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The goal of the present study was to report an instrument designed to determine students’ 
mathematical performances and preference for visual or analytic thinking for the calculus 
derivative and antiderivative tasks as well as examine the relationships among students’ 
cognitive style, cognitive ability, and mathematical performance in calculus. Data were collected 
from 150 Advanced Placement calculus students. The results suggest that the instrument is 
measuring an important component of cognition and has the potential to be a measure of 
performance and preference for visual thinking in calculus. 

Introduction 
Researchers have been interested in identifying the preference and ability components of 

cognitive style for several decades (e.g., Clements, 1979; Bishop, 1980, 1989; Hegarty & Waller, 
2005). The visualizer-verbalizer distinction in particular has been an area of interest for 
researchers in various disciplines (e.g., Hadamard, 1945, Kozhevnikov, Hegarty, & Mayer, 2002; 
Paivio, 1971; Richardson, 1969, 1977). The goal of the present study was to report an instrument 
designed to determine students’ mathematical performances and their preferred mode of thinking 
for the calculus derivative and antiderivative tasks as well as examine the relationships among 
students’ cognitive style, cognitive ability, and mathematical performance in calculus. 

Background 
Krutetskii (1976) identified types of mathematical giftedness based on students’ preferences 

for two cognitive processes: verbal-logical or visual-pictorial. Following the work of Krutetskii 
(1976), Moses (1977), Lean and Clements (1981), Suwarsono (1982), and Presmeg (1985) have 
recognized that individuals could be placed on a continuum (i.e., degree of visuality) according 
to their preference for visual processing. In designing instruments —Problem Solving Inventory 
(PSI) and Mathematical Processing Instrument (MPI)—consisting of algebra word problems to 
determine students’ preferences, and in their work, Moses and Suwarsono defined visuality as 
the extent to which a learner prefers to use visual processes to solve mathematics problems. That 
is, visualizers are considered as learners who prefer to think with images and visual strategies, 
and analyzers (or verbalizers) as learners who prefer not to think with images and visual 
strategies when there is a choice on a specific task. In this study, we used the visualizer-
verbalizer distinction as a lens to determine students’ preferred mode of thinking. However, in 
the remainder of this paper, we have used the terms “analytic” and “analyzer” interchangeably to 
describe verbal-logical processing or verbalizers.  

There have been studies of cognitive abilities and styles in mathematical performance in 
different content areas. Battista (1990) with high school students found that spatial visualization 
and logical reasoning were significant factors of geometry achievement and geometric problem 
solving, and that spatial visualization was related to the use of visual and analytic problem 
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solving strategies (i.e., analytic, visual without drawing, and visual with drawing). A similar 
finding was reported by Ferrini-Mundy (1987), who found a correlation between spatial ability 
and certain aspects of calculus. However, other research has shown divergent perspectives. 
Studies including MPI, developed by Suwarsono (1982) and later modified by Presmeg (1985) as 
a measure of visualizer-analyzer cognitive style have found either a weak relationship or no 
relationship between either mathematical performance or cognitive abilities and mathematical 
visuality. For instance, Galindo-Morales (1994) compared mathematical visuality indicated by 
MPI and performance of students enrolled in three calculus courses using different instructional 
approaches (i.e., graphing calculator, Mathematica, and no technology) and concluded that there 
was no significant relationship between the degree of visuality and calculus performance in any 
of the three groups. Hegarty and Kozhenikov (1999) administered the MPI to measure sixth 
grade students’ problem solving performance and preference for visual thinking. Their results 
revealed that mathematical visuality did not correlate with problem solving performance and was 
negatively associated with the cognitive abilities—verbal ability, nonverbal reasoning, and 
spatial ability.  

Our contention is that calculus requires visual thinking and adequate understanding of visual 
representations, and that aspects of visuality (or visual imagery) that play an important role in 
calculus performance may not be measured accurately by existing questionnaires consisting of 
tasks that do not involve calculus. Moreover, research has shown that the nature, complexity, or 
novelty of a task influences the degree of visuality (or visual imagery) a student uses when 
solving the task (e.g., Dean & Morris, 2003; Lowrie & Kay, 2001; Massa & Mayer, 2006; 
Paivio, 1971; Richardson, 1977). Although various tasks and questionnaires have been designed 
to measure cognitive styles and learning preferences related to the verbalizer-visualizer 
distinction (e.g., Mayer & Massa, 2003; McAvinue & Robertson, 2006-2007; Riding, 2001), no 
adequate instrument for Calculus is available. Thus, there is a need for a calculus instrument 
designed to determine students’ mathematical visuality. We believe this demands research 
examining the role of cognitive abilities and styles in calculus performance. The present study 
extends existing research on cognitive styles by examining the relationships among calculus 
students’ preferred modes of thinking, cognitive abilities, and mathematical performances and 
provides measures of visualizer-analyzer style dimension and mathematical performance in 
calculus.  

Method 
Participants 

The participants were 169 high school students who were enrolled in Advanced Placement 
(AP) calculus courses at four high schools in two school districts in Central Florida in the United 
States at the time of the study. All 169 students agreed to participate in the study. Nineteen 
students who failed to take all tests were excluded from the data.  Of the 150 students, 55 percent 
of the students were males, and 45 per cent were females. 
 
Materials 

The six tests, measuring spatial orientation (Cube Comparisons (CC) and Card Rotations 
(CR)), spatial visualization (Form Board (FB) and Paper Folding (PF)), and logical reasoning 
(Nonsense Syllogisms (NS) and Diagramming Relationships (DR)) abilities, are part of the KIT 
of Reference Tests for Cognitive Factors (Ekstrom, French, & Harman, 1976). Cognitive style 
tests consisted of a revision of Mathematical Processing Instrument for Calculus ([MPIC], 
Haciomeroglu et al, 2009) and a modified version of Mathematical Processing Instrument 
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([MPI], Suwarsono, 1982). The students’ scores on the Advanced Placement (AP) Calculus 
Exam were collected from teachers at the end of the study.  
 
Spatial Ability Measures 

The Cube Comparisons Test consists of 21 items and requires the participant to view two 
drawings of a cube and determine whether or not the two drawings can be of the same cube. The 
Card Rotations Test consists of 10 items, each of which presents a two-dimensional figure and 
eight other drawings of the same card. The participant indicates whether each of the eight cards, 
without reflecting, is the same or different from the original figure. The Form Board Test 
consists of 24 items. Each item presents five shaded drawings of pieces and requires the 
participant to decide which of the shaded figures, from two to five, can be used to make the 
given geometric figure. The Paper Folding Test consists of 10 items each of which illustrate 
folds made in a square sheet of paper and a hole punched in it. The participant selects one of the 
five drawings that shows the position of the holes when the paper is completely unfolded.  

 
Logical Reasoning Ability Measures  
     The Nonsense Syllogisms Test consists of 15 items. Each item is a formal syllogism, in which 
statements are nonsense and cannot be solved by reference to past learning. The participant 
determines whether conclusions drawn from the statements show good reasoning. The 
Diagramming Relationships Test consists of 15 items. In each item, the participant selects one of 
five diagrams, which illustrates the interrelationships among sets of three objects.  
 
Cognitive Style Measures 

Two cognitive style tests, a revision of Mathematical Processing Instrument for Calculus 
([MPIC], Haciomeroglu et al, 2009) and a modified version of Mathematical Processing 
Instrument ([MPI], Suwarsono, 1982), were used to determine the degree to which students 
preferred visual or analytic thinking.  

The MPIC and the MPI consist of two parts. The first part of each instrument is a test 
consisting of mathematical tasks: there are 10 derivative and 10 antiderivative tasks (i.e., 7 
graphic and 3 algebraic tasks in each test) on the MPIC and 8 algebra word problems on the 
MPI. The second part is a visualizer-analyzer questionnaire consisting of a visual and an analytic 
solution for each task on the MPIC and at least 3 or more visual or analytic solutions for each 
task on the MPI. Upon completion of each test, the students were given the visualizer-analyzer 
questionnaire and were asked to choose for each task a method of solution that most closely 
describes how they solved the tasks.  

In this study, the MPIC was used to measure the students’ preference for visual thinking and 
mathematical performance for derivative and antiderivative tasks presented graphically or 
algebraically. Thus, it yielded two performance and two visuality scores for each student: 
performance (P-G) and visuality (V-G) scores from 14 graphic derivative and antiderivative 
tasks, and performance (P-A) and visuality (V-A) scores from 6 algebraic derivative and 
antiderivative tasks. The MPI was used to measure mathematical visuality, but not performance 
because it consisted of algebra word problems and may not reflect the differences in their 
mathematical performance. The internal reliability of the MPI visualizer-analyzer questionnaire 
was 0.225. The internal reliability of the V-G (14 graphic tasks) and V-A (6 algebraic tasks) 
visualizer-analyzer questionnaires were 0.918 and 0.71 respectively.  

 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

63



 

Calculus Performance Measures  
     Three calculus performance scores were included in the analyses. The students’ scores on the 
AP Calculus Exam were collected from teachers at the end of study. The AP Calculus Exam is 
an important standardized test. High school students who perform well can earn college credit 
and advanced placement. It covers differential and integral calculus topics, and scores are 
reported on a 5-point scale (5 is the highest and 1 is the lowest). The students’ calculus 
performance was also assessed by the MPIC Derivative and Antiderivative tests presented 
graphically and algebraically. The internal reliability of graphic (P-G) and algebraic (P-A) tests 
were 0.801 and 0.36 respectively. 
 

Procedure 
All students received standardized instructions and were tested in groups of 12 to 30 in their 

classrooms. All participating students gave their informed consent and were debriefed at the end 
of the study. Four school visits were made during semester, and the tasks were administered in 
the following order: At the first visit, Form Board, Card Rotations, and Diagramming 
Relationships were administered. At the second visit, Paper Folding, Cube Comparisons, and 
Nonsense Syllogisms were administered. The students had completed MPI test prior to the third 
visit, and they were first given MPI questionnaire and then MPIC Derivative test and 
questionnaire at the third visit. At the fourth visit, MPIC Antiderivative test and questionnaire 
were administered. The students were willing to participate in the study and enjoyed most of the 
tests under classroom conditions. We were unable to administer fewer tests per day due to the 
time restrictions. Results might have been higher under research conditions. The students were 
given 8 minutes for FB, 4 minutes for ND and DR, and 3 minutes for CC, CR, and PF. 
Completion of MPIC and MPI was not timed. The total scores for CC, CR, FB, and NS tests 
were determined by subtracting the number of incorrect answers from the number of correct 
answers. Since there were 5 response options for each item on PF and DR, the total scores were 
determined by subtracting one-fourth the number of incorrect answers from the number of 
correct answers.  
 
Scoring of MPIC and MPI 

In determining preference for visual or analytic thinking, the primary goal was to identify the 
students’ methods as visual or analytic; whether their answers were correct or incorrect mattered 
less than their method(s) in measuring mathematical visuality. On the MPIC visualizer-analyzer 
questionnaire, to determine the students’ visual preference scores for the derivative and 
antiderivative tasks, they were given a score of 0 for each analytic solution and 2 points for each 
visual solution. If a solution does not give any indication of method or both methods were used, 
a score of 1 was given. On the MPI visualizer-analyzer questionnaire, to determine the students’ 
visual preference scores for the algebra word problems, they were given a score of 0 for each 
analytic solution and 1 point for each visual solution. Thus, for the derivative, the antiderivative, 
and the MPI questionnaires, the total possible scores were 20, 20, and 8 points respectively.  
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In assessing students’ 
performance on the MPIC 
Derivative and Antiderivative 
tests, the students were given 
a score of 0 for each incorrect 
answer and 1 point for each 
correct answer. Thus, for each 
of the two tests, the total 
possible score was 10 points. 
To illustrate the use of the 
MPIC, we give an example of 
one of the derivative tasks 
(see Figure 1) and the 
corresponding item in the 
questionnaire.  We consider 
thinking as visual when 
individuals prefer to use 
visual methods and thinking 
as analytic when individuals 
prefer not to use visual 
methods when there is a 
choice on a specific task. Analytic solutions are generally equations-based.  An analytic solution 
to a task presented graphically typically may involve translation to an equation, computing the 
integral of the equation, and then using this new equation to draw the antiderivative graph.  

We observed that instead of estimating equations precisely, analytic students referred to basic 
groups of functions such as linear, quadratic, or cubic functions and their derivative graphs 
associated with odd or even powers of x respectively. The following is the analytic solution 
given on the questionnaire for the derivative task in Figure 1: I estimated the equation of the 
graph (or recognized the equation of the graph). For example: This could be the graph of f(x) = 
!x2 so I computed the derivative as f "(x) = !2x and drew the derivative graph using this 
equation. 

Visual solutions are image-based.  They are able to visualize the changing slopes of tangent 
lines to the function and accordingly are able to construct an entire derivative graph with no need 
to consider individual parts of equations at critical points or intervals.  These individuals are able 
to determine the shape of derivative graphs based on their visual estimates of slopes. The 
following is the visual solution given on the questionnaire for the derivative task in Figure 1: 
From the graph I estimated the slopes (or the slopes of tangent lines) at various points on the 
graph of the function and used this to draw the graph of the derivative.  For example: The slopes 
of tangent lines are positive and decreasing as x approaches 0 from the left. The slope is zero at 
x = 0 because the graph of the function has a horizontal tangent line at (0, 1). The slopes of 
tangent lines are negative and decreasing as x approaches positive infinity.   

For the tasks presented algebraically, we consider thinking as visual when students prefer to 
draw the graph of the given function on paper (or in mind) and estimate the slopes of tangent 
lines at various points on this graph to draw a possible graph of the derivative or antiderivative. 
On the other hand, we consider thinking as analytic when students prefer to calculate the 
derivative or integral, and used this equation to draw a possible graph of the derivative or 

Graph is shown. Please sketch the graph of the derivative. 

 
 

Figure 1. Derivative task. 
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antiderivative. For instance, one of the algebraic tasks requires sketching a possible graph of the 
antiderivative, given f "(x) = 3x2 + 1. An analytic solution involves computing the integral as f(x) 
= x3 + x2 + c and drawing the graph of f(x) using this equation, whereas a visual solution 
involves drawing the graph of f "(x) = 3x2 + 1 on paper (or in mind) and using the y values to 
estimate the slopes to draw the graph of the antiderivative.  

Results 
Means and standard deviations for each of the ten measures appear in Table 1. In order to 

determine between cognitive styles as assessed by the MPIC and the MPI visualizer-analyzer 
questionnaires and the other variables, Pearson product-moment correlations were computed. 
The correlations between cognitive styles, abilities, and mathematical performances are 
presented in Table 2.  

 
Correlational Analysis 

There was a significant correlation between the three measures of calculus performance. The 
correlations between MPI and the other two measures of cognitive style V-G and V-A were non-
significant and negative. Of the three measures of cognitive style, V-A significantly correlated 
with AP and P-G. There was a significant but small correlation between V-A and P-G. The MPI 
had non-significant negative correlations with the three performance measures. The correlations 
between the three measures of cognitive style and the measures of spatial and logical reasoning 
abilities were either negative or non-significantly low.  

Among the spatial ability measures, only FB had a significant correlation with P-A. CC and 
CR had the lowest correlations with the performance measures. FB, PF, NS, and DR 
significantly correlated with AP and P-G. The correlation between CC and P-G was significant, 
but CR was correlated neither with AP nor with P-G. It can be seen from the correlations of 
cognitive ability tests, except CR and FB, the four measures of spatial ability significantly 
correlated with each other. The two measures of logical reasoning ability significantly correlated 
with each other. DR correlated three of the four measures of spatial ability, CC, FB, and PF, 
whereas NS only correlated with FB, suggesting that FB was the only spatial ability measure 
correlating with both measures of logical reasoning ability. 
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Table 1 
Means and Standard Deviations of Measures  

Measure Label M SD n 

1. AP Calculus Exam AP 2.69 1.55 150 
2. MPIC Derivative & Antiderivative Tests - Graphic P-G 0.46 0.26 150 
3. MPIC Derivative & Antiderivative Tests - Algebraic P-A 0.24 0.18 150 
4. Cube Comparisons Test CC 9.99 4.70 150 
5. Card Rotations Test  CR 59.01 15.35 150 
6. Form Board Test FB 7.74 5.68 150 
7. Paper Folding Test PF 6.52 2.23 150 
8. Nonsense Syllogisms Test NS 2.55 4.50 150 
9. Diagramming Relationships Test DR 8.69 3.74 150 
10. MPIC Visualizer-Analyzer Questionnaire - Graphic V-G 1.09 0.67 150 
11. MPIC Visualizer-Analyzer Questionnaire - Algebraic V-A 0.60 0.56 150 
12. MPI Visualizer-Analyzer Questionnaire MPI 0.62 0.18 150 

 
Table 2 
Correlation Matrix for Twelve Measures 
Measure 1 2 3 4 5 6 7 8 9 10 11 12 

1. AP —            
2. P-G .62* —           
3. P-A .42* .54* —          
4. CC .23 .28* .20 —         
5. CR .16 .24 .04 .50* —        
6. FB .38* .40* .28* .45* .23 —       
7. PF .33* .33* .15 .36* .35* .47* —      
8. NS .30* .40* .17 .20 .14 .27 .10 —     
9. DR .36* .40* .23 .34* .18 .37* .30* .41* —    
10. V-G .31* .51* .18 .09 .08 .19 .17 .18 .16 —   
11. V-A .11 .28* .11 .02 .01 .15 .08 .12 .11 .40* —  
12. MPI '.08 '.08 '.05 .07 .04 .12 .09 '.08 .11 '.09 .06 — 
*p < .05.  

Conclusions 
This study contributes to the existing research by examining the relationships between 

cognitive styles, cognitive abilities, and mathematical performances in calculus. The 
correlational matrix revealed that spatial orientation ability, measured by Card Rotation and 
Cube Comparisons tests, did not correlate with calculus performance. Unlike spatial 
visualization and logical reasoning ability, spatial orientation seems to be unrelated to calculus 
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performance although visualizing mathematical objects from different perspectives is crucial to 
understanding calculus. The significant correlation between spatial visualization and calculus 
performance could be partially attributed to the tasks that require sketching derivative or 
antiderivative graphs; however, this trend is also evident in consideration of correlations with AP 
test scores. The MPIC and MPI visualizer-analyzer questionnaires did not correlate with spatial 
ability and logical reasoning ability measures, suggesting that cognitive abilities do not influence 
students’ preference for visual or analytic thinking, and vice versa. This is consistent with 
previous research (Hegarty & Kozhevnikov, 1999; Lean & Clements, 1981; Moses, 1977; 
Suwarsono, 1982). Krutetskii (1976) also observed that gifted students do not possess strong 
spatial abilities and might prefer not to use visual methods. 

A factor analysis on the twelve variables in Tables 1 and 2 provides interesting results.  
Using the varimax rotation, eleven of these variables load onto four easily interpretable factors:  
a calculus performance factor with AP (0.582), P-G (0.721), P-A (0.612); spatial ability factor 
with CC (.717), CR (.639), PF (.523), FB (.495); logical reasoning factor with DR (.76), NS 
(.416), and cognitive style factor with V-G (.729), V-A (.522), P-G (.426). A modified version of 
Mathematical Processing Instrument ([MPI], Suwarsono, 1982) was used to measure the calculus 
students’ visual preference. The MPI did not did not load on any of the four factors and did not 
correlate significantly with any measure. On the other hand, the MPIC test and questionnaire 
regarding derivative and antiderivative tasks presented graphically loaded substantially on the 
cognitive style factor and correlated significantly with calculus performance measures, 
suggesting that the MPIC is measuring an important component of cognition. Our results are 
consistent with those of Galindo-Morales (1994), who reported that visuality as assessed by the 
MPI was not related to calculus performance.  However, when calculus derivative and 
antiderivative tasks were used to measure mathematical performance and visuality, significant 
correlations can be found. Moreover, most calculus students have acquired a deep conceptual 
understanding of mathematics and might have characteristics that distinguish them from others 
(Ferrini-Mundy, 1987).  

Our work with AP calculus students has generated new information about ability, style and 
mathematical performance in calculus. We believe that analyses of data obtained with the MPIC 
have produced results worthy of continued study, and that the MPIC has the potential to be a 
measure of performance and preference for visual thinking in calculus. 
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