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A critical practice in teaching elementary mathematics is posing problems that build on children’s
mathematical thinking. As such, teacher educators must provide pre-service teachers (PSTs) with a set of
learning experiences to support PSTs in this practice. In this study, we present our analyses of PSTs’
responses to a sequence of three methods course activities that engaged them in increasingly complex
tasks requiring the PSTs to write problems in response to authentic student work.
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Introduction

Research suggests that a critical practice in teaching elementary mathematics is posing problems that
build on children’s mathematical thinking (Carpenter et al., 1999). An implication of this research is that
teacher educators must provide pre-service teachers (PSTs) with a set of learning experiences to support
PSTs in engaging in this critical practice. However, as a field, we know little about the design, enactment,
or sequencing of these kinds of experiences. In this study, we present our analyses of PSTs’ responses to a
sequence of activities that engaged them in increasingly complex tasks requiring the PSTs to write
problems in response to student work.

Theoretical Frame

Shulman (1986) suggested three types of knowledge are important for teaching - subject matter
knowledge, pedagogical content knowledge, and curricular knowledge. Since that article, Ball and
colleagues (Ball, Hill, et al., 2005; Hill, Sleep, et al., 2007) have built on Shulman’s work and have
provided the Mathematical Knowledge for Teaching (MKT) framework further defining subject matter
knowledge (SMK) and pedagogical content knowledge (PCK) and identifying subsets of these knowledge
bases. We are grounding this study in two subsets of PCK—knowledge of content and students,
“knowledge that teachers possess about how students learn content” (Hill, Sleep, et al., 2007, p. 133); and
knowledge of content and teaching, “mathematical knowledge of the design of instruction, includes how to
choose examples and representations, and how to guide student discussions toward accurate mathematical
ideas” (Hill, Sleep, et al., 2007, p. 133). These subsets of the PCK construct are useful as we are asking
PSTs to think about how students solved particular problems and then use that knowledge of students to
design subsequent instruction.

Also relevant to this study is the professional noticing of children’s mathematical thinking construct
(Jacobs, Lamb, & Philip, 2010). Three interrelated skills: attending to children’s strategies, interpreting
children’s understandings, and deciding how to respond on the basis of children’s understandings comprise
the construct. Within our methods course, we ask PSTs in several instances to talk about what they notice
in student work (via video clips and written) and discuss what they think students do or do not understand.
Finally, we ask PSTs to use what they know about students to generate a next problem.
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Methods

Data were collected from thirty-three, first semester, senior level PSTs (32 female, 1 male) enrolled in
an elementary mathematics methods course taught by the first author in fall 2011. The data include PST
responses to three different activities, each of which are from a set of methods course materials written by
the second and third authors (Drake, Land, et al., 2011). The activities were designed to scaffold and
support PSTs as they developed the capacity to make sense of student strategies and to write appropriate
subsequent tasks for students. Each of the activities is set in the context of actual classrooms. The three
activities were posed over the first six weeks of the course and were sequenced in order to provide PSTs
with various experiences analyzing and writing effective tasks based on student thinking. The first activity
(Natalie’s Class the Next Day) was designed to give PSTs the opportunity to notice and analyze how an
experienced teacher used her students’ current knowledge of division with fractional remainders to design
a subsequent story problem and number choices. The second activity (Counting Sequences) required the
PSTs to write an opening number routine (ONR) and problem, including number choices to address a
class-wide addition misconception. The third activity (Fishbowl Problem) asked PSTs to analyze 14
students’ multiplication strategies and write a subsequent problem with number choices to address the
wide range of learners. We organized the activities to form a trajectory along several dimensions — moving
from noticing an expert teacher’s task design to having PSTs design tasks themselves, moving from
designing a task to address a single misconception to writing a task that addressed a wide range of student
understandings, and moving from PSTs noticing an expert teacher’s number choice to selecting numbers
for a pre-written task to writing an entirely new task.

Data Analysis and Results
Natalie’s Class the Next Day

Prior to completing the Natalie’s Class the Next Day task, PSTs watched a video with transcript of
Natalie and her 2nd grade class as they solved two partitive division story problems:

Problem #1 Trisha and Allie are sharing chocolate chip cookies. If they are shared equally,
how many will each of them get?

2 4 5 8 9 1213

30 31 50 51 66 67 83

Problem #2 Trisha, Allie, Lance, and Kathy are sharing brownies. If they are sharing
brownies equally, how many will each person get?

4 5 8 9 16 17 20

32 33 44 45 48 49 50

Multiple number choices are given to provide for differentiation. Students were to choose the row of
number choices “just right” for them. In Problem #1, even numbers were posed followed by the next
consecutive number (with the exception of 2 and 83). In Problem #2, multiples of four were posed
followed by the next consecutive number. The use of next consecutive numbers was intended to provide a
scaffold in that students could use what they knew about one number choice to help with the next.
Included in the video are examples of student work, teacher/student interactions, and a sharing session
where students explain their various strategies. After discussing the video, PSTs are asked to complete the
following activity:

The next day, Natalie posed the following problem. Solve the problem for a few of the number
choices. Then, answer the questions below.

There are miniature candy bars. Dustin, Jose, Sam, and Joe are going to share the candy bars.
If they split up the candy bars equally, how many will each of them get?

11 17 22 35 48
65 &3 75 99 104
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1. Why do you think Natalie posed this particular problem next?
2. What do you notice about the number choices in this problem compared to the number choices
given the day before?

Analysis: Natalie’s class the next day. As we examined responses from the PSTs, we focused on
their responses to question two. The next problem Natalie posed is also a partitive division problem and
extends the second problem from the day prior in sharing a set of objects among four people. We analyzed
PSTs’ responses according to their noticing of three aspects of Natalie’s number choices: (1) the numbers
in both rows are both larger numbers than the day before; (2) the numbers are more complex in that
students had to think not only about sharing remainders of zero and one, but also two and three as well; (3)
the next consecutive number scaffold that had been used the day before has now been removed. Two
authors independently coded the PSTs’ responses for evidence of these three facets with 94.9% agreement
(94/99).

Here is a sample response from one of the PSTs, Jaceylyn (all names are pseudonyms):

The first thing that stood out to me about these number choices was that they were generally larger
than the ones offered on the previous day. Next, when I actually started working with them, I found
that these number choices granted me with quite different answers than the day before. On the
previous day the answers had either been whole numbers, or sometimes involved a half as well, but
today the answers came out with remainders of 3% or !4.

This response was coded as identifying larger numbers as well as more complex numbers.

Results: Natalie’s class the next day. We examined the 33 responses to the Natalie’s Class the Next
Day activity in two ways: (1) how many of the facets of the number choices were identified by each PST,
and (2) number of PSTs that identified each facet. The results are presented in Tables 1 and 2. We
interpreted this data through the lens of MKT, specifically as indication of knowledge of content and
teaching; knowledge of how to choose examples and design instruction. From the data one can see that
~48% of the PST identified either zero or one facet of the number choices, ~42% identified two of the
three facets and only a small percentage (~9%) were able to identify all three. We posited that it might be
more likely for PSTs to notice the larger numbers and the lack of scaffolds than recognize the complexity
of the numbers, as the first two required less developed knowledge of content and teaching.

Table 1: Number of Facets Identified Table 2: Percentage of Each Facet Identified
# Correctly identified # PSTs Facet # PSTs % PSTs
0 7 Larger numbers 13 394
1 9 More complex 18 54.5
) 14 numbers
3 3 No scaffolds 15 45.5

Counting Sequences

The Counting Sequences activity begins with the PSTs watching a video with transcript of Jenny’s
first grade class. For her ONR, Jenny poses the following counting sequences to her students that focus on
base-ten concepts: 30, 40, 50, , , .44, 54, 64, , s .57,67,77,

, , . 157,167, 1717, , , . Jenny’s students are able to solve the
tasks by counting by 10. Students also notice the units place remains the same and the tens place number
increases by one each time. They are able to solve the sequence that “crosses over” from a 2-digit number
to a 3-digit number. The video ends with Jenny posing a story problem about a paleontologist:
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A paleontologist had dinosaur bones. He found some more. Now, the paleontologist has
dinosaur bones. How many bones did he find?
(10, 70), (20, 84), (26, 126), (15, 65), (60, 150), (42, 53)

The activity provides PSTs with a description of student work from the Paleontologist Problem:

Most of the children solved the paleontologist problem by using a hundreds chart, but many
counted by ones when counting up to the second number instead of counting by tens. Some
children did count by tens. For 20 and 84, the children who were counting by tens either counted
by ones from 20 to 84, or counted by tens to 80, then counted 4 more. Nobody solved for 42 and
53 (Drake, Land et al., 2011).

Following this description, the story problem Jenny used the next day (without number choices) is given,
“Today, the paleontologist is looking for fossils. He already had ~ fossils in his collection. He found
some more. Now, the paleontologist has  fossils. How many fossils did he find?” The counting
sequences activity was then posed for the PSTs to complete:

Now that you have seen the Counting Sequences video (and its transcript), consider these
questions related to students’ solutions to the Paleontologist Problem.

1. What is the disconnect between how students counted in the opening routine and the counting
strategies they used when solving the problem?

2. Why do you think the disconnect exists?

3. Considering this disconnect, generate two artifacts for the next day’s lesson: an opening number
routine and number choices for the Paleontologist problem given below. Briefly justify your
choices.

In this activity, we were interested to see if: (1) the PSTs could recognize many children did not see their
counting by tens strategy in the sequence activities as applicable in solving the join-change unknown story
problem; (2) they could posit reason(s) for the disconnect; (3) they could design an ONR to address the
reason(s) stated in 2; and (4) they could select appropriate number choices for the next day’s problem. We
believe this task was a natural progression from the previous task, as it required PSTs to interpret and
respond to a general mathematical misconception within a class of children.

Analysis: Counting sequences. Prior to analyzing this data set, the authors collaboratively examined
several responses to this activity from a previous course and through open and emergent coding (Strauss &
Corbin, 1998) established a series of codes and operational definitions for: (1) identifying the disconnect
explicitly and accurately (yes/no/no response); (2) number of reasons given for the disconnect (0, 1, 2 or
more); (3) identifying the degree to which the ONR addressed the reason(s) given (low, medium, high);
and (4) classification of the types of number choices we believed were appropriate for Jenny’s students
(count by 10s from a decade number as given in Jenny’s original Paleontologist Problem, count by 10s
from a non-decade number, count by 10s and 1s). We operationalize the degree to which the ONR
addressed the reasons for the disconnect by examining the approaches the PSTs took in selecting the type
of task, structure and/or number choices for their ONR. PSTs who used the same approach as Jenny, or
used approaches that did not connect to their reason, were ranked low. PSTs who attempted at least one
new type, structure or number choice related to their reason, and did so in a manner we believed could be
effective, were rated medium. PSTs who made significant changes (more than one new approach) related
to their reason, and did so in a way we were confident could be effective, were rated high. Reliability
percentages for each of the four categories are as follows: Disconnect: 90.9%; Reasons: 75.8%; Degree:
78.8%; Number Choices: 87.1%. We discussed disagreements and reached consensus on the final codes.

Chelsea’s response follows. The numbers correlate with the questions given above:

1) When students were counting in the counting sequences opening routine, they were counting
by tens and realized that the second digit of the number was remaining the same. However,
once they tried solving the problem, the students began counting by ones, and it threw them
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off to try counting larger numbers by ones.

2) When counting by tens, the second digit of the number remains the same. It creates a pattern
and makes it easy to continue in an almost rhythmic-like pattern of repeating “10, 20, 30, 40,
50...” and so on. However, when counting by ones, the second number changes along with the
first number and this can be very confusing for kids if they are counting “10, 11, 12, 13, 14,

15,16, ...
3) Opening Number Routine — Fill in the blanks with the missing numbers.
10, , , , 50, 60, , , 90,
5, , 25,35, , , 65,75, , , 105
100, , , 130, , 150, , , 180, ,
Problem for the next day
Today, the paleontologist is looking for fossils. He already had fossils in his collection.
He found some more. Now, the paleontologist has  fossils. How many fossils did he find?

[10,30]  [5,25] [100,175]  [3,43]

I chose these numbers because I started out with simpler numbers that they could easily apply their
counting sequence strategy to a word problem (10, 20, 30). I then moved on to [5, 25] because
starting at 5 and counting by tens is slightly more difficult. Next I did [100, 175] because starting
at 100 is difficult, and they also have to count by 5’s once they get to 70. Finally, I placed the
hardest number choice last because the students have to count by tens, but they are starting at 3,
which will throw them off to see a 3 as the last digit, and they will really need to understand the
process of counting by tens to get from 3 to 43.

The above example was coded as (1) yes to identifying the disconnect; (2) 0 for not identifying a reason
for the disconnect; (3) as low for the degree in which he/she addressed the disconnect as it is the same
approach used by Jenny; and (4) as having counting by tens from a decade number, counting by tens from
a non-decade, and counting by tens and ones in the number choices.

Results: Counting sequences. Of the 24 PSTs who attempted to identify the disconnect within
Jenny’s class (9 no response), 18 were able to accurately do so (75%). 18 of those 24 (75%) were able to
posit at least one reason why the disconnect may have occurred. When it came time, however, to design an
opening number routine that would address the disconnect, more than 50% of PSTs simply posed “more of
the same” approaches Jenny used. Ten PSTs (30.3%) made an attempt to try something different, but only
five PSTs (15.2%) were able to do so in a way we felt confident would afford the children multiple
opportunities to make the connection between skip counting by 10s in patterns and using skip counting by
10s as a strategy for solving join-change unknown addition problems. The number choices data were more
encouraging. There was a high percentage of PSTs (42.4%, 14/33) who included at least two of the three
appropriate number choices or all three of the appropriate number choices (48.5%, 16/33) in the next day’s
problem. Three PSTs included only one of the appropriate number choice types. One emerging pattern
from these data is our PSTs seem to be able to understand and identify student thinking, but often struggle
using this information to effectively address it.

Table 3: Counting Sequences Results

Disconnect Reasons Degree Number Choices
Y N NR 0 1 2+ L M H 10sD 10sND 10s1s
18 6 9 15 9 9 18 10 5 25 29 24
Fishbowl Problem

The Fishbowl Problem is set in the context of Molly’s 2nd/3rd mixed age classroom. This task was
built around PSTs’ examination of examples of student work from 14 children in Molly’s class in response
to the following multiplication problem:
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Sam had fish bowls. He had fish in each bowl. How many fish did Sam have? Molly
presented 4 pairs of number choices for her students to pick from: A: (2, 10), (5, 10); B: (4, 20), (8,
20); C: (3, 11), (6, 11); D: (4, 12), 8, 12).

The task for the PSTs was as follows:

1. First, consider Molly’s learning goals—what are they?

2. Next, look at the student work on the following pages. What do you find interesting? What
evidence can you identify that students are or are not making progress toward the learning
goal(s)?

3. Write a problem for the next day along with a rationale. What do you think will be an
appropriate problem that will meet the range of needs in Molly’s classroom? Reference at least
three students or group of students specifically in your rationale.

We believed this activity was an appropriate next task for the PSTs’ development as it required them to
analyze and make sense of several children’s thinking, to write a story problem appropriate for the entire
class and simultaneously attend to specific strategies and learning goals when writing number choices.
This activity is very similar to the work of teaching and required PSTs to use many different knowledge
bases to effectively complete the activity. Molly had different goals for different groups of children in her
room. For some children she wanted to see if they were able to skip count by multiples of ten. For others,
she wanted to see if they could notice and use the doubling relationship between the pairs of numbers she
had chosen for them to solve. She included number choices like 11 and 12, to see if any children would
solve using the distributive property and their knowledge of tens.

Analysis: Fishbowl problem. In our analysis of the children’s work, we classified their approaches
into one of four categories: (1) direct modeling: children in this group either could not solve any of the
multiplication tasks, or did so by directly modeling the solution with drawings; (2) skip counting: children
in this group skip-counted by 10s and/or multiples of 10; (3) repeated addition/break apart by place:
children in this category solved tasks by writing the multiplication problems as repeated addition and then
broke the 2-digit numbers like 11 and 12 apart by place value and added the 10s and 1s separately; and
(4) doubling: the children in this group also used repeated addition to solve the first number choice in the
pair, but were also able to recognize the relationship between doubling the number of groups and doubling
the product.

Similar to our analysis of the Counting Sequences Activity, the authors first collaboratively examined
several responses to this activity from a previous course and established a series of codes and operational
definitions for writing an appropriate story problem (yes/no) and demonstrating understanding of
children’s strategies (yes/no). In our analysis of the PSTs’ number choices, we coded their responses in
terms of addressing current student understanding and in terms of addressing Molly’s learning goals. As
we coded the responses in terms of addressing students’ current understanding, we first looked for
evidence in the rationale that the PSTs were attempting to choose numbers for specific individual’s (or
groups of children’s) strategy. If we found evidence, we then examined the number choices they selected
in order to determine if they had successfully done so. We coded their number choices in terms of learning
goals in a similar manner. If PSTs explicitly mentioned a learning goal in their rationale, we coded it as an
attempt. If an attempt was made, we then determined if the number choices were appropriate. If so, we
coded it as a success. Reliability percentages were calculated for each category and ranged from 73.5% —
93.9%. Consensus was reached on all disagreements.

Samantha’s response follows as an example. For space purposes only her problem is shared:

Olivia has drawers. She has pencils in each drawer. How many pencils does Olivia
have?

I want to address the same goals, but have structured them so some are easier than her first
examples, some the same difficulty, and some harder.
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Group A (3,10) (4,10) (6,10) (11, 10) Here I want to practice going over 100 to provide
some extra challenge. I also wanted those struggling to recognize the relationship between the 3
and 10 and the 4 and 10.

Group B (1,20) (2,20) (4,20) (8,20) Here I want the students to start on the 20s to focus on
the relationship between the first and second number in the problems, but also the first numbers
over the sequence.

Group C (4, 11) (5,11) (7,11) (5, 12) Here I want students to apply their knowledge of
counting by 10s and then adding Is to solving the problem. Hopefully having the second number
switch to 12 will have these extend that knowledge.

GroupD (2,11) (2,12) (2,13) (2, 14) I wanted the students who 've really gotten a hang
of this 10s and 1s concept to apply it and to see patterns by keeping the 2 consistent.

In this case, the above problem was coded not attempting, and thus, not successful, in addressing
specific student’s strategies. However, it was coded as attempting and successful in choosing numbers for
specific learning goals.

Results: Fishbowl problem. The data supports the preliminary result from the Counting Sequences
activity. We can see by this stage in our sequence a vast majority of the PSTs (31/33, 93.9%) made sense
of the student work provided and were able to write an appropriate story problem type (28/33, 84.8%).
When it comes to writing number choices for the next story problem however, it becomes evident that:
(1) PSTs have difficulty in addressing multiple groups of student thinking simultaneously; (2) when PSTs
do attempt to write specific number choices to address or further student thinking, they are not often
successful in doing so (9/17, 52.9%; 8/26, ~31%; 7/15, ~47%; 5/12, ~42%); and (3) PSTs have difficulty
writing number choices that attend to both student thinking and learning goals.

Table 4: Fishbowl Problem Results

Number Choices for Students Number Choices Learning Goals
Low/Direct Skip Repeat+ Doubling Skip by Doubling Distributive
Model Count /BABP 10s Property
Story? Understand? A? S? A? | S? | A? | S? | A? S? | A? | S? | A? S? A? S?
28 31 17 9 26 | 8 1517 12 5 22 | 11 17 12 14 10
Discussion

As we interpret the results from this sequence of activities through the work of Jacobs and her
colleagues (2010), we conclude PSTs have become more adept at attending to and interpreting student
thinking. The activities however, have not helped the PSTs to make similar progress in responding to
student thinking. One possible reason for this result is that our sequence of tasks does not provide enough
educative supports to develop PSTs’ ability to respond appropriately to student thinking. We have not
explicitly attended to the question, “What makes a number choice appropriate or inappropriate to
support/extend a student’s current way of thinking?” An activity that presents an example of student
thinking and requires PSTs to select and justify an appropriate number choice from a list of possibilities
might help to develop PSTs’ ability to interpret, evaluate and write appropriate number choices. These
conclusions can be explained in terms of the construct of MKT. Our sequence of activities appears to
support the development of PSTs’ knowledge of content and students. Through repeated exposure to
authentic student work (both video and written), PSTs have improved in their ability to make sense of and
evaluate students’ thinking strategies in a variety of mathematical contexts. This knowledge base is
paramount in attending to and interpreting student thinking. PSTs’ knowledge of content and teaching
however has not shown similar improvement. Though the PSTs have demonstrated an ability to interpret
student thinking and “diagnose” mathematical inconsistencies, they have not yet developed the appropriate
content knowledge base to respond effectively in “prescribing” the next treatment.
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