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ARTICULATING A LEARNING SCIENCES FOUNDATION  
FOR LEARNING TRAJECTORIES IN THE CCSS-M 

Jere Confrey1 
orth Carolina State University 

ere Confrey ncs .ed  

The paper describes the history of how learning trajectories (LTs) were associated with the Common Core 
State Standards for Mathematics (CCSS-M) and discusses the degree to which the two correspond 
faithfully. It reports on a website, www.turnonccmath.com, which organizes the K–8 standards into 18 LTs 
describing the development of big ideas over time, informed by empirical studies of learners. The paper 
illustrates how descriptors for each LT identify: (1) conceptual principles, (2) strategies representations, 
and misconceptions, (3) meaningful distinctions and multiple models, (4) coherent structure, and 
(5) bridging standards. The design principles for the website are illustrated describing how the CCSS-M 
are related to a learning trajectory on division and multiplication. 

ey ords  Standards, Cognition, eacher no ledge, earning ra ectories 

he Common Core State Standards for Mathematics CCSS , 2010  have been represented as fe er, 
clearer, and higher,  reflecting the vie  that revised standards sho ld be  1  foc sed, 2  rigoro s and 
applicable, and 3  coherent. hey offer a more coherent progression of learning  described as  clearly 
artic lat ing  ho  no ledge b ilds from year to year. ach standard e tends previo s learning hile 
avoiding repetition and large leaps in instr ction  nt nstit te, 2012, p. 8 . Despite this intent, the 
progressions themselves are not immediately accessible to readers, so other doc ments are needed to 
artic late and display these relationships in different formats. r research gro p has done this as a set of 
posters . irelessgeneration.com posters  and as a ebsite .t rnonccmath.com . After 
revie ing the history of ho  learning tra ectories became fo ndational in the riting of the CCSS M,  
describe the elements of a learning tra ectory analysis of the CCSS M as a means to s pport 
implementation of standards and cond ct of related professional development. he advantages of 
researchers or ing together, to create reso rces on learning tra ectories b ilt on empirical st dy are 
disc ssed, along ith a arning of the li ely costs of failing to do so. 

History of Learning Progressions in the CCSS-M 

n the s mmer of 2009, a meeting as held at the Friday nstit te for d cational nnovation in orth 
Carolina here researchers on learning tra ectories hosted the riters of the Common Core State Standards 
CCSS  and other leaders from the Co ncil of Chief State School fficers CCSS .2 he proposed 

standards ere to be based on scientific evidence. While the College  and Career eady Standards U.S. 
Department of d cation, 2010  co ld be s fficiently stified ith evidence of international 
benchmar ing and st dies of the needs and e pectations of colleges and entry level careers, the grade level 
standards re ired a basis in the research on st dent learning. A n mber of learning sciences and 
mathematics ed cation researchers gave presentations incl ding M. attista, D. Clements, . Confrey, 
G. ader, and . ehrer  on learning tra ectories also called learning progressions . After the 
conference, many of the attendees ere invited to participate on the CCSS M riting teams. he se of 
these teams d ring the Standards development as perceived by many as more sporadic than systematic
and the teams ere only one voice among many incl ding state departments, mathematics fac lty, and 
teachers  in infl encing the development of the Standards. o ever, their ideas contrib ted significantly 
to the final doc ment. n s m, the CCSS M incorporated a fo ndation in learning tra ectories that can 
propel the co ntry for ard no , and be strengthened over time. n the period since the p blication of the 
CCSS M, at least three gro ps have engaged in efforts to delineate the tra ectories in more detail Confrey 
et al., 2011  ess  earns, 2010  McCall m, 2011 .  
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www.turnonccmath.com 

nce the CCSS M as validated and idely adopted, and in response to the need e pressed in the 
field for rgent assistance, the D A research gro p at orth Carolina State University CSU  decided 
to connect the Standards more directly ith associated research on learning tra ectories. Many state leaders 
had reported that teachers perceived little change from their old or c rrent state standards to the ne  
CCSS M, and e pected that cross al s  o ld provide a s fficient basis to s pport the transition to the 
CCSS M and the related c rric l m and assessment. n this scenario, teachers o ld only change the ay 
they teach ne  topics at the grain si e of the individ al grade levels and other ise contin e teaching by 
ma ing small ad stments to their lesson plans. A close reading of the CCSS M doc ment, my 

nderstanding of the CCSS M from e perience on the ational alidation Committee, and o r gro p s 
close comparison of the CCSS M to previo s state standards, ho ever, told a different story. here are 
ma or changes in hen and here mathematical topics are emphasi ed, namely the intensity of content 
treatment at earlier grades and ma or shifts in several topics that ill radically change teacher preparation 
and professional development. he higher  and fe er  aspects of the CCSS M mean, also, that there is 
m ch less room for repetition of content at each grade. 

We fo nd learning tra ectories sef l in s pporting implementation, beca se they foc s attention on 
grad al and systematic st dent learning over time, a form of genetic epistemology  Piaget, 1970 . he 
idea behind e plicitly mapping learning tra ectories onto the CCSS M is to help teachers and st dents 
b ild consistently stronger nderstandings of big ideas by revising and modifying prior vie s in light of 
ne  conditions and challenges. ather than emphasi e a standard by standard vie  of implementation of 
ne  or revised content, learning tra ectories s pport vertical teaming  by teachers. his allo s an 
e citing chance for teachers to disc ss and plan their instr ction based on ho  st dent learning progresses. 
An added strength of a learning tra ectories approach is that it emphasi es hy each teacher, at each grade 
level along the ay, has a critical role to play in each st dent s mathematical development.  

r effort to b ild a ebsite that synthesi es the relevant research and to lay o t a manageable n mber 
of learning tra ectories for the CCSS M began as a res lt of a meeting of the Measurement Mini-Center.3 
Many of the gro p s participants had cond cted pioneering or  on learning tra ectories, and each has his 
or her preferences abo t ho  to characteri e, emphasi e or order nderlying proficiencies and concepts. 
Concerned that the interpretation of the CCSS M sho ld be better and more p blicly informed by 
learning sciences research,  my research team drafted a synthetic tra ectory b ilt aro nd the CCSS M, 

dra ing from these scholars  or , and bro ght it to the meeting for disc ssion. he Mini Center s 
response to the effort as positive and constr ctively critical the gro p revie ed the proposed tra ectory, 
offered val able s ggestions and distinctions, and labored ntil an acceptable synthesis as negotiated. 

his specific tra ectory as finali ed is represented on the t rnonccmath.com site Confrey et al., 2011  and 
is described in more detail in a 2012 PM A paper ee, g yen,  Confrey, 2012 .  

oyed by this e perience and stim lated by re ests from the field, o r CSU team decided to 
nderta e a f ll learning tra ectories analysis of the 8 Standards. Using a he agon map of the CCSS M 
designed by ere Confrey and Wireless Generation  to display the Standards and learning tra ectories 

vis ally,  dissected the CCSS M into 18 learning tra ectories. ver a concentrated period of si  months, 
the research team ndertoo  riting, revising, and interlin ing descriptors, hich are te t based 
descriptions of standards in terms of st dents  movement from more na ve to more sophisticated ideas for 
each of the tra ectories. r or ing ass mptions ere that the eb based environment o ld  1  provide 
the opport nity for contin o s incremental improvements in the descriptors that o ld serve the needs of 
the field for rapid access to the associated learning tra ectories for the Standards, and 2  permit s to 
grad ally strengthen the site based on feedbac  and revie . n the ne t sections, the he agon map is 
introd ced along ith an e planation of the frame or  sed to analy e the tra ectories and npac  them 
into descriptors. 
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Turnonccmath: by Grade 

he ebsite http .t rnonccmath.com displays a he agon map  of the CCSS M. n designing 
this map, decisions to se a predictable and consistent method to assign standards to he agons ere largely 
pragmatic. Standards in the CCSS M are of many different grain si es, hich added considerable 
challenge to the effort in mapping them to he agons. Standards ere assigned to individ al he agons 

sing the follo ing scheme  1  f a Standard has no s bparts, the he agon represents the entire standard. 
o ever, m ltipart Standards ere too dense to be s mmari ed in a single he agon. herefore, 2  for any 

Standard ith s bparts e.g., a, b, c, etc. , each s bpart as assigned its o n he agon. he map can be 
displayed in three vie s  by grade levels, by  ith the s labeled, and by s itho t labels. he 
topics ithin the standards generally proceed from less comple  lo er left  to more comple  pper right .  

he he agons for the different grade levels occ r in bands that are more or less orthogonal to the 
progression of the topics. n the grade level display, the lo er left ends of any relevant learning tra ectory 
contain the earliest grade level standards, beginning if applicable  ith indergarten standards, follo ed 
by first thro gh eighth grade Standards b ilt on top and to the right, and coded s ch that a he agon s 
bac gro nd color represents its grade level. he te t color in each he agon represents the content strand  
for e ample in 8, bl e te t corresponds to mber and perations  red te t corresponds to 
Meas rement and Data, and blac  te t corresponds to Geometry. n terms of the relative positions of 
different main content strands and learning tra ectories,  chose to p t mber and peration related 
standards on the bottom ith Meas rement related standards on top of those, diagonally, and then 
Geometry related standards above meas rement. At the very top is a penins la here the very thin 
learning tra ectory for lementary Data Statistics  and Modeling is placed. his tra ectory comprises 5 
standards in the Meas rement and Data cl ster that address ho  to b ild and interpret data representations. 

aving opposed the riters  decision to red ce the treatment of statistical reasoning in the CCSS M at the 
elementary level,  left space to e pand these standards in f t re revisions. 

From the grade level display, one can discern certain patterns. For instance, one can see that third 
grade is almost entirely comprised of standards on n mber and meas rement, ith only one standard in 
geometry. n contrast, one can see that in si th grade, there are three distinct cl sters of topics  1  statistics, 
2  ratio and proportion, and 3  e ations and e pressions.  

The Relationship Between the Learning Trajectories and the CCSS-M 

he p rpose of a learning tra ectory is to describe and synthesi e hat is no n abo t ho  st dents 
reason over time. he term Learning Trajectory  has varied meanings in mathematics ed cation. 
Simon 1995  first defined the term hypothetical learning tra ectory  to be he learning goals, the 
learning activities, and the thin ing and learning in hich st dents might engage  p. 133 . We define it as, 
a researcher con ect red, empirically s pported description of the ordered net or  of constr cts a st dent 

enco nters thro gh instr ction i.e., activities, tas s, tools, and forms of interaction , in order to move from 
informal ideas, thro gh s ccessive refinements of representation, artic lation, and reflection, to ards 
increasingly comple  concepts over time  Confrey, 2008  Confrey, Maloney, g yen, Mo ica,  Myers, 
2009, p. 2 346 . We vie  a learning tra ectory as a path thro gh a concept al corridor in hich there are 
predictable obstacles and landmar s and th s a st dent s partic lar path is an iss e of e pected 
probabilities and li elihoods  s permit one to specify at an appropriate and actionable level of detail 

hat ideas st dents need to no  d ring the development and evol tion of a given concept over time.  
earning tra ectories provide a ay to create coherence ithin the CCSS M by dra ing attention to 

ho  no ledge develops over time. f teachers try to implement the CCSS M standard by standard, they 
ill be nli ely to leverage the nderlying str ct re of the standards and s pport grad al transformations 

in st dent reasoning. When e have or ed ith teachers in npac ing o r learning tra ectories, they have 
commented on the val e of creating a story  hich ill strates ho  the ideas are li ely to evolve in the 
minds of st dents hen they are provided appropriate c rric l m tas s, instr ction, and opport nities for 
disco rse. herefore, o r goal is to provide this type of s pport to teachers by providing them efficient and 
coordinated access to related research. n the end, the s ccess of the CCSS M rests on its potential to 
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s pport alignment, incl ding c rric l m, assessment formative and s mmative , and professional 
development, at a level not previo sly possible. t to achieve the deep and lasting change envisioned by 
the Common Core State Standards nitiative and the mathematics ed cation comm nity, the no ledge of 
learning tra ectories m st be made clear, accessible, compact, and ell integrated ithin the CCSS M. 

he relationship bet een the learning tra ectories and the Standards is comple . o a degree, the 
CCSS M ere b ilt on the fo ndation of learning tra ectories. t it o ld not be acc rate to say that 
there is an isomorphic relationship bet een the CCSS M and the learning tra ectories. n fact, 
ac no ledging this, the Standards  riters call the progressions in the standards, standards progressions  
Common Core Writing eam, 2011 . he reasons incl de  

1. Different researchers have differing vie s of learning tra ectories, even ithin strands  
2. ot all topic areas have been st died as learning tra ectories  and 
3. he riters too  s ggestions from mathematicians ho conflated learning tra ectories ith logical 

progressions created by tho ght e periments,  independent of empirical verification. 

his o tcome is to be e pected in a doc ment res lting from negotiations and differences of opinion 
among disciplinary scholars, researchers and practitioners  moreover, it creates the possibility no  to 
systematically test, compare, and refine those tra ectories in light of st dents  or . Also, in order to 
constr ct fe er  and clearer  standards, the learning tra ectories in the CCSS M are of necessity 
abridged  that is, they do not and co ld not contain a f ll treatment of all the big ideas contained in the 
research literat re. o address this in o r analysis, e added bridging standards  as needed. hese 
statements are similar in str ct re to the CCSS M standards, b t represent topics that o ld be re ired in 
a more f lly artic lated i.e., nabridged  learning tra ectory. eca se of the d al nat re of standards as 
both assessment targets and targets of nderstanding, bridging standards can permit one to describe 
standards that need to be addressed in preparation for a later standard b t hich ill not be assessed 
directly at that specific time. Finally, even after debate and revie , there are a fe  standards that ere 
poorly constr cted, inconsistent, or nadvisable, based on mathematics ed cation or learning sciences 
literat re  a bridging standard may be added to improve the coherence of the tra ectory overall.  

Standards, by themselves, can serve as a s eleton for learning tra ectories, b t they need to be 
interpreted and made nabridged to serve this p rpose. Moreover, the interpretation m st ma e e plicit the 
connections to the research base and provide a more complete artic lation of ho  the ideas in a tra ectory 
evolve in light of st dents  doc mented behaviors, emergent relations and properties, and generali ations 
Confrey, Maloney, Wilson,  g yen, 2010 . o this end, and so that there o ld not be too many s 

to manage, e decided to create a mapping s ch that every standard o ld belong to e actly one , each 
targeting a ey big idea  or set of related big ideas. he CCSS M doc ment itself does not s ggest an 
instr ctional se ence or rigid ordering of the Standards beyond specifying grade level, as the a thors have 
stated  hese Standards do not dictate c rric l m or teaching methods  CCSS , 2010, p. 3 . herefore, 

e reorgani ed standards ithin a tra ectory if this o ld sho  the st dent learning development more 
clearly hile eeping the grade level position of standards and topics . h s, se encing ithin grade as 
malleable  e ad sted it to fit the learning tra ectories str ct re hence the n mbering of the standards can 
be o t of order  ithin a grade . We also assisted readers in seeing the internal str ct re of and the 
relations among the learning tra ectories by a  creating sections to reveal nderlying development, 
b  providing str ct ral overvie s, and c  cross referencing and referencing for ard and bac ard ithin 

a .  

Turnonccmath: by Learning Trajectories 

he he agon map of the CCSS M, ith learning tra ectories labeled, is sho n at 
.t rnonccmath.com Fig re 1 . he t o dimensional str ct re of the map lends itself to parallel 

str ct res among some learning tra ectories, in some cases, to represent close relationships bet een 
vario s big ideas. ne of these is the f ndamental role played by 1  counting, 2  equipartitioning, 
3  addition and subtraction, and 4  place value and decimals in developing an early sense of n mber and 

operations. hese fo r learning tra ectories are sit ated at the lo er left portion of the map. Counting is 
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directly tied into addition and subtraction and develops in tandem ith place value and decimals. 
Equipartitioning leads directly to s pporting the development of 5  division and multiplication, and 
s bse ent rational n mber reasoning, ith contrib tions from addition and subtraction. 6  Fractions are 
most closely related to e ipartitioning and division and m ltiplication, ith 7  ratio and proportion and 
percents being most closely tied to division and m ltiplication and fractions in topic and grade level 
development ithin the CCSS M. 8  Rational and irrational numbers lin  to ratio and proportion and 
percents. 
�

�

Figure 1. Hexagon Map of K–8 Common Core State Standards for Mathematics with individual 
learning trajectories color-coded and labeled 

�
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he learning tra ectory for 9  length, area and volume is sit ated ne t to e ipartitioning in 
recognition of their close relationship in early reasoning abo t shapes and meas rement, and beca se they 
cover a considerable amo nt of concept al development in spatial, meas rement, and geometrical 
reasoning. his forms a large anchor . 10  Time and money, a small early grades set of topics, is t c ed 
into the left side of the map. he meas rement cl ster has close lin s to 11  shapes and angles, hich 
carries into 12  triangles and transformation as st dents progress into the middle grades. Integers, 
number lines and coordinate planes 13 , a mostly 6th grade set of topics, are placed close by to s pport 
f rther development of other middle grades tra ectories lin ing geometry and n mber systems. he cl ster 
of learning tra ectories that comprise data, statistics, and probability 14  elementary data and modeling, 
15  variation, distribution and modeling, and 16  chance and probability are located along the top of 

the map, as they ere most closely related to each other. he limitations of the t o dimensional space on 
hich the map as constr cted prevented s from lin ing them more closely to meas rement and ratio 

reasoning. 
F rther p ards and to the right are the more comple  topics of 17  early equations and expressions, 

hich are b ilt on the fo r operations and hich lin  to 18  linear and simultaneous functions to create a 
fo ndation for algebra in the 9 12 Standards.  

A Framework for Unpacking Learning Trajectories 

When one hovers the c rsor over a he agon on the he agon map of .t rnonccmath.com, the f ll 
Standard is presented verbatim in a bo  in the bottom left corner. f one clic s on a he agon or learning 
tra ectory, a ne  indo  ith the descriptors for the selected learning tra ectory appears. he descriptors 
are organi ed as follo s  A Str ct ral vervie  is presented at the beginning of each , identifying 
the sections of the  and sho ing its development across the relevant grades. Sections are then sed to 
create a s b organi ation of the learning tra ectory. n addition, a frame or  of five elements as created 
to systemati e the npac ing of the each tra ectory   

1. Conceptual principles  hese are a list of nderlying cognitive principles, identified by 
researchers, hich s pport the overall development of the ideas. 

2. Strategies, representations, and misconceptions: When st dents enco nter ne  tas s that are 
presented as a cognitive challenge, they invent strategies and representations as they solve them, 
demonstrating their ays of thin ing and, often, revealing related misconceptions that need to be 
addressed instr ctionally. eca se misconceptions typically have a ernel of right thin ing  
Confrey, 1990 , these tho ghts m st be elicited and then refined into alternative conceptions or 

valid intermediate steps on paths to more sophisticated thin ing. 
3. Meaningful distinctions and multiple models: All ed cators recogni e the val e of prior 

no ledge and the importance of identifying clear targets for learning. A ma or challenge, 
ho ever, lies in identifying and eval ating intermediate states of proficiency and nderstanding 
their role in moving st dents for ard in their thin ing. o describe these intermediate states, 
teacher and researchers m st recogni e or invent meaningf l distinctions  vocab lary terms for 
these tend to e hibit properties that are both cognitive and mathematical, s ch as partitive vs. 

otative division, hich later simply collapse to division.  We refer to these as meaningf l 
distinctions.  n addition, for big ideas also described as a learning tra ectory s domain goal 
of nderstanding there are often m ltiple earlier models that correspond to the different 
schemes that govern recognition of sit ations in the real orld. hese big ideas are typically 
capt red as a generali ation  that, hile encaps lating  their meanings in the minds of e perts, 
hides or loses the details of the distinctions and models, so st dents sho ld be afforded s fficient 
opport nity to e plore the distinctions and models before they move to the generali ation, in order 
to nderstand its many referents and applications.  

4. Coherent structure: n a learning tra ectory, a pattern often emerges in ho  a topic is developed  
commonly, that pattern is repeated as the st dents e pand it at later grades and apply it to 
increasingly comple  cases, representations, tools, choices of n meric val es, or spatial 
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dimensions. For e ample, st dents  nderstanding of area is e panded as the lengths of the sides 
ta e on fractional val es. Understanding s ch str ct re, and considering hich parts of it remain 
invariant and hich change nder these e pansions, is a characteristic of mathematical reasoning.  

5. Bridging standards  Moving from abridged  learning tra ectories represented in the CCSS M to 
more f lly artic lated, nabridged  standards re ires the addition of bridging standards  that 
might not have represented ma or intellect al targets ithin the CCSS M b t hich may 
nonetheless be necessary to s pport a s ccessf l progression of learning for st dents. ased on o r 
str ct ral analysis, e sometimes fo nd gaps or inconsistencies in the Standards. n these cases e 
also added bridging standards. he bridging standards are identified by their se of a capital letter 
A, , C,  at the end of the standard n mber, and the se of bro n font. ach bridging standard 

incl des an e planation for its addition to the descriptors doc ment. 

A estion can be raised abo t the relationship of the eight mathematical practices to o r learning 
tra ectories analysis of the CCSS M. We do not address the practices directly in the analysis, altho gh the 
practices are critical elements of the c rric lar instantiations of the CCSS M. First of all, e emphasi e 
that a learning tra ectories analysis is not a c rric lar analysis, altho gh one can cond ct analysis of 
c rric la sing the learning tra ectory constr ct g yen  Confrey, in press  by considering the learning 
tra ectory as a bo ndary ob ect Confrey  Maloney, in press  Star  Griesemer, 1989 . F rthermore, as 
st dents progress along a learning tra ectory, they ill employ the vario s mathematical practices, s ch as 
applying repeated reasoning, and sing precision, artic lating arg ments, or b ilding or criti ing ne  
modeling.  

An Example: The Division and Multiplication LT 

Data on large scale assessment sho  ea ness in U.S. st dent no ledge and nderstanding of 
division and m ltiplication A P, 2009 . F rthermore, division and m ltiplication are topics aro nd 

hich there is considerable research. Fischbein et al. 1985  introd ced the idea of primitive schemes for 
division and m ltiplication, claiming t o for division partitive and otative  and only one for 
m ltiplication. Partitive division as lin ed to schemes based on dealing s ally to obtain the si e of a 
share or gro p  hile otative division, later commonly referred to as meas rement division  Simon, 
1993 , as lin ed to repeated s btraction or addition, in an iterative manner.  

laborating f rther on ho  children learn m ltiplication, many researchers amii, 1985  Steffe  
Cobb, 1998  describe a process of acc m lating e al si ed gro ps by describing ho  children learn to 
coordinate the process of differentiating the roles of n mbering the gro ps and naming the gro p si e. n 
doing so, they derive m ltiplicative str ct res from additive ones. hey describe a grad al process of s ip 
co nting, do ble co nting, and event al description as a prod ct, ab, comprised of a n mber of gro ps, a, 
of a partic lar si e b. eca se m ltiplication then is comprised of t o elements, gro p si e and n mber of 
gro ps, these researchers tend to follo  Fischbein et al. 1985 , in recogni ing the t o types of division, 
one foc sed on finding the si e of the gro p partitive  and the other the n mber of gro ps otative .  

ther researchers categori e ord problem types in m ltiplication or division e.g., e al gro ps, rates, 
comparison, Cartesian prod cts, scaling, etc. nderta en by scholars s ch as esher 1980, 1988, 1992 , 
and Carpenter, Fennema, and omberg 1993 . hese scholars have a tendency to associate m ltiplication 

ith a certain set of problems and each type of division ith other sets of problems. For e ample, e al 
gro ps problems are associated ith m ltiplication, fair sharing problems are associated ith partitive 
division, and meas rement problems e.g., o  many 3 inch ribbons are there in a ribbon that is 36 inches 
long  ith otative division. t is preferable, in o r opinion, to disting ish among the estions as ed 
e.g., the si e of a gro p or fair share and the n mber of gro ps or the n mber of shares  and to associate 

these estions, and not problem categori ations, ith the processes st dents se to solve a problem. ne 
advantage is that this leaves open the possibility of st dents sing other approaches e.g., co splitting 
Corley, Confrey,  g yen, 2012 , or the se of arrays or area models models attista, Clements, 

Arnoff, attista,  orro , 1998  thred  Mitchelmore, 2000 . esearchers ho rely on categori ation 
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schemes CG , others  tend to foc s on these as applications of operations rather than to go f rther to se 
them to define the nderlying cognitive schemes Carpenter  Fennema, 1992 . 

A contrasting trend in research as introd ced by ergna d in his or  on m ltiplicative concept al 
fields MCF  ergna d, 1983, 1988 , hen he artic lated the relations among ratio and proportion and 
m ltiplication and division. he MCF, he arg ed, consisted of all sit ations that can be analy ed as 
simple or m ltiple proportion problems and for hich one s ally needs to m ltiply or divide  ergna d, 
1988, p. 141 . e connected the many parts of the MCF to a fo r part relationship vis ally, a t o by t o 
arrangement  among antities in hich movement hori ontally as described as a f nctional, 
demonstrating a direct variation relationship bet een t o antities i.e., f(x) = ax) and vertical movement 

as referred to as an isomorphism of measures.   
n a related vein, in 1988,  artic lated my splitting con ect re Confrey, 1988 , arg ing that 

m ltiplication and division co ld be lin ed to ratio and proportion as derived from an early application of 
an operation  labeled splitting, and s bse ently also labeled equipartitioning. n a three year teaching 
e periment of children in 3rd 5th grade,  demonstrated the advantages to st dent learning of co defining 
m ltiplication, division, and ratio Confrey  Scarano, 1995  and sho ed the effects of teaching fractions 
as e pressing a partic lar s bset of ratio relations. 

Data s ggest that, contrary to most te tboo  se encing, e ipartitioning and partitive division are 
nderstood at an early age ell, Fischbein,  Greer, 1984  Confrey et al., 2009  Confrey  Scarano, 

1995 . Moreover, approaching division and m ltiplication thro gh early e perience ith ratio has been 
s pported by research on protoratio oelting, 1980a  oelting, 1980b  esnic   Singer, 1993 , on 
splitting Confrey, 1988  Confrey  Scarano, 1995 , and on distrib tion Streefland, 1984, 1991 .  

Sch art  1988  disting ished bet een referent transforming and referent preserving operations, 
s ggesting that additive str ct res are referent preserving preserves the referent nit, e g., 4 apples pl s 3 
apples e als 7 apples  hile m ltiplicative ones are referent transforming does not preserve the referent 

nit, e.g., 20 coins shared among divided  5 people res lts in 4 coins per person . e also introd ced the 
distinction bet een e tensive antities magnit de  and intensive antities indirectly meas red as 
composed from other antities . o ever,  arg e that m ltiplication can also be referent preserving 

hen only the partic lar nit changes e.g., in the case of meas rement conversion, the se of gro ps, or 
scaling .  

his second set of approaches deemphasi e the role of addition and s btraction in the constr ction of 
division and m ltiplication. nstead  vie  division and m ltiplication as related operations describing the 
same sit ations in reverse. he t o operations are interloc ed in a fo r part relationship that can be 
described by ratio relations. For e ample, in the division problem  20 coins shared among 5 people 
res lts in 4 coins per person, the ratio relationship is 20 coins  5 people  4 coins  1 person. 
M ltiplication can be sed to describe the movement from 4 coins to 20 coins and 1 person to 5 people and 
division can be sed to describe the reverse movement. eca se they rely on ratios, this treatment of 
division and m ltiplication is necessarily related to the se of t o distinct antities  the case of referent
preserving division and m ltiplication is cast as the red ced case here gro ps, nit changes, or a scalar 
are introd ced. hese approaches also tend to s pport the e tension of the operations to non hole 
n mbers, and more int itively anticipate the operator constr ct of rational n mbers ehr, arel, Post,  

esh, 1994 , hich  locate in this tra ectory. 
oth generali ed approaches recogni e the se of division and m ltiplication in area meas rement and 

find ays to incorporate it. n the first approach thro gh co nting and additive str ct res, arrays can be 
vie ed as a transitional tool. f the gro ps are lined p in col mns and placed side by side, then the 
res lting array can be vie ed as representing both the n mber of gro ps ro s  and the si e of the gro ps 
col mns . Proceeding from the discrete case to the contin o s case can still s pport a definition of the 

m ltiplication operation in terms of the n mber of gro ps and their si es. he integrated approach also 
ses area problems b t does so thro gh the application of scaling operations from the single nit on the 

lengths of the sides of a rectangle, and s bse ently on the area of the res lting rectang lar fig re. 
n deciding ho  to approach the learning tra ectory,  so ght ays to  
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1) combine the strengths of both models, while emphasizing importance of multiplicative structures; 
2) build from what the children already knew from the related learning trajectories of 

equipartitioning, length, area and volume, and addition and subtraction; 
3) ensure the approaches were sensitive to the variety of situations connected to division and 

multiplication; and  
4) anticipate how sufficient the models would be as the numeric values in the problems changed from 

whole numbers to non-whole rational numbers. 
�

�

Figure 2. Structural Overview diagram for Division and Multiplication learning trajectory�

Framework for Learning Trajectories, Applied to the Division and Multiplication LT 

he Str ct ral vervie  of the learning tra ectory is sho n above Fig re 2  hereby one can see that 
the  stretches from second thro gh si th grade. St dents develop three models and then apply them to a 
variety of problem types. As they become fl ent in the n mber facts, they learn abo t factors and m ltiples 
and then e tend their no ledge to more comple  cases. n the follo ing sections, a indo  into the 
str ct re of the division and m ltiplication learning tra ectory DM  is provided sing the five element 
frame or  described previo sly.  

The Target of the Learning Trajectory for Division and Multiplication 

earning tra ectories al ays incorporate ass mptions abo t hat st dents have e perienced and no , 
and hat the target of that learning sho ld be at the pper end of the tra ectory. he primary target of the 
DM  is for st dents to nderstand the relationships capt red in the e ation  ac/bd  a b  c d. As 
e plained belo , these relationships can be nderstood either as they reside in a ratio bo  or in relation to 
t o dimensional area relations hich can later be e tended to higher dimensions .  

atio bo es relate t o antities s ch that the relationship is preserved across m ltiplicative changes 
to both antities. All b t elementary ses of the ratio bo  for fair sharing e plicitly sho  the preservation 
of the ratio across m ltiplicative changes by sing t o pairs of arro s,  one hich sho s the 
m ltiplicative or divisional operation that relates the t o sets of n mbers vertically and sho ing the other 
relationship hori ontally Confrey, 1995 . oelting refers to these as, respectively, bet een  and ithin 
ratio relations oelting, 1980a, 1980b . Characteristic of a ratio bo  is that the pairs of opposite arro s 
are identical.  

he DM  can be s mmari ed as an evolving se ence of types of ratio bo es and area models. 
hose ratio bo es start ith a fair sharing bo ,  and proceed to a division m ltiplication bo  D M bo  
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to complete the DM . n the ratio and proportion and percents , the bo es evolve into a f lly 
developed ratio bo . Fig re 3, belo , ill strates the f lly developed ratio bo . Given any three val es 
st dents find a fo rth n no n val e of the proportion, and describe the relationships represented by the 
operator arro s, either as sho n here as m ltiplication, or its inverse, division not sho n . 
�

�

Figure 3: A ratio box solution, with multiplication shown 

he DM  begins from a red ced ratio bo  no n as a fair sharing bo  in the e ipartitioning  
. Second graders can fill in the col mn headers and the t o ro s hen sharing, for e ample hen 

fair sharing 12 coins among 3 people, they fill in 12 and 3 in the top ro , and 4 and 1 in the bottom ro  
Fig re 4a . Also based on the , they e press the si es of pper ro  n mbers relative to lo er ro  

n mbers as b times as many.  At this yo ng age and lac ing any formal introd ction to m ltiplication or 
division, children are not e pected to se the arro  notation. For the , the final target goal can be 
e pressed in a ratio bo  Fig re 4b  corresponding to Standard 5. F.3 nterpret a fraction as division of 
the n merator by the denominator a b  a  b . Solve ord problems involving division of hole 
n mbers leading to ans ers in the form of fractions or mi ed n mbers, e.g., by sing vis al fraction 
models or e ations to represent the problem . 

�

�

Figure 4a: Fair share box for equipartitioning 
a collection of 12 coins 

�

Figure 4b: Generalized fair share box 
for equipartitioning collections 

ilding from the fair sharing bo , the first target for the DM  is a slightly more sophisticated 
red ced ratio bo  called a division m ltiplication bo  D M bo . he D M bo  Fig re 5a  also has a 1 
in the lo er right corner beca se in the fo r part relations for MCF, for division and m ltiplication, one 
cell is e al to 1. For e ample, in the problem at a tire shop, si  cars are getting their 4 tires changed. 

o  many tires are needed ,  the final D M bo  o ld have t o col mns one for the n mber of tires 
and one for the n mber of cars and sho  24 tires associated ith si  cars and 4 tires ith one car. he 
n mber facts, 6 � 4  24, 24  6  4, and 24  4  6, do not sho  the one. At first, the se of the D M bo  
can be constrained to hole n mbers only. he D M bo  differs in t o respects from the fair sharing bo . 
Firstly, it is not restricted to fair share sit ations, and secondly, as st dents learn to or  ith division and 
m ltiplication operations symbolically, they add arro s to define the relationships operators  e plicitly. 

he associated area model, can also initially se hole n mbers Fig re 5b .4  
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Figure 5a: D/M box adapted for 
whole-number multiplication 

�

�

�

�

 

Figure 5b: Whole-number 
multiplication model for  
the area of a rectangle 

n order to nderstand the D M bo  and the rectangle area model, st dents describe and or  ith all 
three related e ations of a � b = ab, ab  b  a and ab  a  b. hese intermediate goals are presented 
here in symbolic form for brevity, for the benefit of e perts  st dents, ho ever, are e pected to nderstand 

here they come from, e plain and represent them, relate them to prior and related no ledge ith 
stifications, and apply them to solve a rich variety of problems. n addition to correctly prod cing their 

ans ers, st dents are e pected to be able to move abo t fle ibly and fl ently in m ltiplicative space sing 
factors, incl ding primes and m ltiples, and recogni e, discover, and se the relevant properties and 
practices. 

he final target for the DM  is a D M bo  sho ing division, m ltiplication, and a rectang lar area 
model Fig res 6a, b, c  here the non one val es in the cells can be any rational n mbers. he DM  can 
be nderstood no  as poised bet een a  e ipartitioning, and b  ratio and percent. As ill also be sho n, 
it dra s on elements of other s on the length, area and vol me, addition and s btraction, and place 
val e and decimals.  

 

  

 
 
 
 

 
 

Figure 6a. D/M box (division) Figure 6b. D/M box 
(multiplication) 

Figure 6c. Area model 

 
Also, later in the length, area, and vol me , the prod ct can incl de more than t o dimensions 

essential for the associative property , so that one can e plain vol me as v  l � w � h, or as v  area � h, 
and one can increase dimensionality as re ired for modeling m ltiplication in higher dimensions that lac  
obvio s spatial analog es. his set of related learning tra ectories  e ipartitioning, division and 
m ltiplication, ratio and proportion and percents, and length, area and vol me, together ith similarity 

ithin the triangles and transformations , comprise the ma ority of the content that resides in the 
m ltiplicative str ct res.  

t is important to nderstand as f lly as possible the target or domain goal nderstanding for a learning 
tra ectory, beca se hile it often cannot be directly ta ght, it m st be reached as the prod ct of a caref l 
series of transformations based on empirical st dy of st dent learning. y delineating it caref lly, one can 
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disting ish intermediate states that are prod ctive from ones hich ill limit st dents  chances of 
obtaining a f ll and n anced perspective.  

Distinctions and Models 

A synthesis of the literat re yields three f ndamental models for the oint operations of 
division m ltiplication, each of hich generate both division and m ltiplication conte ts. hese are 
a  referent transforming, b  referent preserving, and c  referent composing models. hese three models 

are necessary to s fficiently lin  division and m ltiplication to its related tra ectories, from 
e ipartitioning and addition s btraction to ratio and proportions and percent, fractions, chance and 
probability, and length, area, and vol me, and to s pport mathematical modeling. he three models are 
described belo  

a) Referent-Transforming. Division/multiplication in these models involves changes in the attributes 
or referents connected with the quantities, or action on a quantity of one attribute or referent by a 
quantity of another attribute or referent. For instance, in fair sharing, coins are shared among 
people to produce coins per person (Figure 7). Rate problems also fit in this category. In relation to 
the D/M Box, the student sees 6 � 3 = 18 as shifting from 6 people to 18 coins by means of a 
multiplication by 3 coins per person, which transforms the referent using an intensive quantity as 
an operator. There are two associated division problems for fair sharing 18 ÷ 6 = 3 and 18 ÷ 3 = 6, 
each of which is referent-transforming. Students are likely to solve the first one partitively and the 
second quotatively. 

 

Figure 7. D/M box used to model referent-transforming multiplication 

b) Referent-Preserving. Division/multiplication in these models involves a multiplicative comparison 
of two amounts of a single quantity. This can be accomplished using a new unit, a composite unit 
such as a group or a scale, or by using one amount to measure another while the referent or 
attribute is maintained. For example, if one is told that the distance from New York to Kansas City 
is six times the distance from New York to Baltimore (approximately 200 miles), the D/M box 
would look like Figure 8a: 
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Figure 8a: Referent-preserving 
multiplication problem modeled  

with a D/M box  

�

Figure 8b: The same D/M box with 
arrow indicating the scalar 

�

he scale in the right hand col mn is, by most acco nts, nit less, b t the right col mn is sed 
to establish the vertical arro , or the ithin  or referent preserving relation, m ltiply by 6.  

h s to solve this problem, one maps miles to miles, m ltiplying by the dimensionless scalar 6, to 
get 1200 miles. eca se the left hand col mn ith the scalar m ltiplication is s fficient to solve 
the problem, a t o by one display of this relationship is s fficient as sho n in Fig re 8b. 

i e ise e s ggest that problems involving gro ps and meas rement conversions can and 
probably sho ld be treated as referent preserving beca se only the nit and not the referent 
changes.  

We note that beca se the D M bo  al ays has a 1 in one cell, collapsing it to a 2 � 1 bo  or a 
1 � 2 bo  is al ays possible beca se the operator arro s ill carry  the information from the 
non one cell as ill strated in fig re 8b. hese collapsed vie s permit one to assert a single model 
for division m ltiplication  a dra bac  of this c rtailment, if done too early, conceals some of the 
richness of the relational reasoning. 

c  Referent-Composing. Division m ltiplication in these problems involves the creation of a ne  
referent or attrib te not previo sly associated ith the other antities. For e ample, the 
division m ltiplication associated ith area prod ces s are inches from side lengths in inches. n 
Cartesian prod cts, a n mber of shirts and a n mber of pants prod ce a n mber of o tfits, and so 
on. ol me as a prod ct of three length meas res or as a prod ct of length and area, and higher 
dimensions also fit in this category. Arrays can form a transitional representation lin ing referent
preserving and referent creating, s ch that the prod ct can be comp ted by m ltiplication of the 
n mber of dots in each of the t o sides, b t the prod ct remains a n mber of dots so no ne  
referent is composed. he ro  and col mn str ct re, hile geometrically e tending in t o 
dimensions length and idth  still prod ces a prod ct that is a total n mber of dots.  

 
hese three models of division and m ltiplication can be s mmari ed as sho n in able 1 along ith 

e amples of problem conte ts associated ith each model.  
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Table 1. Three Models of Division/Multiplication, Along with Common Contexts for Each 

Model 1: Referent-
Transforming 

Model 2: Referent-
Preserving 

Model 3: 
Referent-

Composing 

Fair Sharing Unit Conversion Arrays 

ate Scaling Area 

al si ed Gro ps Cartesian Prod ct 

 
ote the placement of the e al si ed gro ps conte t, in hich one reasons ith the n mber of gro ps, 

the si e of the gro p  the res lting prod ct is placed in both models 1 and 2. A problem s ch as a 
boo shelf has fo r shelves ith si  boo s on each, ho  many boo s are there  can be vie ed as referent
transforming n mber of boo s per shelf � n mber of shelves  n mber of boo s  or as referent preserving 
4 gro ps of 6 boo s . 

As a res lt of this analysis, the team recogni ed that the transition to division and m ltiplication 
needed to be broadened and strengthened. We analy ed the e periences of children that o ld s pport 
these varied models, especially in the earlier tra ectories of e ipartitioning and addition s btraction. he 
e pectation for the DM  as that st dents o ld enco nter the models as simple hole n mber cases 

ntil they b ilt p their repertoire, became fl ent and fle ible in their no ledge of the associated facts, 
and e plored the properties. As the n mbers became larger, the algorithms o ld be developed. ho gh 
not f lly developed in this paper, st dents  introd ction to non hole antities in the  division and 
m ltiplication involves reconcept ali ing meanings based on their nderstanding of relational naming 
describing 12 shared among 4 as 1 4 of the collection  and reassembly from . ver time, st dents 

generali e across the vario s n mber types, models and applications as division m ltiplication more 
abstractly. o ever, by avoiding overgenerali ing and simplifying to one single model, st dents sho ld 
remain fle ible in selecting appropriate models for division and m ltiplication in modeling activities.  

Bridging Standards 

From , children enter third grade ith e perience in fair sharing, relational naming, and 
composition of splits, all of hich can s pport their movement to division m ltiplication. Composition of 
splits refers to children splitting a split s ch as a rectangle into t o parts vertically and three parts 
hori ontally  and learning to predict si  2 � 3  instead of five 2  3  res lting parts. he addition and 
s btraction  also lin s to DM  thro gh a standard on the array str ct re and repeated addition. he 
length, area, and vol me  also contrib tes to st dents  conceptions of division and m ltiplication, and 
the relevant comm tative and distrib tive properties ith s ch activities as finding a common nit for area 
meas rement and composing and decomposing rectang lar areas. onetheless, a set of bridging standards 

ere needed first, to ma e the necessary connections to these earlier learning tra ectories, and secondly, 
to interpret the meaning of the standards in light of o r targets and distinctions. 

here are fo r Standards in CCSS M that specifically carry the eight of introd cing division and 
m ltiplication  

• 3.OA.1: “Interpret products of whole numbers”;  
• 3.OA.2: “Interpret whole-number quotients of whole numbers”;  
• 3.OA.3: “Use multiplication and division within 100 to solve word problems in situations 

involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations 
with a symbol for the unknown number to represent the problem”; and 

• 3.OA.6: “Understand division as an unknown-factor problem.” 
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ote  3. A.4 is placed in elementary algebra beca se it involves solving for an n no n in any 
position in a � b = c; 3. A.5 concerned ith properties  and 3. A.7 concerned ith fl ency  are 
placed in the ne t section of the DM .  

While these fo r standards are s fficient to s pport the distinctions offered above, they are a ard to 
interpret standard by standard  three of them are re ired to introd ce and lin  m ltiplication and division 
3. A.1, 2,and 6 , and the e amples mentioned along ith the first t o in the CCSS M doc ment seem to 

imply that a problem type is lin ed to an operation gro ps to m ltiplication and fair sharing to division . 
F rthermore, 3. A.3 seems to imply that the problem sit ations are sed to apply the operations rather 
than that the operations are developed to model the sit ations. his bias seems to be pervasive in the 8 
Standards. 

o ever, hat appears to be a ardness in the Standards can be addressed beca se the e amples 
therein are not intended to limit the cases b t only to ill strate them. herefore in o r interpretations, e 
e plain the three cases of m ltiplication referent transforming, referent preserving and referent
composing , then treat division similarly, sing Standard 3. A.6 to lin  the operations. While the model 
remains referent transforming, the observed processes for the division problems may appear as partitive or 

otative.  
Standard 3. A.3 provides an opport nity to s mmari e the entire frame or  ith descriptions of the 

overall D M bo  for hole n mbers and the area model. n preparation for Standard 3. A.3, three 
bridging standards ere re ired for the model for referent composing D M. he bridging standard 
3. A.F St dents reason ith arrays sing m ltiplicative relationships  as added to provide st dents 
opport nities to or  m ltiplicatively ith arrays. his as necessary beca se the standard a thors had 
restricted the approach to arrays in second grade to repeated addition 2. A.4  Use addition to find the 
total n mber of ob ects arranged in rectang lar arrays ith p to 5 ro s and p to 5 col mns  rite an 
e ation to e press the total as a s m of e al addends . his constraint r led o t other approaches s ch 
as by decomposing and composing arrays into other e ivalent arrangements for instance, rearranging a 
6 � 4 array as a 12 � 2 or a 24 � 1 , or sing s ip co nting.  

ilding on a bridging standard from the  2.G.C  ipartition a rectangle sing vertical and 
hori ontal c ts and predict the res lting n mber of parts. , another bridging standard, 3. A.D St dents 
learn to code composition of splits as m ltiplication and can state the associated division problem , 
s pports st dents in coding compositions of splits as m ltiplication and division. From the length, area and 
vol me , the standard 3.MD.7.b M ltiply side lengths to find areas of rectangles ith hole n mber 
side lengths in the conte t of solving real orld and mathematical problems, and represent hole n mber 
prod cts as rectang lar areas in mathematical reasoning , lin s to the emerging DM . o complete the 
idea of referent composition then for both area and for pairing of attrib tes to create Cartesian prod cts, 
bridging standard 3. A.  as added, stating elate m ltiplication and division problems to rectang lar 
area e.g., 3 inches � 4 inches  12 s are inches  and Cartesian prod cts e.g., 3 pants � 2 shirts  6 
possible o tfits .   

With this set of three bridging standards caref lly lin ed to the fo r CCSS M Standards, third grade 
st dents ho accomplish the related content sho ld be able to apply all three models to sit ations to 
prod ce both division and m ltiplication problems and solve for n no ns in all of the three positions of 
the problem in standard 3. A.3. Well prepared ith three models, st dents can be caref lly introd ced to 
the cases in hich non hole n mbers are involved, topics that are disc ssed more f lly on the ebsite. 
As arg ed previo sly, this approach is also po erf l beca se it b ilds e plicitly from prior learning 
tra ectories and anticipates later ones. 

Strategies, Representations, and Misconceptions 

he previo s section on distinctions and models s pports st dents in creating a rich variety of 
representations for m ltiplication and division gro ps, tree diagrams, meas res, scaled dra ings, and 
Cartesian prod cts sho n as t o dimensional cross prod cts . A second important area of development 
involves ho  children learn their m ltiplication and division facts.  Confrey and Scarano 1995  had 
demonstrated that children are not given ade ate s pport to move in m ltiplicative space.  Most 



��������������� )+�

�

�

��������!��#�	#!���!��#$�#!�'�������!��#��#�%���#&#�%*()*&#�	��������������������
���
�������������������������
����
�������

��������
����
���������������	��������������
���
���������
������������ ��!���"������������������
���������.�

teachers ass me that m ltiplication sho ld be introd ced separately from division and that learning 
n mber facts sho ld proceed in the same order as addition facts, from small to large n mbers. nstead, the 

 research sho s ho  many forms of interrelationships among and bet een m ltiplication facts can be 
fostered by teaching children rich strategies that b ild on early nderstanding of n mbers. For e ample, 
instead of teaching m ltiplication facts in the order of the co nting n mbers i.e., �1, �2, �3, etc. , Confrey 
sho ed that a se ence of do ble �2 , do ble do ble �4 , do ble do ble do ble �8 , then m ltiplying 
by 10 and then by 5 �10 2 , then tripling �3 , m ltiplying by 6, triple do ble, or �3 �2 , and by 9 
triple triple , and then, finally, by 7, is more readily nderstood by st dents, and ma es more sense to 

them. he related division facts are practiced sim ltaneo sly ith m ltiplication facts in this se ence.  
nstead of vie ing m ltiplication facts as simply a list of things to be memori ed, st dents begin to get a 

fo ndation of the m ltiplicative relationships among n mbers hat  have previo sly called moving 
aro nd in m ltiplicative space  Confrey, 1995 . 

o misconceptions are addressed in the DM . An early standard in the  regards the idea of 
evenness  as contrasted ith oddness , and the descriptors caref lly artic late t o approaches, 1  fair 

sharing by t o, and 2  pairing p. n addition, the descriptors arn that st dents se the term even  to 
describe hen a collection can be fairly or evenly shared, for e ample, in the sentence, t came o t even.  

he descriptors disc ss ho  the term even  therefore can be sed sim ltaneo sly by st dents in t o 
conflicting ays, 1  to describe hen a factor divides evenly then the res lt is even so that si  shared 
among t o is three hich is even  or fair , and 2  to describe that hen a n mber is even,  i.e., is 
divisible by t o. he t o meanings m st be disting ished by st dents, so they avoid or resolve a 
misconception.  his is a prime e ample in hich e rote into the descriptors an important distinction 

that e believe many teachers o ld not readily recogni e and disc ss ith their st dents. 
he second, more idely recogni ed, misconception is m ltiplication ma es bigger and division 

ma es smaller  MM DMS  Greer, 1992 . he CCSS M address this misconception directly in 5. F.5.b 
plaining hy m ltiplying a given n mber by a fraction greater than 1 res lts in a prod ct greater than 

the given n mber recogni ing m ltiplication by hole n mbers greater than 1 as a familiar case  
e plaining hy m ltiplying a given n mber by a fraction less than 1 res lts in a prod ct smaller than the 
given n mber  and relating the principle of fraction e ivalence a b  n � a n � b  to the effect of 
m ltiplying a b by 1 .  

n the DM , the misconception is addressed in relation to each of the three models. n the nit 
transforming model, the descriptors ill strate that any t o n mbers can be related in an e ation, s ch as 
rate � time  distance, so that 30 mph can be m ltiplied by a half ho r to prod ce 15 i.e., fe er  miles. 
St dents also learn to interpret division of t o antities, in the form a b and c d, as a ratio of fractions or 
ratios 3 4  1 2  3 2 . his e ample demonstrates that division can res lt in a larger antity than the 

antity one begins ith. n referent preserving sit ations, division by n is sho n to be e ivalent to 
m ltiplication by 1 n, ith st dents learning to predict the effects of m ltiplication by a b as a composition 
of m ltiplication and division, st as as done originally in Dienes s or  on operators e.g., stretchers 
and shrin ers  Dienes, 1967 . Finally, for conte ts sing the area model, st dents learn that area meas red 
in s are nits can be of a smaller magnit de than the magnit des of either of the sides.  

Conceptual Principles 

he development of concept al principles in the DM  can revolve first aro nd the ideas of factors 
and m ltiples. verreliance on m ltiplication as e cl sively derived from repeated addition leaves 
st dents insensitive to the distinctions bet een additive and m ltiplicative reasoning. As noted above most 
st dents are not given eno gh e perience moving in m ltiplicative space. n the descriptors, e also offer 
the vie  that st dents sho ld be challenged to find m ltiple ays sing only m ltiplication and division to 
move among n mbers, s ch as bet een 15 and 24 dividing by 5 and m ltiplying by 8 .  called these 
types of problems daisy chains  in earlier or  Confrey  Scarano, 1995 . his enco rages st dents to 

or  ith common factors. n addition, it helps st dents to develop no ledge of the principles of 
m ltiplication by 1 identity , m ltiplication by ero, the comm tative property of m ltiplication, the 
associative property of m ltiplication, and, later, m ltiplicative inverses. t can also lead to st dents 
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recogni ing rational n mber m ltiplication and division. n the DM , e also treat distrib tivity very 
caref lly and e plicitly, as it is the means by hich the additive str ct res are lin ed to the m ltiplicative 
str ct res.  

Coherent Structure 

he coherence of the DM s str ct re can no  be s mmari ed. he  b ilds from the prior s of 
a  e ipartitioning  b  length, area, and vol me  and c  addition and s btraction to establish the three 

models applied to hole n mbers. he interrelationships among the ideas of factors and the patterns in the 
m ltiplicative table are sed to s pport the evol tion of the properties and dra  connections to 
m ltiplicative vs. additive comparison. hen at the pper end of the , t o types of e tensions occ r  the 
application of the problems to m ltidigit algorithms sing the distrib tive property, and the incl sion of 
fractions and ratios as operators. hese e tensions are caref lly constr cted in the conte t of the three 

nderlying models. he e tensions to fractional operators are also connected to the learning tra ectory on 
length, area and vol me here the MM DMS misconception can be most readily remediated.  

verall the  is designed to set p the movement to ratio reasoning thro gh connections to the t o 
Standards on tables of val es, 4.MD.1 on conversions and 5. A.3 on tables of val es. Finally, st dents are 
prepared for the c lmination of e ipartitioning in the fifth grade standard 5. F.3  nterpret a fraction 
as division of the n merator by the denominator a b  a  b . Solve ord problems involving division of 

hole n mbers leading to ans ers in the form of fractions or mi ed n mbers, e.g., by sing vis al fraction 
models or e ations to represent the problem . he target goal of the  is reached in a set of Standards 
that incl de 6. S.1 nterpret and comp te otients of fractions, and solve ord problems involving 
division of fractions by fractions, e.g., by sing vis al fraction models and e ations to represent the 
problem , and 7. P.1 Comp te nit rates associated ith ratios of fractions, incl ding ratios of lengths, 
areas and other antities meas red in li e or different nits .  

With this e ample of ho  an  is related to the standards, one can see that the process of lin ing an 
 to standards re ires caref l and synthetic applications of empirical research literat re. he overall 

frame or  for m ltiplication and division is thin in the early grades and tends to overemphasi e a 
relationship to additive str ct res, res lting in an nderdeveloped frame or  for m ltiplicative str ct res. 
We have attempted to artic late a stronger frame or  for a stronger m ltiplicative str ct res approach by 
adding a fe  ey bridging standards ithin the learning tra ectory hich lin  to e ipartitioning and help 
to e plain ho  m ltiple models of division and m ltiplication can be s pported in classroom instr ction. 

he a thors of the CCSS M left room for s ch interpretations by avoiding the mista e of defining 
m ltiplication as repeated addition hich had been incl ded in early drafts of the CCSS M . he learning 
tra ectory also ma es the case for both strong distinction among the strategies, and strong relationships 
among the models, strategies, and associated properties. 

Implications for Researchers and Professional Developers 

he .t rnonccmath.com ebsite as visited more than 7000 times bet een its release in April 
2012 and late May 2012. he primary visitors have been state and district personnel and teachers loo ing 
for a means to ma e sense of and ma e instr ctional interpretations from the CCSS M. Some fo nd the 

ebsite on their o n hile others have fo nd it as a res lt of presentations and mailings. We are c rrently 
in the process of improving the site in several ays. We are adding in the relevant references to research 
that e ere nable to do in the first ro nd d e to the press res of time and the foc s on creating 
coherence and consistency in the descriptors  as one can imagine, this has been hard or . We are also 
preparing to nderta e an e pert revie  process, similar to the process e cond cted for vetting the  on 
length, area and vol me ith the researchers from the Meas rement Mini Center. 

We are also committed to or ing ith districts and states sing the s and their descriptors as a 
basis for professional development. hese efforts incl de both pre service and in service teachers. We 
have or ed ith Colorado, West irginia, orth Carolina, and Washington, and have received re ests 
from other states. n this or , it becomes clear that the fo ndation of no ledge in the npac ing is not 
on its o n s fficient to s pport professional development  the e amples in this paper ma e it clear that the 
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ritten descriptors by themselves can serve as an important part of efforts to help teachers nderstand the 
mathematical no ledge embedded in the tra ectories and to translate them into rob st learning tra ectory
based classroom practice.  

here are n mero s opport nities for college and niversity fac lty and state and district mathematics 
coordinators to se these materials to s pport professional development. We have engaged in creating 
digital presentations to sho , in a more vis al and story based ay, ho  the s are lin ed to the 
standards. ne co ld imagine b ilding ebinars and co rse materials to provide hands on e periences for 
teachers ith these ideas as ell, ass ming s fficient available reso rces. Some of the teams developing 
the original s have already created related professional development materials that can be sed in 
creating a nation ide application of this or .  

Perhaps even more relevant to the PM A a dience is the potential professional val e of the ebsite 
to the research comm nity. o some degree, the infl ence of learning tra ectories progressions on the 
CCSS M as mitigated by ambig ity, disp te, or lac  of synthesis by the research comm nity. While this 
is not s rprising in a field as yo ng as o rs, its mat ration depends on o r illingness to nderta e 
synthesis, and s ggests it o ld be ise to engage in more of this ind of activity. While researchers may 

ish to do their o n thing  or a ait some other body to interpret and synthesi e the development of the 
Standards, it o ld improve o r professional rep tation as a field if e ere to ta e p this challenge 
o rselves.  

t is often reported that in medicine, prior to the famo s Fle ner report Fle ner, 1910 , physicians 
received ed cation in general basic science and then apprenticed to a or ing physician ntil they ere 
ready to establish their o n practice. f that mentor as a strong and no ledgeable role model, the 
apprentice as li ely to emerge as a ell alified and very competent physician as ell. f not, another 

ac  might be added to the rolls. After the Fle ner report, the medical field stepped p to create a 
practitioner informed practice oriented no ledge base for clinical training  of physicians and to 
standardi e medical ed cation. n some ays, e are in a similar predicament in mathematics ed cation 
research. Someone st dying in a strong program, or apprenticing ith a strong fac lty member, tends to 
move into teacher ed cation ell prepared. St dy in a less rigoro s program and navigating the literat re 

itho t any g idance leaves one tas ed ith inventing  a deep nderstanding of the literat re  the ob is 
highly inefficient, at best, and li ely to leave a st dent poorly prepared to ta e p highly informed or  or 
to ma e insightf l contrib tions. Synthesis or  is challenging, sometimes gr eling, and yet remar ably 
satisfying. he .t rnonccmath.com ebsite is meant to serve as one contrib tion to increasing the 
accessibility, completeness, and consistency of the interpretation of the significant portion of the research 
base in mathematics ed cation on st dent learning. 

r research gro p has been the beneficiary of one of the S  synthesis grants to bring together a 
literat re on rational n mber reasoning that consists of some 600 articles. his e perience has led s to this 
synthesis of the s or  ith the CCSS M. t may be the case that the idea of s ill fade, st as so 
many movements in mathematics ed cation do e.g., metacognition, problem solving, differentiated 
instr ction, active mathematics teaching, and individ ali ed instr ction  the list is, sadly, ite long . 
Many val able lessons resided in those movements, and for the field to become rob st for g iding the 
cond ct of practice, it m st create a means for its empirical or  to accr e progressively and be refined 
over time. S ch a means o ld help red ce the fre ency ith hich e see the same st dies cond cted 
e.g., st dents mista ing the vis al path of a f nction s representation for the behavior of the f nction has 

been st died too many times to co nt , and help to define a c tting edge field here scholars can aim to 
ma e progress. All of these s ggestions f lfill the vision of the conference organi ers for this PM A 
ann al meeting to disc ss transitions. he b l  of this paper addressed ho  to create s pports for teachers 
as they transition to the CCSS M, b t the disc ssions herein also address transitions for professional 
developers and researchers in the everyday cond ct and sharing of o r practices.  
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Endnotes 
1 he a thor as a member of the ational alidation Committee for the Common Core State 

Standards. 
2 his meeting as ointly hosted by the D A research gro p directors Confrey and Maloney  and 

the Consorti m for Policy esearch in d cation co sponsors F. Mosher, P. Daro, and . Corcoran . 
3 he Mini Center comprises fac lty and senior researchers . Smith, organi er, . Confrey, . arrett, 

. ehrer, M. attista, D. Clements, . Do gherty, D. ec  and associated postdoctoral researchers and 
grad ate st dents. 

4 ne can also se the D M bo  Fig re 5a  to apply to area, if one starts ith a nit s are and vie s 
b as stretching b into a strip of b nits, for e ample, as a strip along the top of Fig re 5b. hen if c 
represents a c � 1 strip vertically along the left edge, then stretching it by b prod ces bc  and the ratios are 
preserved. his model seems too abstract and so e prefer to introd ce the area model separately. 
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