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Approaches to standards, curriculum development, and pedagogy are remarkably diverse; 
however, recent years have seen a growing movement to base each of these on learning 
trajectories. In this paper, I discuss and compare the various terms and conceptions of this 
construct, present our definition, differentiate between our conception and that of others’, and 
briefly review some of our recent evidence in the area of early childhood mathematics paper. 

Throughout history, approaches to standards, curriculum development, and pedagogy have 
been remarkably diverse. Recent years, however, have seen a growing movement to base each of 
these on learning trajectories. Examples include the National Council of Teachers of 
Mathematics' Curriculum Focal Points (2006) to the National Research Council's report (2009), 
and most notably the Common Core State Standards (CCSSO/NGA, 2010, for which the 
"progressions" of a learning trajectory were developed first—the standards followed). Here I 
compare and contrast different notions of this important concept and summarize results of recent 
empirical work illustrating its potential. 

The term “curriculum” stems from the Latin word for racecourse, referring to the course of 
experiences through which children grow to become mature adults. Thus, the notion of a path, or 
trajectory, has always been central to curriculum development and study. In his seminal work, 
Simon stated that a “hypothetical learning trajectory” included “the learning goal, the learning 
activities, and the thinking and learning in which the students might engage” (1995, p. 133). 

Building on Simon’s definition, but emphasizing a cognitive science perspective and a base 
of empirical research, “we conceptualize learning trajectories as descriptions of children’s 
thinking and learning in a specific mathematical domain, and a related, conjectured route through 
a set of instructional tasks designed to engender those mental processes or actions hypothesized 
to move children through a developmental progression of levels of thinking, created with the 
intent of supporting children’s achievement of specific goals in that mathematical domain” 
(Clements & Sarama, 2004, p. 83). The term “learning trajectory” reflects its roots in Simon’s 
constructivist perspective (in emphasizing students’ learning).  However, although the name 
appears to focus on learning more than teaching, both Simon’s and our definitions clearly 
involve teaching and instructional tasks. Some interpretations and appropriations of the learning 
trajectory construct emphasize only the “developmental progressions” of learning (what Simon 
calls hypothetical learning processes) during the creation of a particular curricular or pedagogical 
context. That is, they only describe levels of thinking through which students develop, which we 
believe is but one part of the learning trajectory construct. Some terms, such as “learning 
progressions” are used ambiguously, sometimes indicating only developmental progressions, and 
at other times, also suggesting a sequence of instructional activities. Although studying either 
psychological developmental progressions or instructional sequences separately can be valid 
research goals, and studies of each can and should inform mathematics education, we believe the 
power and uniqueness of the learning trajectories construct stems from the inextricable 
interconnection between these two aspects. Both these aspects (developmental progressions of 
thinking and instructional sequences) serve the most important, but often least discussed, aspect 
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of learning trajectories—the goal. Our learning trajectories base goals on both the expertise of 
mathematicians and research on students’ thinking about and learning of mathematics (Clements, 
Sarama, & DiBiase, 2004; Fuson, 2004; Sarama & Clements, 2009a). This results in goals that 
are organized into the “big” or “focal” ideas of mathematics: overarching clusters and concepts 
and skills that are mathematically central and coherent, consistent with students’ (often intuitive) 
thinking, and generative of future learning (Clements, Sarama, et al., 2004). Once the 
mathematical goals are established, research is reviewed to determine if there is a natural 
developmental progression (at least for a given age range of students in a particular culture) that 
can be identified within theoretically- and empirically-grounded models of children’s thinking, 
learning, and development (Carpenter & Moser, 1984). That is, researchers build a cognitive 
model of students’ learning that is sufficiently explicit to describe the processes involved in 
students’ progressive construction of the mathematics described by the goal across several 
qualitatively distinct structural levels of increasing sophistication, complexity, abstraction, 
power, and generality. 

What, if Anything, is “New” in the Learning Trajectories Construct? 
When we discuss learning trajectories, some (commendably) skeptical colleagues ask what is 

really different. If curricula have always been “courses” or paths (and frequently “horse races” 
through them), and if psychological and educational theories always postulated series of goals, 
then is this not simply renaming old (and palpable) ideas? At certain simple levels, the answer is 
positive. Most of these notions describe or dictate a series of educational goals. All have some 
theoretical perspective on why one goal might follow another. 

In contrast, these theories often differ markedly on the details, and the learning trajectories 
construct as we define it builds upon theories and research of years past, as any theory should, 
but is distinct from previous formulations and constitutes a substantive contribution to theory, 
empirical research, and praxis. For example, early educational psychology considered 
educational series or sequences  on the accumulation of connections. "We now understand that 
learning is essentially the formation of connections or bonds between situations and responses, 
that the satisfyingness of the result is the chief force that forms them, and that habit rules in the 
realm of thought as truly and as fully as in the realm of action" (Thorndike, 1922, p. v). Thus, 
curricular sequences could be logically arranged to establish connections between simple 
situations (addends) and responses (sum) and then later connect these and other bonds to 
complete more difficult tasks (e.g., multidigit addition) and even to develop mathematical 
reasoning. However, conceptual, meaningful learning was not the focus, but rather simple paired 
or associated learning. Also, potential differences and nuances of learning in different subject 
matter domains were not considered.  

Bloom’s taxonomy of educational objectives and Robert Gagné’s “conditions of learning” 
and “principles of instructional design” (Gagné, 1965; Gagné & Briggs, 1979) postulated that 
Thorndike’s theory was too simple and that there were “types of learning” and that certain types, 
such as stimulus-response learning (e.g., Thorndike’s “bonds”) were prerequisite to other types 
(e.g., discrimination learning, concept learning, rule learning, and last, problem solving). For a 
specific topic, or a specific domain within a topic such as mathematics, these could be assembled 
in “learning hierarchies”—sequences of pairs consisting of a subordinate skill whose acquisition 
is hypothesized to facilitate the learning of a higher-level skill. These, then, specified a “learning 
route”—certainly one early form of a learning trajectory. Such routes would be determined by 
logical analysis (logically identifying what subordinate competence is required by a 
superordinate competence) and empirical task analysis (Gagné, 1965/1970).  
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In a similar manner, others continued to promote task analysis as a way to develop complex 
hierarchies of skills. Some researchers similarly based these hierarchies on logical and task 
analyses, but gave more weight to extant findings in educational—and especially 
psychological—research to perform “cognitive” or “rational” analyses—with follow-up 
empirical validation studies whenever possible (Resnick & Ford, 1981). Work from this 
perspective increasingly used the computer metaphor (i.e., information-processing theories), and 
often actual computer models, in their analyses (Hoz, 1979; Klahr & Wallace, 1976).  

These approaches determined hierarchies of educational goals and were the basis of many 
“scope and sequences” in the educational literature (see Baroody, Cibulskis, Lai, & Li, 2004, for 
an extended discussion and somewhat different perspective). The view of learning of the earlier 
approaches was generally that of knowledge acquisition, with the environment providing input 
that was “received”—that is, imitated and mentally recorded by the student.  

Other researchers attended more to students’ thinking and cognitive development. Some 
devised developmental learning theories in attempts to integrate structural views such as those of 
Piaget with views based on task analysis and information-processing models. Later theoretical 
efforts in cognitive science extended these efforts to focus on the importance of domain-specific 
learning and development (Davis, 1984; Karmiloff-Smith, 1992). 

In historical parallel, several theories, from Piagetian (Piaget & Szeminska, 1952) to field 
theories (Brownell, 1928; Brownell & Moser, 1949) and later developmental and cognitive 
science theories (Case & Okamoto, 1996) emphasized students as makers of meaning. Similarly, 
cognitively- and constructivist-oriented research programs explicated the concepts and skills 
children build as they move from one level to the next within a mathematical domain (Baroody, 
1987; Carpenter & Moser, 1984; Steffe & Cobb, 1988). Unfortunately, those applying these 
studies practically often oversimplified and misconstrued their results and implications, 
emphasizing laissez–fair or outdated “discovery” approaches (Clements, 1997). 

Learning trajectories as we have defined them (and our overaching theory of Hierarchic 
Interactionalism, see Clements & Sarama, 2007a; Sarama & Clements, 2009a) owe much to 
these previous efforts, which have progressed to increasingly sophisticated and complex views of 
cognition and learning. However, the earliest applications of cognitive theory to educational 
sequences tended to feature simple linear sequences based on accretion of numerous facts and 
skills. This was reflected in their hierarchies of educational goals and the resultant scope and 
sequences. Learning trajectories include such hierarchies, but are not as limited as these early 
constructs to sequences of skills or “logically” determined prerequisite pieces of knowledge. 
Learning trajectories are not lists of everything children need to learn, as are some scope and 
sequence documents; that is, they do not cover every single “fact” or skill. Most important, they 
describe children's levels of thinking, not just their ability to correctly respond to a mathematics 
question. They can not be summarized by stating the mathematical definition, concept, or rule 
(cf. Gagné, 1965/1970). So, for example, a single mathematical problem may be solved 
differently by students at different (separable) levels of thinking in a learning trajectory. Levels 
of thinking describe how students think about a topic and why—including the cognitive actions-
on-objects that constitute that thinking. 

Further, the ramifications for instruction from earlier theories were often based on 
transmission views, which hold that these facts and skills are presented and then passively 
absorbed. In comparison, learning trajectories have an interactionalist view of pedagogy. 

To further elaborate these differences, consider the three components of learning trajectories.  
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Goal 
The explication of the goal is important and distinguished from previous theories of learning 

that tended to either (a) apply the same theories and procedures to all domains, ignoring subject 
matter, or (b) accept the goal as arbitrary or “given” by existing standards or curriculum. In 
contrast, as stated, our learning trajectories base goals on both the expertise of mathematicians 
and research on students’ thinking about and learning of mathematics. Thus, in contrast to earlier 
approaches, both domain-specific expertise and research on students’ thinking and learning in 
that domain play a fundamental role in determining the mathematical goal—the first component 
of learning trajectories. 

Developmental Progression 
The developmental progressions of learning trajectories are much more than linear sequences 

based on accretion of numerous facts and skills. They are based on a progression of levels of 
thinking that (as does the goal) reflects the cognitive science view of knowledge as 
interconnected webs of concepts and skills. It is important to describe the nature of these levels 
and differentiate them from ‘stages’ (such as Piaget’s). 

A level is a period of time of qualitatively distinct cognition, as are stages; however, there are 
at least four important distinctions between levels and stages. First and most important, they do 
not apply across domains but only within a specific domain. Second, the period of time is 
generally far shorter, and can be months or days (especially given efficacious instruction), rather 
than a period of years for stages. 

Third, although—like Piaget— Hierarchic Interactionalism postulates that subsequent levels 
are built upon earlier levels, there are two important differences. (a) The order of magnitude of 
difference in durations indicates a distinctly different cognitive “distance” between successive 
states. Informally, the “jump” between contiguous levels is far smaller than the jump between 
Piagetian stages (admittedly, measuring such distances, for this distinction and related theoretical 
notions such as Vygotsky’s Zone of Proximal Development, remains an open problem). (b) The 
Hierarchic Interactionalism theory of levels makes no commitment (as does the Piagetian theory 
of stages) that the actions-on-objects of level n + 2 must be built from those of level n + 1. In 
Piagetian theory (Piaget & Szeminska, 1952), for example, stages are long periods of 
development characterized by cognition across a variety of domains qualitatively different from 
that of both the preceding and succeeding stages. Further, in Piagetian theory, stage n + 2 
necessitated passing through stage n + 1 because stage n + 1 constructed the elements from 
which stage n + 2 would be built.  

Levels in Hierarchic Interactionalism are not “stages.” Rather, in many cases the cognitive 
material may be present at level n, requiring only a greater degree of construction or 
generalization to construct the pattern of thinking and reasoning defining level n + 2. We return 
to this issue when we discuss students “skipping” a level or “jumping ahead.” 

Fourth, although levels of thinking can be theoretically viewed as nonrecurrent (Karmiloff-
Smith, 1984), students not only can, but frequently do, “return” to earlier levels of thinking in 
certain contexts. Therefore, Hierarchic Interactionalism postulates the construct of nongenetic 
levels (Clements, Battista, & Sarama, 2001), which has two special characteristics. (a) Progress 
through nongenetic levels is determined more by social influences, and specifically instruction, 
than by age-linked development. (At this point, this only implies that progression does not occur 
by necessity with time, but demands, in addition, instructional intervention, although certain 
levels may develop under maturational constraints.) (b) Although each higher nongenetic level 
builds on the knowledge that constitutes lower levels, its nongenetic nature does not preclude the 
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instantiation and application of earlier levels in certain contexts (often, but not necessarily 
limited to, especially demanding or stressful contexts or tasks). There exists a probability of 
evoking each level depending on circumstances. Again, Figure 1 illustrates that earlier levels do 
not “disappear”; people do not “jump” from one type of thinking to a separate type, but rather 
build new ways of thinking upon the previous patterns of thinking. This process is codetermined 
by the probabilities of instantiation and conscious metacognitive control, which increases as one 
moves up through the levels, allowing more intentional application of various cognitive 
strategies. Therefore, students have increasing choice to override the default probabilities. The 
use of different levels is environmentally adaptive; thus, the adjective “higher” should be 
understood as a higher level of abstraction and generality, without the implication of either 
inherent superiority or the abandonment of lower levels as a consequence of the development of 
higher levels of thinking. Nevertheless, the levels would constitute veridical qualitative changes 
in thinking and behavior. 

Each level in Hierarchic Interactionalism’s developmental progressions is characterized by 
specific mental objects (e.g., concepts) and actions (processes) (e.g., Clements, Wilson, & 
Sarama, 2004; Steffe & Cobb, 1988). Specification of these actions-on-objects allows a degree of 
precision not achieved by previous theoretical and empirical works. Further, the research 
methods that generate and test these mental models are distinct from methods used in earlier 
research. Strategies such as clinical interviews are used to examine students' knowledge of the 
content domain, including conceptions, strategies, intuitive ideas, and informal strategies used to 
solve problems. The researchers set up a situation or task to elicit pertinent concepts and 
processes. Once an initial model has been developed, it is tested and extended with teaching 
experiments, which present limited tasks and adult interaction to individual children with the 
goal of building models of children’s thinking and learning—that is, transitions between levels 
are the crux of these studies—which is another way learning trajectories differ from many earlier 
research programs. Once several iterations of such work indicate substantive stability, it is 
accepted as a working model. Thus, the developmental progressions’ levels of thinking and 
explication of transitions between levels describe in detail the following: (a) what students are 
able to do, (b) what they are not yet able to do but should be able to learn, and (c) why—that is, 
how they think at each level and how they learned these levels of thinking. This distinguishes 
learning trajectories’ developmental progressions from earlier efforts to develop educational 
sequences that, for example, often used reductionist techniques to decompose a targeted 
competence level only into subskills, based on an adult’s perspective. 

Instructional Tasks 
The instructional tasks of learning trajectories are much more than didactic presentations or 

external “models” of the mathematics to be learned. They often include these elements, but they 
are fine-tuned to develop the level of thinking that a particular student needs. Learning 
trajectories differ from instructional designs based on task (or “rational”) analysis because they 
are not a reduction of the skills of experts but are models of students’ learning that include the 
unique constructions of students and require continuous, detailed, and simultaneous analyses of 
goals, pedagogical tasks, teaching, and children’s thinking and learning. Such explication allows 
the researcher to test the theory by testing the curriculum (Clements & Battista, 2000).  

This early interpretive work evaluates components using a mix of model (or hypothesis) 
testing and model generation strategies, including design experiments, as well as grounded 
theory, microgenetic, microethnographic, and phenomenological approaches. The goal is to 
understand the meaning that students give to the instructional objects and tasks. The focus is on 
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the consonance between the actions of the students and the learning trajectory; that is, does the 
instruction task engender, in a student at level n, the cognitive actions-on-objects that are 
described as accounting for the type of thinking and problem-solving at level n + 1. If not, other 
tasks can be tried, based on a detailed account of the students’ responses. (Discrepancies may 
also reveal a need to alter the developmental progression.) Questions such as the following direct 
the inquiry. Do students use the tools provided (e.g., manipulatives, tables or graphs, software 
tools or features) to perform the actions, either spontaneously or only with prompting? If 
prompting is necessary, which type is successful, and does this differ for different students? Are 
students’ observable actions-on-objects enactments of the desired cognitive operations in the 
way the model posits, or merely trial-and-error manipulation?  Are there indications of an 
internalization of these; that is, indications that students are building mental actions-on-objects 
and thus developing n + 1 level of thinking? In this way, the developer/researcher creates more 
refined models of the thinking of particular groups of students (the developmental progression) 
and describes what elements of the instructional tasks, including specific scaffolding strategies, 
are observed as having contributed to student learning. The objective is to connect the 
developmental progression with the instructional tasks. 

The tightly interwoven and interacting connections among the three components of a 
learning trajectory—goal, developmental progression, and instructional tasks—encompassing 
levels from the microscopic and individual student’s cognition to the cultural surround, are a 
major distinguishing features of the learning trajectory construct. There are not two different 
paths (see footnote 1)—a learning path and a teaching path—but one learning trajectory with 
three components borne of the same theoretical and empirical parents. 

Scientific experiments that examine, evaluate, and extend these connections and components 
include conceptual analyses and theories. They are tested and iteratively revised in progressively 
expanding social situations, which results in greater contributions to both educational theory and 
practice (Clements, 2007). 

Empirical Support 
We initially reviewed research in early mathematics because we believed that learning 

trajectories should be the backbone of our Building Blocks research-and-development curriculum 
project (Clements & Sarama, 1998), which was developed based on a Curriculum Research 
Framework (Clements, 2007) that itself puts learning trajectories at the core. Our work in that 
and several subsequent projects convinced us of the usefulness of the construct, with effect sizes 
from .72 to 2.12 (Clements & Sarama, 2007b; Sarama & Clements, 2009b; Sarama, Clements, 
Starkey, Klein, & Wakeley, 2008). The effect size of the Building Blocks Pre-K curriculum was 
.72. Longitudinal analyses with follow-up interventions focused only on learning trajectories 
(i.e., the teachers in kindergarten and first grade used their regular curriculum, but studied the 
research-based learning trajectories) continues these gains (Sarama, Clements, Wolfe, & Spitler, 
2011). We believe these results indicate that the use of learning trajectories in curriculum 
development and professional develop have consistent, substantial, benefits. 
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