
 

AN ANALYTIC FRAMEWORK FOR REPRESENTATIONAL FLUENCY: ALGEBRA 
STUDENTS’ CONNECTIONS BETWEEN MULTIPLE REPRESENTATIONS 

USING CAS 

Nicole L. Fonger 
Western Michigan University 
nicole.m.lanie@wmich.edu 

To better support students’ conceptual understanding of algebra in the information age, we need 
an improved understanding of how students interpret connections between multiple 
representations using CAS as a representational toolkit. This research centers on the 
development of an analytic framework for categorizing students’ connections between multiple 
representations, an indicator of students’ representational fluency. Videotaped task-based 
interviews with high school algebra students solving equations using CAS were analyzed to 
generate the proposed analytic framework, which has a hierarchical structure based on the 
direction and purpose of students’ translations between representations. 

Purpose of the Study 
Each mathematical representation is a glimpse into a version or phase of a particular 

mathematical object, and when taken together, multiple representations offer complementary 
perspectives of a mathematical object, which can help to reveal its structure. Flexibility in 
multiple representational approaches is an indicator of more sophisticated mathematical 
competencies (Brenner et al., 1999). Despite an emphasis on multiple representations in 
standards and curricula, school algebra students’ difficulties with translating between multiple 
representations have been well documented (e.g., Dreyfus & Eisenburg, 1996). In technology-
intensive approaches, some researchers have found that school algebra students can use multiple 
representations in solving tasks and are successful in translating between multiple 
representations (Ruthven, 1990) while others attest to the persistent difficulties students face in 
using multi-representational approaches with flexibility (Huntley & Davis, 2008). 

CAS-intensive trends in school mathematics, and algebra in particular, that were pioneered in 
the late 1980s and 1990s have finally infiltrated contemporary curricula and classrooms (e.g., 
Davis & Fonger, 2010). Congruous with the perspective that the coordination of multiple 
representations is an indicator of conceptual understanding, issues of linking or connecting 
mathematical representations are significant concerns. Indeed, although CAS environments can 
act as representational toolkits, Heid and Blume (2008) report that, “students do not necessarily 
connect representations when operating in a multiple representation environment” (p. 98). 
Indeed, Heid and Blume (2008) articulate a “need to better understand how students move 
between, connect, and reason from multiple representations” (p. 98). 

With the integration of CAS in school algebra, researchers and practitioners alike need to 
know how high school students link multiple representations while using CAS technology 
(Arbaugh, et al., 2010). In addressing this gap, the purpose of this study is to gain insight into the 
ways in which students connect multiple representations during task-based partner interviews 
using TI-Nspire CAS. Specifically, this study seeks to answer the following research question: 
When solving equations using CAS as a representational toolkit, how can students’ connections 
between multiple representations be characterized? 
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Theoretical Framework 
Janvier (1987) defines the psychological conversion made from one type of representation to 

another as a translation process. In other words, the meaning of a source representation is 
interpreted in reference to a target representation perspective. Adapted from Huntley, Marcus, 
Kahan, and Miller (2007), a useful framework for investigating multiple representations is the 
“Rule of Four” model, which involves symbolic, verbal, graphic, and numeric representation 
systems, with arrows indicating translations between them. Morgan, Mariotti, and Maffei (2009) 
posit, “converting between different systems of representation is a critical cognitive activity for 
developing understanding of a mathematical object” (p. 247). 

 
Figure 1: Rule of Four illustrating translations between representations. 

The design of the TI-Nspire CAS Touchpad (OS v2.0) houses representations on separate 
types of "Pages" with a pre-determined structure and main representation for each (including 
Calculator, Notes, Graphs, Table). For clarity in determining students’ use of representations, the 
Page type and corresponding prominent representation are integrated: symbolic-calculator (S), 
verbal-notes (V), graphical-graphs (G), and numeric-table (N). 

In this context, the construct of representational fluency serves as a tool to characterize 
students’ multi-representational activity. Inspired by Sandoval and colleagues (2000), 
representational fluency (RF) is the ability to construct, interpret, translate between, and link 
multiple representations. It is implicit in this definition that both the construction of 
representations on CAS (inscriptions) and discourse about these representations (e.g., 
interpretations) are of importance for accessing students’ RF. Specifically, I focus on the 
connections (links) students make between representations to be an indicator of students’ RF. 

For purposes of this study, a student(s) is said to make a connection between multiple 
representations using CAS as a representational toolkit if they give a correct interpretation of 
multiple, mathematically equivalent, representations that are evident in their CAS activity or 
reflection on CAS activity or inscription(s). In other words, for a student to make a connection 
they must verbalize that they are coordinating information (i.e., invariant features of the object in 
question as evident in mathematically equivalent representations) in their interpretation of one 
representation in terms of another, or a pair of representations. 

Methodology 

Participants and Context 
The study was conducted at a Midwest high school that drew accelerated students from 

several area high schools for mathematics and science coursework only. The school and 
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classroom context was chosen based on the requirement that students have access to TI-Nspire 
CAS technology, and use this technology regularly in their second year algebra classroom. Of 
the 25 students in the targeted class, four volunteered to participate in the study and were 
interviewed. These ninth grade students had taken algebra in middle school and would take 
geometry after passing their current algebra class. By the beginning of the data collection for this 
study, students had been using CAS as a regular part of their mathematics instruction for seven 
weeks. 

On three separate occasions prior to interviews with students, the researcher observed the 
enacted curriculum of students’ classroom and took field notes on students’ and teachers’ use of 
CAS with regards to multiple representations and use of the adopted textbook, the third edition 
of the University of Chicago School Mathematics Project Advanced Algebra (Flanders et al., 
2010). The main purpose of these site visits was to inform the design of instrumentation for the 
CAS-based task structured interviews; it was necessary to understand the enacted and written 
curriculum in this classroom to design tasks that involved accessible yet non-routine 
mathematics and familiar CAS functionality. The classroom observations, reviews of the written 
curriculum, and conversations with the teacher verified that all student participants had 
opportunities to learn mathematics through a variety of representations. Moreover, through the 
use of hypothetical or imperative language, the teacher and textbook often recommended or 
expected that students use CAS to create representations. 

Data Sources and Instrumentation 
The main data sources were digital video recordings of task-based interviews conducted with 

two pairs of students. The teacher determined pairs of students based on students’ ability to work 
well together while engaged in mathematics tasks. Coincidentally, same sex pairs were formed 
(one male, one female), and the teacher reported that despite the high-ability of all students at 
this school, there was some variability in these four students’ mathematical abilities. On two 
separate occasions during Fall 2010, each pair was interviewed for 50-minutes during class time. 
Partner interviews were conducted based on the rationale that richer data would be generated 
than what might transpire in interviews with individuals. In partner situations, students’ 
interactions with each other and their CAS were perceived to be more authentic to their 
classroom experiences in which tablemates were observed to regularly communicate about 
mathematics and CAS technology. 

During the interviews, students were prompted to solve two equations, Task R and L (see 
Figure 2). Both tasks were presented in an initial verbal representation, while Task L also 
included a graphic representation. These tasks were designed so that various constraints and 
affordances of the initial representation(s), the context, the mathematics, and/or the technology, 
might prompt students to construct and/or translate between representations. 

     
Figure 2. Tasks presented to pairs of students on CAS and in paper form. 
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Each task was stored and saved as a TI-Nspire document that each student accessed 
electronically on a handheld CAS. Participants were encouraged to use CAS for the entire 
interview, but they were also provided pencils and paper copies of screen shots of the tasks (as 
shown in Figure 2). Data from saved electronic documents of completed tasks and paper and 
pencil work (if any) were collected at the close of each interview. 

During the task-based interviews, participants were encouraged to follow a “think aloud” 
protocol, openly conversing with one another throughout the interview, providing verbal 
explanations to accompany their CAS activity as they completed each task. To guard against the 
researcher changing the cognitive demand of the tasks, a collection of interview prompts was 
prepared to provide parameters for the interactions between the researcher and participants. The 
overall intent of these prompts was to elicit further explanations from the students regarding the 
meaning of their solution approaches with respect to multiple representations. 

For instance, “Linking Probes” were given after students had considered the solution and/or 
solution process from multiple representations (e.g., “How is what you see/did here the same or 
different from what you see/did here?”). In some cases, students considered multiple 
representations on their own; in other cases, the researcher encouraged the use of multiple 
representations through probes (e.g., “Could you solve this in another way?”). In other words, if 
the students did not self-prompt the use of multiple representations or got stuck in an approach 
for several minutes, the researcher suggested students consider an alternative approach. Although 
it is possible that these prompts encouraged students to elicit connections between multiple 
representations that would not have otherwise been verbalized, this was deemed appropriate 
because the focus of the study was on the connections students were able to make, rather than on 
those they chose to verbalize. 

Data Analysis 
Two video files per interview—one per student in a pair that captured each student’s CAS 

screen—were synchronized into one timeline for video analysis using Studiocode (SportsTec, 
1997-2010). The merging of video files allowed for a data analysis method that accounted for 
both individual and taken-as-shared understandings (cf. Cobb & Yackel, 1996) of the pair of 
students while they solved equations using CAS. Seed ideas for an analytic framework for 
linking multiple representations were developed a priori to data analysis, yet the cyclical process 
of coding, developing, and refining an analytic framework occurred in several stages. 

Initial rounds of analysis involved coding and memoing using a grounded-theory inspired 
approach in which the code categories and descriptions were developed in response to student 
data. Instead of inventing new terminology in all cases, a conflation of existing terminology was 
determined to be more beneficial. Specifically, the analytic framework was shaped by the 
analysis of data and was also purposefully crafted as an amalgamation of existing categorizations 
and descriptions of students’ connections from the literature. A mathematics educator who was 
familiar with the study and related literature critiqued a refined version of the analytic 
framework. The entire data set was then reexamined and all instances of connections were coded, 
memoed, and transcribed, allowing segments of data to be revisited as the analytic framework 
was being developed. With all connections instances coded, emerging categories, sub-categories, 
and definitions for the framework were further refined into a hierarchical structure. 

Results 
The proposed framework for representational fluency is hierarchical in terms of the direction 

and number of students’ translations between representations and the nature of their connections 
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with respect to the perceived goals of students’ problem solving activity. Specifically, 
connections are categorized to be uni-directional, bi-directional, multi-directional, or abstract. 
Both bi-directional and multi-directional connections necessarily involve uni-directional 
connections. The difference between bi-directional and multi-representational connections is that 
the former involve a pair of representations (to and from two distinct representations), and the 
latter involve more than two different representations (and may include a bi-directional pair). 
Abstract connections go beyond specific reference to types of representation to generalizing the 
underlying mathematical objects/principles (e.g., equations/equality). Table 1 outlines the 
framework levels with brief descriptions; connections can be categorized as one of: I, IA, IB, II, 
IIA, IIB, IIC, III, or IV. Transcript excerpts are discussed next to exemplify select levels and 
sub-levels including: uni-directional justification, bi-directional reconciling, multi-directional 
connection, and abstract connection. The examples were chosen to distinguish between 
justification and reconciling codes, and also to give more detail on each of the four directional 
categories, highlighting the hierarchical nature of the framework. 
Level of Connection Brief Description 
I. Uni-directional 
Connection 

Translation; interprets meaning of a given source representation in 
reference to a target representation (Janvier, 1987). 

IA. Representational 
Resourcefulness 

Uses a representation to overcome a barrier (Jon Davis, personal 
communication, 11/18/2010). 

IB. Uni-directional 
Justification 

“Use representations as justifications for other claims” (Sandoval 
et al., 2000, p. 6). 

II. Bi-directional 
Connection 

Translation and complementary translation (Janvier, 1987). 

IIA. Bi-directional 
Justification 

Pair of representations are used to (dis)confirm an approach 
(Sandoval et al., 2000). 

IIB. Bi-directional 
Reconciling 

Coordinated activity; checking the solution between two 
representations (Kieran & Saldanha, 2008). 

IIC. Reflection on 
Reconciled Objects  

Reflection on the compatibility of a result between a pair of 
representations (Kieran & Saldanha, 2008). 

III. Multi-directional 
Connection 

More than two representations are related by translation processes. 

IV. Abstract Connection A generalization is made across different representations. 

Table 1. An analytic framework for representational fluency based on sophistication of 
connections between multiple representations. 

In a uni-directional justification connection type, students “use representations as 
justifications for other claims” (Sandoval et al., 2000, p. 6). In other words, a representation is 
used to confirm or disconfirm a conjecture or solution approach in another representation. This 
code is not the same as checking the end result or product of a solution approach against another 
(i.e., reconciling), instead, the emphasis is that some information from a source representation is 
used to inform the solution approach in a target representation before the solution is obtained. 
For example, students from the first interview, attempted to solve Task R using the graph and 
relate the points where the graph crosses the x-axis to the verbal problem situation in which it 
only makes sense to have a positive value for time. 

Researcher: So how can you use this graph to solve?  
Student A: …There are there's two points where it crosses the x-axis [taps finger on desk 
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twice]. 
Student B: Right. 
Student A: So it'd have to be the positive number and not the negative number because you 
can't have a negative time. 
Student B: True. 

In the exchange above, a contextually-based verbal representation is used to justify what is 
reasonable for a solution on the graph. This is not considered representational resourcefulness 
because the students were not stuck in using the graph, thus the reference to the verbal 
representation was to inform their graphic solution. 

At the second level of the framework, instances of bi-directional reconciling are specific 
events of coordinated activity in which the student(s) is moving back and forth between two 
representations. For example, the results of equation solving processes are reconciled between a 
pair of representations in the second interview while students completed Task L. 

(1) Student C: Oh, wow, there's more to the equation. [re-executes solve command on 
calculator page: solve(1/(x+2)=3*(x-1)^2+0.3,x), ENTER, yields x=-1.96245 or x=0.873499 
or x=1.08895]  
(2) Student C: … [traces x=1.09 on graph] Yeah look at that, it works now. I got, I got them 
to equal at 1.09 just like it does in the equation [looks at calculator page, mistakenly points to 
x=-1.96245]. 
(3) Student D: At x=1.09? [traces on graph] 
(4) Student C: Oh wait. It's very close to 1.09, it just rounds up [comparing approximated 
values on calculator screen, x=1.08895 and rounded values on graph; continues to compare 
other values] 
(5) Student D: [traces near x=1.11…x=1.08 on graph] So they're basically the same. 

In the above excerpt, both students reconciled the results between the symbolic and graphic 
representations. Student C reconciled the solution from symbolic to graphic (lines 1-2), back to 
symbolic (line 4), a complementary translation. The utterance from Student D in line 5 is 
interpreted to mean that the solution of 1.09 was reconciled to be the same in both the graphic 
and the symbolic representations, taken as evidence of a bi-directional connection in which the 
solution is checked between two representations. 

A student(s) is said to make a multi-directional connection when more than two different 
representations are related by translation processes. The example below from the first interview 
is a taken-as-shared multi-directional connection between graphic, verbal, and symbolic 
representations. 

(1) Student B: It's [the graph] actually telling you it would hit the ground at 3 seconds, where 
as with the calculator you can make so many mistakes when figuring out the problem … 
(2) Student A: I'm going back and I'm putting three in for the answer and I'm seeing if it 
comes out zero [typing 0=-16(3)^2+46(3)+6 then ENTER in the calculator page yields 
“true”]. Which it says it's true, so— 
(3) Student B: [types h(3), ENTER, yields 0] Yep. 
(4) Researcher: So what does that help you to understand about the problem? 
(5) Student A: That the point that we got is the time it took for it to hit the ground. 
(6) Student A: And then when we plugged it back into the calculator it told us that the 
equation is equal to zero and that's what we were looking for. 
(7) Student B: Yup, and it basically reassured the fact that the graph, that that point was right. 

Consistent with the definition, lower levels in the framework are evident within the dialogue of 
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the above example. Student A interprets the graphical solution in terms of the verbal 
representation, a translation (line 1). Both students reconcile the solution obtained from the 
graphic representation with a symbolic representation (lines 2-3, 7). Third, the students reflect on 
the results that had been reconciled between the graphs and calculator pages and relate this to the 
verbal representation (lines 4-6). In sum, the students have related more than one pair of 
representations by a translation process. The fact that uni-directional and bi-directional 
connections are identified within the multi-directional connection is also evidence of the 
hierarchical nature of the framework, yet instances were not double-coded. 

A student(s) is said to make an abstract connection when they make a generalization across 
different representations. In particular, a student demonstrates flexibility in solving equations 
from multiple representations and is able to generalize the process of solving equations from a 
functions-based perspective in which an equation is viewed as two expressions, interpreted as 
functions, which can be viewed from symbolic, graphical, and/or numeric representations. At 
this level of a connection, the notion of equality is understood from multiple representations. For 
example, the students in the first interview were asked to reflect on the fact that they had 
obtained a solution using the graphs page, but hadn’t obtained a solution using the calculator 
page for Task R. This led Student B to generalize that “Because the graph is just a symbol of the 
equation [switches from Graphs page to Calculator page] or like the diagram of the equation so 
you should have been able to get the same thing.” Moreover, when solving a given equation, 
Student B articulated that, “If you did it correctly you should have gotten the same answer.” So 
at this point in the interview, even though the students had only successfully solved the task 
using the graphic representation, Student B was able to articulate that the same solution should 
be obtainable using a symbolic representation. This is evidence of a generalization across 
different representations. 

Discussion 
Students’ difficulties in connecting representations of algebraic objects have been well 

documented. The definition of a connection and the analytic framework for representational 
fluency proposed here are the building blocks for future research aimed at understanding 
students’ strengths in connecting representations and for instruction designed to foster richer 
connections among multiple representations using CAS. Using connections between multiple 
representations as an indicator, students’ representational fluency can be categorized in a 
hierarchical manner per the direction and purpose of students’ translations between 
representations. The results and examples discussed above can be illustrated using the Rule of 
Four framework, showcasing the four distinct levels in the proposed analytic framework (see 
Table 2). By teaching topics in algebra using pairs and sets of representations, and emphasizing 
bi-directional and multi-directional connections through the use and reflection on CAS 
inscriptions, students may develop representational fluency and in turn come to a more robust 
conceptual understanding of the mathematical object(s) in question. 

Uni-directional Bi-directional Multi-directional Abstract 

 
 

  
Table 2. Illustrations depicting levels of connections using Rule of Four framework. 
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The proposed framework and schematic representations mask some of the intricacies of the 
nature of students’ connections as others have studied them. It would serve well to use the 
framework for analyzing data from a larger sample size. Specifically, the multi-directional 
connection category might be expanded to account for students’ problem solving goals, 
analogous to the subcategories for the bi-directional level. Additionally, future research might 
employ the use of the analytic framework to elucidate types of opportunities afforded by written 
curricula to make connections between multiple representations with CAS. This framework 
would also be useful in the design of instructional intervention or tasks aimed to foster 
sophisticated connections between representations through the use of directionally linked 
dynamic technology environments. 
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