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This paper describes the learning trajectory for Early Equations and Expressions (EELT), one of the 
18 learning trajectories presented at www.TurnOnCCMath.net, developed to interpret the Common 
Core Standards for Mathematics based on research on student learning. The EELT is foundational 
for introducing concepts of early algebra and setting the foundations for the most advanced 
mathematical ideas in the later grades of schooling. The theoretical framework and research 
literature that the unpacking was based on are presented by giving examples from the descriptors of 
the standards. 
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Learning Trajectories and the Common Core Standards for Mathematics: 

TurnOnCCMath.net 
The Common Core State Standards for Mathematics (CCSS-M) (CCSSO, 2010) have been 

adopted by 45 states and the District of Columbia. Major goals include strengthening students’ 
mathematical conceptual understanding, weaving eight key mathematical practices throughout 
mathematical instruction and learning, and bringing U.S. educational standards to par or better with 
education in countries whose preparation of students in mathematics is stronger than that of the U.S., 
based on international assessments (CCSSO, 2010). The CCSS-M represents a major effort to 
improve the coherence in learning expectations across states.  The new standards include significant 
changes in depth, emphasis and timing of instruction in numerous topics. Some topics are introduced 
earlier, some later, than in previous standards from various states, and several with more intensive or 
expanded treatment (e.g. early number and operations; ratio and proportional reasoning; statistics and 
probability). 

How then to translate the intent of the new standards into instructional practice, to interpret the 
CCSS-M in ways that strengthen students’ conceptual development? Research on student learning by 
mathematics educators during the past 20 years or more has generated learning trajectories (LTs) as 
an organizing framework for student conceptual growth (Clements & Sarama, 2004; Confrey et al., 
2009; Simon, 1995). Depicting student learning of major mathematical ideas over time, LTs describe 
student prior knowledge of particular ideas, and networks of instructional experiences that support 
students in transiting likely intermediate states of understanding on their way to robust domain goal 
understanding (Confrey et al., in press). 

Learning trajectories can provide a framework for organizing the instructional core (Confrey & 
Maloney, 2011)—that spectrum of instruction, instructional practices, enacted curriculum, and 
classroom discourse and assessment that comprise the learning environment that children 
experience—to focus on the consistent development of student conceptual understanding over time. 

                                                
1 On October 22 of 2013, PME-NA committee was informed of a mistake in authorship. 

Therefore, the paper authorship herein differs from the version of this paper included in the 
PMENA 2013 Conference Proceedings that were posted on the conference website on Monday, 
October 21, 2013.  The authors of this paper listed here are correct as of Thursday, October 24, 
2013.  
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The CCSS-M calls for incorporation of research-based learning progressions detailing what is 
known today about how students’ mathematical knowledge, skill, and understanding develop over 
time  (CCSSO 2010, p. 4). Our research priorities are to bring to bear the research on student 
learning to support educators in interpreting the CCSS-M and support practical instructional 
implementation of the CCSS-M.  

e have constructed 1  learning trajectories that cover all of the K-  CCSS-M standards 
(http: www.turnonccmath.net) (Confrey et al., 2011; Confrey, 2012). A hexagon map of the CCSS-
M was created as a visual model for navigating the connections among major topics and standards 
and illustrating learning trajectories within the standards. Each learning trajectory (LT) comprises 
descriptors that incorporate the Common Core Standards into text- and graphics-based descriptions 
of student movement from na ve to more sophisticated mathematical understanding. The descriptors 
identify (1) conceptual principles, (2) student strategies and representations or inscriptions along with 
misconceptions; (3) meaningful mathematical distinctions and multiple models; (4) coherent 
structure or schemes of reasoning as topics become more complex; finally, (5) bridging standards 
that are added to provide conceptual continuity for more fully articulated learning trajectories than 
could be provided in the compact CCSS-M.  The iterative development of these learning trajectory 
descriptors, and their continual improvement and strengthening based on feedback and review, have 
been described previously (Confrey, 2012). n this paper, we describe in more detail the learning 
trajectory for Early Equations and Expressions (EELT). 

  

Ear  E uations and E ressions Learning Trajector  
Algebra encompasses the relationships among quantities, the use of symbols, the modeling of 

phenomena, and the mathematical study of change  (NCTM 2000, p. 3 ). y linking these topics to, 
and developing them simultaneously with, topics of early mathematics, the aim of early algebra in 
elementary schools is for students to establish the foundations for development of algebraic 
reasoning in middle and high school (Carraher et al. 200 ). The main goal of algebra is for students 
to learn how to form generalizations by seeing the general through the particular  and the 
particular in the general  (Mason et al., 2005), to shift students’ focus from thinking about relations 
among particular numbers and measures toward thinking about relations among sets of numbers and 
measures, from computing numerical answers to describing and representing relations among 
variables.  (Carraher et al., 200 , p. 2 ). or competency in algebraic reasoning, student learning 
must encompass and coordinate several different big ideas  such as generalized arithmetic, 
functional thinking, the concept of equality, and the concept of a variable ( lanton & Kaput, 2011; 
Carraher et al., 200 ; Carraher et al., 200 ).  

The goal of the EELT was to describe the development of students’ reasoning about patterns and 
the early foundations of functional relationships (Section 1, Exploring Patterns and Their 
Relationships ), equality and equations (Section 2, Exploring and Solving Equations ), and 
expressions, including variables as quantities that vary (Section 3, orking with Expressions ). 
These interrelated concepts span grades K through , concurrently during many of the grades, with 
standards from the Operations and Algebraic Thinking and the Expressions and Equations domains 
of the CCSS-M. Other topics important in the foundation of algebraic reasoning are covered in other 
TurnOnCommonCoreMath LTs: nequalities and more advanced notions of functional thinking are 
emphasized in the Linear and Simultaneous unctions LT; operations including inverse operations, 
and properties are explored in detail in the Addition & Subtraction, and Division and Multiplication 
LTs, and ratio, rates, and proportional reasoning are developed in the Ratio and Proportion and 
Percents LT. Explicit connections among these and the EELT are made, where appropriate in each of 
these LTs. The EELT contains a total of 1  CCSS-M and  ridging Standards, with their 
corresponding descriptors. The following sections describe the unpacking of the EELT as it was 
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developed and presented in www.TurnOnCCMath.net. 

Section : E oring Patterns and Their Re ationshi s 
Section 1 describes the development of student reasoning in identifying repeating and growing 

patterns, and the characterization of relationships between two patterns. The CCSS-M introduces 
arithmetic patterns in rade 3 (Standard 3.OA.9), but does not explicitly treat geometric patterns, 
which are also a type of growing pattern. Repeating patterns can act as the basis for introducing 
growing patterns, because they are foundational for expressing initial generalizations of rules, 
functional relationships, proportional thinking, and number theory (Threlfall, 1999; arren, 2005; 

azkis & Liljedahl, 2002). The CCSS-M introduces shape patterns in rade 4 (Standard 4.OA.5), 
however, research has demonstrated that non-numeric patterns such as pictorial, verbal and symbolic 
should occur in earlier grades to help students recognize generalization in relationships that are 
independent of the numbers or objects being operated on  ( arren, 2005, p. 59). uilding on such 

insights, the learning trajectory therefore incorporates introduction of students first to non-numeric 
patterns (both repeating and growing) and then to numeric patterns (both repeating and 
arithmetic geometric); we added four bridging standards to support these ( ridging Standards 
K.E .A, 1.E .A, 1.E .  and 2.E .A). 

e also discerned a systematic scheme for pattern exploration ( igure 1), an example of 
coherent structure (element 4, above). or each type of pattern, student understanding is 
strengthened through first (a) identifying the terms and the core unit, (b) extending the pattern to 
subsequent terms, (c) identifying missing terms, (d) debugging mistakes, (e) recognizing common 
structure among patterns (i.e. the pattern 2, 4, , ,   has the same structure as the pattern , , 
90, ) and finally (f) creating new patterns from a given core unit and initial element.  

Non-numeric repeating patterns

Non-numeric growing patterns

Numeric repeating patterns

Arithmetic sequences

Geometric sequences

1.EQX.A
K.EQX.A

1.EQX.B

2.EQX.A

2.EQX.A

3.OA.9

atterns Sequences Standards

Non-
numeric

NumericRecognize common 
structure

Debug

Find missing terms

Extend

Identify

Create

Structure within and across descriptors

Figure : CCSS M Standards in Gre  and ridging Standards in Green 

A more sophisticated description of patterns, identifying a rule for a given pattern in standard 
4.OA.5 (i.e. given the pattern 2, , 12, 1 ,  students identify the rule as Add 5 ), supports the
second goal of this section, namely the identification and characterization of relationships between 
two patterns (Standard 5.OA.3). A correspondence description for two patterns expresses a rule that 
relates corresponding value pairs of two patterns. A foundation of the development of 
correspondence rules is a covariation relationship, which explains how the values of two patterns 
change simultaneously ( lanton & Kaput, 2011; Confrey & Smith, 1991, 1994, 1995). The 
distinction between covariation and correspondence relationships can be introduced through 
contextual problems, for example the following: A roadrunner, being pursued by ile E. Coyote, 
runs 3 meters every two seconds. Make a graph that describes the distance the roadrunner travels in 
relation to time. Predict the roadrunner’s location after 5 seconds.  The learning trajectories highlight 
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multiple representations: e.g. for characterizing functional relationships, the use of diagrams, tables, 
graphs, and dynagraphs ( igure 2). 

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10 11 12 13

10 11 12 13 14 15

14 150

0

Figure 2: Table, Dynagraph and Graph as Representations 

The two patterns in this example covary: values in the first column increase by 2 while values of 
the second column increase by 3. A correspondence description here delineates a rule that describes 
one of the sequences in terms of (dependent on) the values of the other: any value to distance covered 
by the roadrunner (m) is 3 2 times the corresponding value of the time (s) in seconds. Students in 5th 
grade are not expected to write a symbolic equation for this type of relationship. However, they are 
expected to extend the patterns and identify the rule (correspondence). Studies have shown that 
students are capable of reasoning about covariation and correspondence relationships as early as first 
grade ( lanton, & Kaput, 2004; Martinez & rizuela, 200 ; Stephens et al., 2012). y 5th grade in 
the EELT, students have experience exploring both covariation and correspondence relationships and 
a variety of arithmetic and geometric sequences, all of which lay a strong foundation for the 
development of ratio and functions in middle school (Carraher & Schliemann, 200 ; azkis & 
Liljedahl, 2002). 

Section : E oring and So ing E uations 
The goals of Section 2 focus on a) understanding the concept of equality and solving equations 

and b) the concept of a variable as representing a single unknown.  Equality is a pivotal concept with 
multiple meanings. t is key to development of a progressively sophisticated understanding of and 
flexibility with equations. t is developed from a way to make the equations balance,  to 
determining which equations are true or false, leading to the more sophisticated solving of equations 
(Carpenter, & Levi 2000; Carpenter et al., 2003; an de alle et al., 2013). The aim is for students 
to recognize that the equal sign signifies a claim that the quantities or expressions on either side of 
the equal sign represent the same value; this serves as a foundation for creating equivalent algebraic 
expressions at the higher levels of the learning trajectory.   

The CCSS-M introduces the meaning of the equal sign in equations in rade 1 (Standard 
1.OA. ). efore formal introduction to the equal sign and writing equations, students learn to model
the equality of (a) two additive parts (which can be joined) and their sum, and (b) equipartitioned 
parts (which can be reassembled) and their original collection or whole. To link students’ prior 
understanding of joining and separating in counting (Samara & Clements, 2009; Nunes & ryant, 
199 ; uson et al., 19 3; Piaget, 19 5) and equipartitioning and reassembly (Confrey et al., 2009) to 
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the concept of equality, we added a preceding bridging standard (1.E .C) that contains multiple 
well-known ways to concretely model equations, such as unifix cubes, counters, and drawings. 

alance scales also serve as visual models for equations: children use different combinations of 
quantities to represent and achieve balance (equality) and to show equivalence between an original 
collection and all of the corresponding fair shares reassembled ( aroody & insburg, 19 3; an de 

alle et al., 2013). alance diagrams ( igure 3) anticipate the balancing of equations in algebra 
(Herscovics & Linchevski, 1994). Another visual model for equations is the bar model  ( igures 
4a b), in which children use different combinations of horizontal bars to establish claims of equal 
lengths or to show equivalence between a collection of items and the reassembly of equipartitioned 
fair shares ( ong Ng & Lee, 2009; Hoven, 200 ). or example, students may recognize that a 12-
inch paper strip shared among three people can be represented with 4-inch long strips per person, 
which can then be reassembled lengthwise to form the original 12-inch paper strip ( igure 4a). They 
may also demonstrate that the three fair shares of 4-inch strips all have the same length ( igure 4b). 

e conjecture that as students coordinate such models with the writing of equations, they reveal 
misconceptions about the role of the equal sign, such as using it as an operator symbol (Carpenter & 
Levi, 2000; Carpenter et al., 2003; Kieran, 19 1). Teachers can then, in a timely way, instructionally 
address such a misconception. 

                 Figure 3: Balance Scale  Figure 4a: Bar Model 1  Figure 4b: Bar Model 2 

ollowing the writing of equations, students begin to solve equations with single unknowns. 
They progress from addition and subtraction equations to division and multiplication equations 
relating three whole numbers (Standards 1.OA.  and 3.OA.4 respectively), move to equations that 
involve four whole numbers (3.E .A, bridging standard added) and then to the more sophisticated 
solving of two-step word problems using all four operations in equations (Standard 3.OA. ). or the 
solving of all the types of equations above, the EELT includes four different strategies suggested by 
research (Carpenter, & Levi 2000; Carpenter et al., 199 ): a) substitution of different values, 
including checking to see if the two sides of an equation have equal value; b) using models to 
illustrate equivalence, such as rearranging arrays (i.e.  x 2 is equal to 3 x �); c) applying inverse 
operation (as in fact families ), such as rewriting 35    � as  x �  35 to solve; and d) applying 
known properties (commutative property of addition and identity) to solve problems, such as 
recognizing that the equation 1 x �  35   can be simply �  35   through application of the 
identity property (1 x �  �). 

Section : or ing ith E ressions 
Section 3 of the EELT has goal understandings of a) distinguishing between variable as 

representation of a single unknown value and variable as a quantity that varies, according to context, 
b) using variables in different contexts to represent quantities, and c) identifying and generating
equivalent expressions at a more advanced level. 

Students first encounter the variable as representing a single unknown value in equations 
(Section 2) but now broaden the concept to represent a quantity that varies, in exploring expressions 
(Standard .EE.2.a). Studies have shown that students of an early age can represent quantities that 
vary (Carraher et al., 200 ; Marum et al., 2011). Again, multiple representations support 
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strengthening student understanding: variables should be represented in many forms including 
multiple letters, shapes, and symbols, in part to avoid the development of misconceptions and 
prototypes such as believing that letters are general referents (i.e. h stands for height of multiple 
people) (Mac regor & Stacey, 199 ) and that different symbols can have the same value (Carpenter 
et al., 2003). Contextual problems such as the following, from rizuela & Earnest (200 ), support 
distinctions: Raymond has some money. His grandmother offers him two deals: eal 1: She will 
double his money. eal : She will triple his money and then take away . Raymond wants to choose 
the best deal. hat should he do? How would you figure out and show him what is the best to do? s 
one deal always better? Show this on a piece of paper.  enerating expressions for these problems, 
students recognize that a) a variable can represent a parameter whose value determines the 
characteristics or behavior of other quantities i.e. if m is the value money above, then Deal 1 is 2¥m 
and Deal 2 is (3¥m)- , b) while the value of a parameter can vary, its value is always fixed in the 
context of a specific problem, and c) the same variable used in expressions related by context must 
represent the identical value, but different variables may represent the same value or different values 
( lanton & Knuth, 2009-2013). y exploring which deal is better to take, students distinguish 
between an equation or inequality being true for all values of x, and for some (or only one) values of 
x. 

hile exploring equivalent expressions, students typically identify two expressions as equivalent 
if, for any value substituted for the variable, the values of the two expressions are equal (Standard 

.EE.4). This implies that a single counterexample (a value for the variable that yields unequal values
of the expressions) demonstrates the expressions’ non-equivalence (Carpenter & Levi, 2000). 
Students express numerous common misconceptions and errors when simplifying expressions, but by 
substituting values for the variables before and after simplifying, and looking for counterexamples, 
they are able to strengthen their understanding and improve their accuracy. This experience is critical 
for generating equivalent expressions, bringing many of students’ skills with operations, in a variety 
of contexts, together with their work in algebra, to explore and demonstrate the power of algebra as a 
generalized solution method (Standards .EE.1 and .EE.2), thereby advancing their algebraic 
reasoning and problem-solving abilities. 

Im ications and Discussion 
The EELT builds on previous research on how students’ thinking progresses within patterns and 

sequences, equations, and expressions, and is foundational for the development of their algebraic 
thinking. Aiming to show the progression of big ideas  within the CCSS-M, the LT maintains the 
grade level of each mathematical idea as it is presented in the CCSS-M (for instance, not introducing 
the variable as a quantity that varies until th grade, despite research showing that this can be done 
earlier) while providing bridging standards to fill gaps in the CCSS-M for instructional continuity 
and a coherent structure (e.g. introducing repeating patterns and geometric sequences). lanton and 
Knuth (2009-2013) have suggested five curricular learning progressions for algebra education: a) 
equality, expressions, equations and inequalities, b) functional thinking, c) variables, d) generalized 
arithmetic, and e) proportional reasoning. Ongoing research such as theirs will provide additional 
fundamental insight for revising the EELT and other learning trajectories of TurnOnCCMath.net. 
nterpretation and implementation of the CCSS-M using learning trajectories can spur strategic 

critical areas of further research into student learning of mathematics, and contribute to constructive 
critique of the CCSS-M, both of which will lay the groundwork for systematic revision of the CCSS-
M in the coming years. 
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