who chose to retire

in 2003). Thus a large number of these teachers could have retired in 2002 but did not (the 2003 retirees

have an average A+E of 81.6, according to Table 2). However, average A+E in 2002 falls to 75.0 and 73.9

years for 2007 and 2008 retirees, and drops to 66.4 years for the teachers who were still working and not

retired by 2008. There no simple solution to this sample censoring problem in our panel since starting with

a younger base-year sample (e.g., 40-45 in 2002) means that the vast majority of the teachers would still

have been employed at the end of the panel, and early leavers would have been over-represented among the

retirees. Moreover, with a younger cohort some teachers are more likely to have left the sample for reasons

other than retirement.
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31 or 32 years of experience are less likely to retire than those with 30 years of experience,

but the model predicts that the probability of retiring should increase with experience after

30 years. It appears that the preferences of a small fraction of teachers who stay after passing

the “peak” of pension wealth differ from the rest of the population. Without taking into

account of the presence of these “stayers”, the model over-predicts retirement of experienced

teachers. This bias is likely to be empirically small though, because teachers who continue

teaching past the “peak” are relatively few in number. This is fortunate since estimation of

a SW model with heterogenous preferences is computationally very challenging.16

Another possible source of bias is sample selection induced by the pension rules. The

sample excludes some teachers who prefer earlier retirement. For example, a teacher with

25 years of experience in 1994 and pre-disposed toward early retirement may have already

separated from teaching in 1994 and is not included in the 1995 sample. Hence the sample

of teachers with more than 25 years of experience contains few who are likely to retire early.

Consequently the model over-predicts retirement of teachers with more than 25 years of

experience. After 1995, the “25 and out” rule reduces the cost of retiring before the peak of

pension wealth, and the theory predicts higher retirement of teachers with 25 to 30 years of

experience. But the observed retirement in this range in 1996-1999 is considerably less than

the prediction, perhaps because the “early leavers” are already gone. From 1996 to 1999,

gradual enhancements made pension benefits higher for teachers with 25-30 years experience

(the pension wealth accrual peak becomes a plateau). After each enhancement the new rules

predict more retirement in the 25-30 experience range for the same sample of teachers. But

16Suppose there are n teachers whose time preference may be one of the two parameters κ1 or κ2. To

estimate κ1 and κ2 using the data on teacher i, yi, we need to entertain the probability that the likelihood of

yi is either l(yi|κ1) or l(yi|κ2). Because there are 2
n possible combinations of these assignments, the likelihood

of the whole teacher sample is quite difficult to evaluate. We could introduce a model with two types of

teachers (e.g., relative to Type 1, Type 2 teachers are less adverse to teaching, hence with a smaller κ1.) We

can estimate the probability of a teacher being Type 1 or 2, along with the parameters associated with each

type. The MLE of such a model maybe obtained via an EM algorithm. However, the computational cost is

prohibitively high given the model and the sample size. So we will have to leave this to future research.
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the teachers who favor earlier retirement left before the enhancements. Those who remained

in the teaching force were those who chose not to retire in the previous years. Hence the

sample selection creates more bias in 1996-99 than in 1995. The presence of sample selection

bias implies that the fit in the model of a panel over multiple years is on average better than

the prediction over the first year of the data. This is exactly what Table 4 shows.

A third potential source of bias is teachers expectation of future pension enhancements.

The out-of-sample model predictions are made under the assumption that the teachers expect

the current rules are unchanged in the future. However, teachers expecting enhancements in

the near future may postpone retirement. It is difficult to model how teachers form expecta-

tions on future rule changes, but it is possible that the frequent enhancements experienced

in the 1990’s may have created the expectation of more enhancements in the future. If

that is the case, then the model would over-predict near-term retirement. In addition, the

expectation on pension rules may play an important role because the retirement decision is

likely planned ahead of time. The out-of-sample simulations are made under the assumption

that a teacher makes the retirement decision instantaneously after an pension enhancement.

Without allowing for the time of retirement planning, the model may over-predict retirement

of the following year.

The biases induced by sample selection and expectation on future rules are absent in the

policy simulations in the next section, where we assume a fixed policy is in place for a long

period of time. For prediction of a long horizon (say 20 years), the bias in initial sample

selection should have a much smaller influence on the model prediction, and the expectation

of future rule changes is absent by assumption.

III. Simulating Pension Plan Alternatives

In this section we use the structural estimates to explore the behavioral effects of pension
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plan changes. Given the lively policy debate in this area, there are many options one might

explore. Some states are considering a switch to DC plans in total, or partially in “hybrid”

plans, to reduce fiscal exposure as well as eliminate incentives for early retirement. A struc-

tural model like SW is well-suited for exploring alternatives to DB plans. Indeed, Stock and

Wise use their model estimates to simulate the effect of a conversion to a DC plan. We

will consider several variants of a DC conversion and compare them to the current DB plan.

Before laying out those alternatives we first show how a DC-type plan can be introduced

into the option-value model.17

Conversion to DC

We consider the following hypothetical DC plan: teachers contribute a mandatory fixed

percent (c) of salary. This is matched by an equivalent annual employer contribution into

each teacher’s account. A teacher’s account accumulates with annual contributions and

nominal investment returns of r on the fund balance. We treat this as a guaranteed return

(e.g., as with TIAA or a “cash balance” pension plan).18 The account is portable and

teachers can withdraw from the account at any age without penalty. When a teacher retires,

the contribution to the account stops and an insurance company provides an actuarially fair

annuity B (in real dollars) equal to the cash value in the teacher’s account. Assume that a

teacher aged a holds a DC account worth Wt in year t, which generates an expected nominal

flow of an annuity Bt+n in the nth year of retirement up to a maximum life T , (t+ n ≤ T ).

The annual inflation rate is i. The retiree survives to t + n with conditional probability

π(t+ n|t). The expected account value and the expected payment evolve as:

Wt+n = Wt+n−1(1 + r)−Bt+n, Bt+n = π(t+ n|t)(1 + i)nB.

17Researchers have used peak value models estimated on DB plan participants to simulate DC conversions

(e.g., Friedberg and Webb, 2005; Costrell and McGee, 2010). A problem with this approach is that DC plans

never reach a peak value so the simulation of DC alternatives is necessarily ad hoc.
18This is a somewhat stylized DC plan, since we abstract from any risk associated with the investments

made by the teacher and assume a guaranteed rate of return.
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We set WT = 0, (as is in the DB plan case, T = 101.) It follows that:

B =
Wt∑T−a

n=1 π(t+ n|t)( 1+i
1+r

)n.
(5)

In the policy scenarios below we will be considering the effect of a conversion from the

current DB to a DC plan. Thus, we need to determine the DC account value for a teacher

who is in the current DB plan. We consider the following scenario. All teachers in the DB

plan in 2002 have a cash balance W (or a fixed fraction thereof) based on the current rules

of the DB plan. Further accrual of pension wealth under the old plan is frozen. Going

forward the value in this account grows by the nominal interest rate (on the fund balance)

and further annual contributions from teachers and districts.

With this initial value in the DC plan, the teacher considers whether to retire or continue

to work as in the SW model: a teacher’s expected utility in period t is a function of expected

retirement in year m (with m = t, · · · , T .) In period t, the expected utility of retiring in

period m is the discounted sum of pre- and post retirement expected utility of (2).

For a teacher retiring at year m, the benefit Bs is set at B given in (5) with Wt replaced

by the real value Wm

(1+i)m−t . Note that the nominal account value in year m > t is the

value of accumulated contributions plus the compound return of the wealth in period t:

Wm = Wt(1 + r)m−t +
∑m

k=t+1 2cYk(1 + r)m−k.

Because the DC rules are simpler than the DB rules, we are able to formalize the marginal

condition for retirement under the DC rules and thereby gain some intuition about the

tradeoff between teaching and retirement. Suppose in the absence of unobserved preference

shifters the teacher with salary Yt and pension wealth Wt is indifferent between retiring in

year t+ 1 (with a constant real pension flow of B starting in year t+ 1) or t (with pension

flow B̃ starting in year t.) Then

(kt(1− c)Yt)
γ +

T∑
s=t+1

βs−tπ(s|t)Bγ = B̃γ +
T∑

s=t+1

βs−tπ(s|t)B̃γ, (6)
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where B = Wt(1+r)+2cYt

1+
∑T

s=t+1
π(s|t)( 1+i

1+r
)s−t

and B̃ = Wt∑T

s=t+1
π(s|t)( 1+i

1+r
)s−t

. Denote the constants b1 =∑T
s=t+1 π(s|t)( 1+i

1+r
)s−t, and b2 =

∑T
s=t β

s−tπ(s|t), then condition (6) can be written as

[b1kt(1− c)
Yt

Wt

]γ + b2(1 + r + 2c
Yt

Wt

)γ = (1 + b2)(
b1

1 + b1
)γ. (7)

(7) implies that for a given age, under the DC plan a teacher chooses to retire when the

ratio of salary to pension wealth is lower than a constant. The dynamics of the pension

wealth/salary ratio is given by Wt

Yt
= (1+ r)(Wt−1

Yt−1
)(Yt−1

Yt
)+2cYt−1

Yt
. The pension wealth/salary

ratio is increasing in the return to savings and increases over time as real salary growth slows

down at the later stage of a teacher’s career. At some point the ratio Wt

Yt
is large enough to

render the LHS lower than the RHS of (7).

Because the pension annuity B is increasing in initial pension wealth, the level at which

pension wealth is set in the year of initial conversion from DB to DC plans affects the

retirement decision. For teachers at or near the “peak value” of pension wealth, this can be a

very attractive option–the DC plan eliminates the penalty on working after reaching the peak

value under the current rules (i.e., the “pushing out” effect of the current rules). However,

the DC plan does not necessarily postpone retirement. For some teachers, it is optimal to

retire earlier under the DC than under the current rules. Whether this is the case depends

on the teacher’s age, experience, and the initial 2002 pension wealth lump sum payment. As

condition (7) shows, under the DC plan a teacher retires when the salary/pension wealth

ratio is below a threshold. The higher the initial pension wealth, the earlier the retirement

under the DC plan.

The contrast between retirement incentives under DC and DB plans can be illustrated

in the context of the option value model. Under a DB plan, because the pension accrual

can change sharply by age and experience, the expected gain from retirement at an optimal

retirement year m† over retirement in the current period gt(m†)
Kt(m†)

in (4) can vary greatly by
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the current age and experience. Under a DC plan, the wealth W accumulates smoothly over

time, and the timing of retirement only matters marginally. Hence gt(m†)
Kt(m†)

does not vary

sharply by a small change in age and experience. Given the same distribution in preference

shocks, the retirement probability and profile of retiring teachers are both more “smoothed

out” under a DC plan than under the DB plan.

Policy Simulations of Behavioral Effects

The teacher’s contribution rate c was 10.5% in 1990’s and has since increased to 14.5%.

We will experiment with different contribution rates in the simulations below. The inflation

rate is assumed to be i = 3%. Given the fiscal challenges with public sector pension plans,

we consider two policy-relevant funding scenarios. In a “full conversion” scenario, at the

time of conversion, the senior teachers in our sample (recall, aged 48-57) teachers get the

full actuarial value of their DB pension wealth. We also consider a “haircut” scenario in

which these senior teachers lose 10% of their DB pension wealth at the time of conversion.19

Such a policy may be necessitated financially and may be acceptable to senior teachers who

benefit from the DB to DC conversion.

We analyze four specific policies:

Policy A: the current DB rules;

Policy B: r = 6.5%, conversion to a DC plan with the full 2002 pension wealth and

contribution rate c = 14%;

Policy C: r = 4%, conversion to a DC plan with the full 2002 pension wealth and

contribution rate c = 10%;

Policy D: r = 4%, conversion to a DC plan with a 10% “haircut” in the 2002 pension

wealth and contribution rate c = 14%.

19This reduction in pension wealth may come about not because of a cut in the initial retirement annuity

(B), but rather a cut in future COLA adjustments. COLA adjustments are sometimes seen by courts as

having weaker legal protections than the initial annuity set by formula (1). See Munnell (2014).
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The estimate of real discount factor β = 0.965 in Table 3 implies an annual discount

rate of 3.5%. With the 3% inflation and the 6.5% nominal return, Policy B takes the same

nominal rate of return and contribution rate as the 2002 DB plan. So it is most relevant

for comparison with the DB plan. Our calculations show that the DC Policy B renders a

substantial welfare gain for the late career teachers over the DB Policy A, by eliminating

the penalty from working past the peak year of DB pension wealth. Hence the DC policy

gives the teacher the flexility regrading the retirement date and eliminates the “push out”

incentive. Her expected utility under the DC policy is higher than that under the DB policy,

and remains so even after a moderate haircut at the time of conversion from DB to DC

plans.

In examining the goodness of in-sample fit of the model in the previous section, we were

constrained to the six year window of our panel data. In simulating the effect of these

policies, there is no reason to restrict our time horizon so narrowly, thus we extend the

forecast horizon to 20 years, by which time nearly all of these teachers will have retired.

Figure 6 plots the predicted survival rate (the percentage of the 2002 teachers who remain

teaching) over the next 20 years under the alternative pension scenarios. Under all the DC

changes the teachers are more likely to continue teaching than under the current DB plan.

The model predicts that by the year 2020 about 6% the teachers in our 2002 sample would

still remain in teaching force, compared to 14% under the DC Policy B, and 18% under DC

Policies C and D. The 10% “haircut” in initial pension wealth makes teachers more likely

to continue teaching, as noted in the discussion above. Fixing the initial pension wealth

while raising the contribution rate from 10% to 14% initially increases the survival rate and

eventually decreases it; but these effects are quantitatively small.

Figure 7 plots the predicted experience and age distributions of retiring teachers over

the 20 year horizon. The left panel shows that the predicted retirement ages under various
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DC plans are much less concentrated than those under the current DB rules. Under the

DC plans the percentage of retiring teachers at younger ages is similar to the current DB

plan. However far more retiring teachers are over age 60 under the DC plans. The right

panel depicts a similar picture on the predicted experience of retiring teachers. Under the

DC rules the retirement experience is much more dispersed than under the current DB rules.

The predicted percentage of teachers retiring at low experience is similar under the DC or DB

rules. But under the DC rules, far fewer teachers would retire with 25-31 years of experience

than under the current DB plan.

The left panel of Figure 8 plots the joint distribution of retirement age and experience over

the 20-year horizon under the current DB rules and the right panel the joint distribution of

age-experience under the DC Policy D (with a 10% “haircut” in the 2002 pension wealth and

with contribution rate 14%.) Consistent with the plot of the marginal distributions of age

and experience, under the DB plan the joint age-experience distribution is more concentrated

than that under the DC rules. In particular, the joint distribution under the current DB

plan has a ridge that follows the “rule of 80” line. Along the ridge, the retirement age and

experience are negatively related. Under the DC plans, the retirement age and experience

are positively related: the teachers retiring at age 60 have more teaching experience than

those retiring at age 55.

IV. Conclusion

Policy discussions about teacher quality and teacher “shortages” often focus on recruit-

ment and retention of young teachers. However, attention has begun to focus on the incentive

effects of teacher retirement benefit systems, particularly given their rising costs and their

large unfunded liabilities. In this paper we estimate a structural model of retirement for

teachers and use it to estimate the effect of pension rules on the timing of retirement. The
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model fits the data very well, and nicely mimics the sharp spikes associated with certain age

and experience combinations. It also does a good job predicting the effect of enhancements

enacted during the 1990’s. We use the model to simulate the effect of enacting various types

of DC alternative plans. A DC (or cash balance) alternative plan would greatly ameliorate

the spikes and smooth out retirements.

As states consider reform of teacher pension plans, structural econometric models of

retirement behavior can be of great value in estimating the labor market and fiscal conse-

quences of plan changes. The virtue of the approach used in this paper is its simplicity.

Longitudinal data files on teachers containing age, experience and salary are routinely con-

structed by state education agencies and used by researchers studying teacher retention

and mobility. The rules of pension systems (and modifications thereof) are readily available.

Structural models like the one estimated in this paper can be used to explore revenue-neutral

and utility-enhancing plan designs. In the case of retrenchments, it can be used to assess the

consequences for school staffing and overall welfare effects. Behavioral econometric models

can also enhance the reliability of actuarial studies of the fiscal solvency of these plans – a

topic of interest in several large states.
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APPENDIX: MLE Estimation of the Option Value Model

The expected gain from retirement at year m over retirement in the current period is

Gt(m) = IEtVt(m)− IEtVt(t)

= IEt

m−1∑
s=t

βs−t(ksYs)
γ + IEt

T∑
s=m

βs−t(Bs)
γ − IEt

T∑
s=t

βs−t(Bs)
γ + IEt

m−1∑
s=t

βs−t(ws − ξs).

For a teacher alive in year t we denote the probability of survival to period s > t as π(s|t).

Now

Gt(m) =
m−1∑
s=t

π(s|t)βs−tIEt(ksYs)
γ +

T∑
s=m

π(s|t)βs−tIEt(Bs)
γ −

T∑
s=t

π(s|t)βs−tIEt(Bs)
γ

+
m−1∑
s=t

π(s|t)(βρ)s−t(wt − ξt).

The sum of the first three terms is a function of current salary and experience, and is

denoted by gt(m). The last term
∑m−1

s=t π(s|t)(βρ)s−t(wt− ξt) is unobservable and is denoted

Kt(m) =
∑m−1

s=t π(s|t)(βρ)s−t (which depends on unknown parameters) times an error term

νt = wt − ξt, which follows νt = ρνt−1 + ϵt where ϵt is assumed to be N(0, σ2). Let m†
t =

argmax gt(m)/Kt(m),, the probability that teacher retires in period t (Gt(m) ≤ 0 for all

m > t) is Prob( gt(m†)
Kt(m†)

≤ −νt).

The likelihood can be specified under the normality assumption on νt and given rules for

predicting future earnings. We assume salary is predictable under an estimated nonlinear (a

third order polynomial) function of experience.20 For estimation of the model, if a teacher

i ∈ {1, .., I} retires in period t, dit = 1, otherwise dit = 0. After retirement the teacher is

dropped out of the sample. For cross-section data with a teacher i observed only in period

20Missouri teachers, like nearly all public school teachers, are paid according to salary schedules that set

pay based on years of teaching experience and education credentials (frequently terminating in an MA).

Thus it is not unrealistic to treat teacher pay as a function of teaching experience, assuming all teachers

move from the BA column on the schedule over to the MA column with the passage of time. Because we

focus on late-career teachers, the degree-related salary adjustment is largely absent in the sample. The fairly

deterministic advancement over well-defined district salary schedules underlies the salary growth assumption

in the text.
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t, the likelihood is

L(γ, κ, κ1, β, σ, ρ | YYY,BBB,DDD) ∝
I∏

i=1

Φ(
gt(m

†
t)

Kt(m
†
t)
/σν)

dit(1− Φ(
gt(m

†
t)

Kt(m
†
t)
/σν))

1−dit ,

where Φ(.) is the cumulative density function of standard normal and σν is the standard

deviation of νt. For panel data the likelihood is made more complicated by the serial corre-

lation of νt. Suppose a teacher is observed for period t, t+1, .., t+n and she retired in t+n,

then the likelihood is the probability of the joint event π(
gt(m

†
t )

Kt(m
†
t )

> −νt, ..,
gt+n−1(m

†
t+n−1)

Kt+n−1(m
†
t+n−1)

>

−νt+n−1,
gt+n(m

†
t+n)

Kt+n(m
†
t+n)

< −νt+n). By the definition of conditional probability, one can view this

joint probability as products of a sequence of conditionals:

π(
gt(m

†
t)

Kt(m
†
t)

> −νt, ..,
gt+n−1(m

†
t+n−1)

Kt+n−1(m
†
t+n−1)

> −νt+n−1,
gt+n(m

†
t+n)

Kt+n(m
†
t+n)

< −νt+n)

= π[(
gt+n(m

†
t+n)

Kt+n(m
†
t+n)

< −νt+n) |
gt(m

†
t)

Kt(m
†
t)

> −νt, ..,
gt+n−1(m

†
t+n−1)

Kt+n−1(m
†
t+n−1)

> −νt+n−1]

×π[(
gt+n−1(m

†
t+n−1)

Kt+n−1(m
†
t+n−1)

> −νt+n−1) |
gt(m

†
t)

Kt(m
†
t)

> −νt, ..,
gt+n−2(m

†
t+n−2)

Kt+n−2(m
†
t+n−2)

> −νt+n−2]

· · ·

×π[(
gt+1(m

†
t+1)

Kt+1(m
†
t+1)

> −νt+1) |
gt(m

†
t)

Kt(m
†
t)

> −νt]

×π[
gt(m

†
t)

Kt(m
†
t)

> −νt].

Denote νννt,t+n = (νt, · · · , νt+n)
′.

The event (
gt(m

†
t )

Kt(m
†
t )

> −νt, ..,
gt+n−1(m

†
t+n−1)

Kt+n−1(m
†
t+n−1)

> −νt+n−1,
gt+n(m

†
t+n)

Kt+n(m
†
t+n)

< −νt+n) can be ex-

pressed as νννt,t+n ∈ a corresponding region At,t+n in space Rn. The marginal distribution of

νt ∼ N(0, σ2
ν) where σ2

ν = σ2

1−ρ2
. Given νt = ρνt−1 + ϵt, the covariance of νννt,t+n is given by

24



ΣΣΣ =
σ2

1− ρ2



1 ρ ρ2 ... ρn−1 ρn−1

ρ 1 ρ ... ρn−2 ρn−2

ρ2 ρ 1 ... ρn−3 ρn−3

.. .. .. .. ..

ρn−1 ρn−2 ... ... ρ 1


.

The log likelihood is

logL(γ, κ, κ1, β, σ, ρ | YYY,BBB,DDD) =
I∑

i=1

logπi(νννt,t+n ∈ Ai) =
I∑

i=1

log
∫
Ai

ϕ(νννt,t+n)dνννt,t+n, (8)

where for teacher i retiring in period t + n, νννt,t+n ∈ Ai if
gt(m

†
t )

Kt(m
†
t )

> −νt, ..,
gt+n−1(m

†
t+n−1)

Kt+n−1(m
†
t+n−1)

>

−νt+n−1,
gt+n(m

†
t+n)

Kt+n(m
†
t+n)

< −νt+n, and ϕ(.) denotes multivariate normal density distribution of

N(0,ΣΣΣ). An obstacle to evaluating the likelihood is the large computational time of n -

dimensional integration. Even for a moderate size n (say 5), deterministic methods for

numerical integration can be prohibitively costly. In this study, we solve the problem through

Monte Carlo simulation. The covariance matrix ΣΣΣ permits a Cholesky decomposition ΣΣΣ =

VVVVVV′ (VVV is lower triangular.)

The algorithm for computing
∫
Ai

ϕ(νννt,t+n)dνννt,t+n via frequency simulation is as follows:

(1) Draw eee{j} from N(0, IIIn+1) (j = 1, · · · , J) and let ννν
{j}
t,t+n = VVVeee{j}. (2) Use the frequency

1
J

∑J
j=1 I(ννν

{j}
t,t+n ∈ Ai) to approximate

∫
Ai

ϕ(νννt,t+n)dνννt,t+n. I(ννν
{j}
t,t+n ∈ Ai) = 1 if ννν

{j}
t,t+n ∈

Ai and I(ννν
{j}
t,t+n ∈ Ai) = 0 otherwise. This method yields accurate approximation of the

likelihood if the number of draws J is large enough. But for a sample of a large number of

teachers, the computational cost is high if we use a large number of draws for each teacher.

An alternative approach to the above Monte Carlo frequency simulation for comput-

ing likelihood is the Geweke–Hajivassiliou–Keane (GHK) simulator. For a longer data

panel the GHK simulator is more efficient than the MC approach for frequency of retire-
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ment. For the present problem, we obtain the MLE of the model parameters by using

the version of the GHK simulator proposed by Börsch-Supan and Hajivassiliou (1993).

The Cholesky decomposition of the covariance matrix ΣΣΣ, relates the conditions on the

n+1−dimensional vector of correlated errors νννt,t+n to a condition on n+1 iid standard normal

errors eee = (et, et+1, et+2, .., et+n)
′ ∼ N(0, IIIn+1). In the context of the present model, the GHK

algorithm express the probability of the joint event such as
gt(m

†
t )

Kt(m
†
t )
> −νt, ..,

gt+n−1(m
†
t+n−1)

Kt+n−1(m
†
t+n−1)

>

−νt+n−1,
gt+n(m

†
t+n)

Kt+n(m
†
t+n)

< −νt+n, associated with the correlated errors νννt,t+n, to a sequence of

conditional events associated with iid standard normal errors eee. In doing so, it transforms

the problem of simulating the probability of the joint event involving νννt,t+n to a problem

of sequentially simulating the probability of n + 1 events involving n + 1 independent ran-

dom variables et+i (for i = 0, 1, .., n.) In other words, the GHK algorithm transforms the

problem of numerically computing a n+1-dimensional integration to n+1 one-dimensional

integrations. The computational cost of n one-dimensional integrations is much less than

one n-dimensional integration, especially when n is relatively large. We experimented with

both MC simulation of frequency of joint distribution νννt,t+n and the GHK method. The two

methods yield very similar estimates but the GHK method takes about 4 hours to reach

convergence to the MLE on a 3.2 GHz PC for the data sample of all teachers, which is about

one-fifth of the computation time using the method of frequency simulation.

The MLE is obtained using an IMSL subroutine based on grid search, with upper- and

lower bounds on each parameter. For instance, the parameter σ is bounded in (1000, 10000).

A reasonably constrained search helps to reduce the computation time. Our experiments

show that varying the bounds on the parameters may give rise to different MLE estimates,

but does not materially affect the overall fit and predictions of the model.

The MLE estimates are used for the goodness of fit and policy simulations. For the in-

sample goodness of fit for all teachers aged 47-58 in 2002 (our baseline sample), we use the
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estimated parameters of the structural model and the information on these teachers in 2002

to generate the probability that each teacher took one of the following 7 actions: retired

in year 2003, retired in 2004, ..., retired in 2008, and remained in teaching workforce in

2008. The probabilities are obtained through Monte Carlo simulation. Specifically, for each

teacher in the 2002 sample, regardless of the actual retirement decision the teacher took,

we draw 6 serially correlated error terms ϵt (t = 2002, ..., 2007). If according to the SW

model, with the realized error terms of ϵ2002 and given the age, salary, and experience, the

teacher chooses to retire in 2002, then for that draw the teacher is recorded as retired in

2003. If the model predicts that teacher chooses not to retire in 2002, then we project the

2003 salary and add one year to the age and experience. If the model predicts retirement

given the ϵ2003 draw and the new state variables, then the teacher is recorded as retired in

2004. We repeat the process to 2007. If model predicts the teacher chooses not to retire up

to 2007, then the teacher is recorded as a non-retiree at the end of the sample. For each

teacher we replicate the above experiment a large number of times (100, 000, changing it to

1, 000, 000 produces the same results). The frequency of the simulated retirement decisions

give rise to the predicted probabilities. We aggregate the probabilities over the teachers

in the 2002 sample to obtain the aggregate predicted retirement. We present aggregated

predicted and actual retirement by age, experience, and age by experience. Comparisons of

the observed and predicted distributions of the retirees (at the year they decide to retire) and

non-retirees (in 2008) are used to gauge the fit of the model. The simulations under the DC

policies for the 2002 cohort are similar to the in-sample simulations except we use the DC

rules to simulate retirement decisions and extend the forecasting horizon to 20 years. The

out-of-sample forecasts of 1995-1999 are based on a similar procedure and with a forecasting

horizon of one year.

27



References

Asch, Beth, Steven J. Haider, and Julie Zissimopoulos. 2005. Financial Incentives and Retire-

ment: Evidence from Federal Civil Service Workers. Journal of Public Economics 89 no. 2-3:427-

440.

Berkovec, James and Stern, Steven. 1991. Job Exit Behavior of Older Men, Econometrica 59

no. 1:189-210.

Brown, Kristine. 2009. The Link Between Pensions and Retirement Timing: Lessons from

California Teachers. National Center on Performance Incentives. Vanderbilt University.
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Table 1: PSRS Pensions Rule Changes

Effective Year FAS COLA Retirement Age and Experience

1995 0.023 0.65 Age≥ 55 and Exp ≥ 25, or

FAS using average salary Age≥ 60 and Exp > 5, or EXP≥ 30,

of the highest 5 years

1996 0.023 0.65 Add ‘25 and out’ early retirement

district health insurance (with EXP≥25),

added to the FAS

1997 0.023 0.75 same

1998 0.025 0.75 ‘25 and out’ formula factors increased

1999 0.025 0.75 same

FAS using average salary

of the highest 3 years

2000 0.025 0.75 Add the ’rule of 80’ Age+ Exp ≥ 80

2001 0.025 0.80 same

2002 0.0255 if EXP≥ 31 0.80 same

Note: The table lists important changes in pension benefit rule of the state-wide educator

plan–the Public School Retirement System (PSRS) in Missouri from 1995 to 2002. The “25

and out” rule in 1996 permits retirement at a reduced benefit factor (replacement rate) R

in formula (1) if teachers have 25 or more years of experience, with the following benefit

factors: 2% for teachers with 25 years of experience, 2.05% for 26 years, 2.1% for 27 years,

2.15% for 28 years and 2.2% for teachers with 29 years of experience. The “25 and out”

rule in 1998 raises the benefit factors to 2.2% for 25 years, 2.25% for 26 years, 2.3% for 27

years, 2.35% for 28 years and 2.4% for teachers with 29 years of experience. The “rule of

80” permits regular retirement when age+experience ≥ 80.
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Table 2: Sample Averages by the Year of Retirement

Sample Number Age Experience Male

Year of teachers

Base year

All 2002 16792 51.62 19.79 0.20

Retirement year

2003 979 53.78 27.86 0.28

2004 1271 54.24 27.92 0.24

2005 1473 54.92 27.32 0.23

2006 1353 55.64 27.26 0.21

2007 1317 56.05 26.95 0.20

2008 1213 56.80 26.89 0.19

Not Retired by 2008

Not Retired 9186 55.73 20.66 0.17

Note: Missouri teachers aged 47-58 in 2002. “All 2002” is the total cohort of 16792

teachers in the base year; and age and experience are the averages in the base year. The

rows with retirement year labels 2003-2008 are contemporaneous averages for teachers who

retired in that year. The row for ‘Not retired’ are the contemporaneous averages for teachers

who remained employed at the end of the sample period. Male=1 for male teachers.
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Table 3: MLE Estimates of Structural Parameters

Pooled Sample Female Male

β 0.965 0.957 0.969
(0.026) (0.037) (0.069)

κ 0.640 0.671 0.674
(0.013) (0.028) ( 0.025)

κ1 0.976 1.109 1.513
(0.060) (0.036) (0.228)

γ 0.716 0.663 0.676
( 0.032) (0.019) ( 0.079)

σ 3660.166 2886.944 2603.229
(69.778) (109.127) (157.750)

ρ 0.643 0.520 0.629
(0.052) (0.033) ( 0.133 )

log-likelihood -21213.733 -16688.576 -4531.550

Number of teachers 16792 13482 3310

Note: The standard errors are in parentheses. Missouri PSRS teachers aged 47-58 in 2002.

The sample period is 2002-2008. The likelihood is evaluated using the “GHK” algorithm

described in the appendix.
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Table 4: Observed and Predicted Fraction of Retiring Teachers

sample number of teachers observed predicted

In Sample 2002-2008 16,792 0.453 0.450

Out of Sample 1995 9,584 0.078 0.096

Out of Sample 1996 10,125 0.098 0.126

Out of Sample 1997 11,219 0.085 0.123

Out of Sample 1998 12,127 0.090 0.131

Out of Sample 1999 13,059 0.092 0.131

Note: The first column reports the total number of teachers in the beginning of the

sample period. The second column of the table reports the percentage of the teachers in the

first column retired by the end of the sample period, the third column reports the average

of the simulated probability of these teachers’ retirement. The simulation is based on the

Monte Carlo study described in the last paragraph of the appendix. The out-of-sample

teachers are 50-62 years old in the beginning in each of sample year from 1995 to 1999.
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Figure 1: Observed and Predicted Age Distributions of Retired and Non-retired Teachers
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Note: The observed age pertains to all teachers at the year of retirement (for the left panel) or the non-

retired at the end of the sample period (for the right panel). The model prediction is the in-sample prediction

based on the estimates in first column of Table 3.

Figure 2: Observed and Predicted Experience Distributions of Retired and Non-retired

Teachers
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Note: The observed experience pertains to all teachers at the year of retirement (for the left panel) or the

non-retired at the end of the sample period (for the right panel). The model prediction is the in-sample

prediction based on the estimates in first column of Table 3.
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Figure 3: Observed and Predicted Joint Retirement Age-Experience Distribution for Teach-

ers at the Time of Retirement
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Note: The plot on the left is the observed age–experience distribution of all teachers the 2002 cohort at the

year of retirement. The plot on the right is the in-sample model prediction of the age–experience distribution

of all teachers the 2002 cohort at the year of retirement. The simulation on the right is based on the estimates

in the first column of Table 3.
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Figure 4: Observed and Predicted Distributions of Retiring Teachers in 1995
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(b) dist. of ret. teachers by experience 1995
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(c) prob. of retirement by age 1995
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Note: Figure 4a and 4b: the observed 1995 distribution and the out-of-sample predicted distribution of

retiring teachers by age and experience under the 1995 DB rules. Figures 4c and 4d plot the observed

and predicted retirement probabilities of teachers given the age or experience in 1995. The out-of-sample

simulation is based on the estimates in first column of Table 3.
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Figure 5: Observed and Predicted Distributions of Retiring Teachers 1996-1999
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Note: The observed 1996-1999 distribution and the out-of-sample predicted distribution of retiring teachers

by age (on the left) and experience (on the right) under the DB rules of the respective years. The out-of-

sample simulation is based on the estimates in first column of Table 3.
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Figure 6: Predicted Survival Rate Under Alternative Policies 2003-2022.
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Note: The simulated survival rates are based on the estimates in the first column of Table 3, under alternative

pension rules, 20 year prediction.

Policy A: the current DB plan;

Policy B: r = 6.5%, conversion to a DC plan with the full 2002 pension wealth and contribution rate c = 14%;

Policy C: r = 4%, conversion to a DC plan with the full 2002 pension wealth and contribution rate c = 10%;

Policy D: r = 4%, conversion to a DC plan with a 10% “haircut” in the 2002 pension wealth and contribution

rate c = 14%.
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Figure 7: Predicted Retirement Age and Experience Distributions Under Alternative Poli-

cies, 2003-2022.

50 55 60 65

0.00

0.02

0.04

0.06

0.08

0.10

0.12

age

0.00

0.02

0.04

0.06

0.08

0.10

0.12 DB Policy A
DC Policy B
DC Policy C
DC Policy D

10 15 20 25 30 35 40

0.00

0.02

0.04

0.06

0.08

0.10

experience

DB Policy A
DC Policy B
DC Policy C
DC Policy D

Note: The simulation is based on the estimates in the first column of Table 3, 20 year prediction. Current

DB rules assume a nominal return of 6.5%.

Policy A: the current DB rules;

Policy B: r = 6.5%, conversion to a DC plan with the full 2002 pension wealth and contribution rate c = 14%;

Policy C: r = 4%, conversion to a DC plan with the full 2002 pension wealth and contribution rate c = 10%;

Policy D: r = 4%, conversion to a DC plan with a 10% “haircut” in the 2002 pension wealth and contribution

rate c = 14%.
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Figure 8: Predicted Joint Distribution of Retirement Age-Experience Under Alternative

Policies 2003-2022.

Experience10 15 20 25 30 35 40
Age 50

55
60

65
70

0.000

0.005

0.010

0.015

current rules

Experience10 15 20 25 30 35 40
Age 50

55
60

65
70

0.000

0.005

0.010

0.015

DC with 10% haircut and 14% contribution

Note: The simulation is based on the estimates in the first column of Table 3, 20 year prediction. The left

plot is the joint age-experience distribution of retiring teachers under Policy A (the current DB rules.) The

right plot is the joint age-experience distribution of retiring teachers under Policy D (r = 4%, conversion to

a DC plan with a 10% “haircut” in the 2002 pension wealth and contribution rate c = 14%.)
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