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Virtual manipulatives as cognitive tools, dynamic/interactive, Web-based representations and/or 
technology-based renditions, allow users to engage in mathematical meaning making. This 
research investigated teacher candidates’ perceptions of the mathematical, cognitive, and 
pedagogical fidelity of Fill and Pour virtual manipulative. Findings suggest that the degree to 
which the mathematical entity is faithful to the essential mathematical properties of that item in 
the virtual environment has been granted by teacher candidates to virtual manipulative 
designers automatically, without closer examining of the mathematical, cognitive, and/or 
pedagogical fidelity. Further qualitative probing was carried through to better understand the 
nature of such assumptions. 
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The ongoing challenge of reshaping mathematics education with integration of technology 
tools (NCTM, 2000; Ball, 2003; Alagic, 2003, 2004) has led to consideration of pedagogical, 
mathematical and cognitive fidelity of virtual tools as well as concern about teacher preparation 
to utilize quality math based technology (e.g., Dick, 2008; Bos, 2009). This study examined 
teacher candidates’ perceptions of the mathematical, cognitive, and pedagogical fidelity of a 
certain problem solving virtual manipulative tool. The study is an illustration of challenges that 
we face in teacher preparation programs related to use of technology in mathematics classrooms.

Virtual Manipulatives: Mathematical, Cognitive and Pedagogical Fidelity 
This section provides a brief review of the research literature related to representational and 

cognitive characteristics of virtual manipulatives and their mathematical, pedagogical and 
cognitive fidelity as they relate to quality teaching and learning mathematics.
Virtual Manipulatives as Cognitive and Representational Tools

Virtual manipulatives (VM) are typically designed as Java or Flash applets. They are often 
modeled after existing manipulatives such as geoboards, tangrams, base ten blocks, fraction 
bars,…They allow learners to relate concrete models to abstract mathematical concepts. Dorward 
(2002) defined virtual manipulatives as “computer based renditions of common mathematics 
manipulatives and tools” (p. 329) while Moyer, Bolyard, & Spikell (2002) defined them as "... an 
interactive, Web-based visual representation of a dynamic object that presents opportunities for 
constructing mathematical knowledge" (p. 373). Therefore virtual manipulatives must be web-
based and they must afford users to interact/manipulate these dynamic objects which shows 
potential for learning and teaching mathematics interactively (Moyer-Packenham, Salkind, & 
Bolyard, 2008). Other names for virtual manipulatives include interactive math applets and 
Mathlets (JOMA Web Site 2006).

As cognitive tools, virtual manipulatives support, guide, and extend the thinking processes of 
their users. They are based on the principle that learners need to make their own meaning of new 
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concepts. Jonassen (1992) defined cognitive tools as “generalizable tools that can facilitate 
cognitive processing” (p.2) and “make effective use of the mental efforts of the learner" 
(Jonassen, 1996, p.10). Virtual manipulatives have properties that go beyond their counterparts, 
physical manipulatives. They provide learners a way - often both visual and verbal including 
hints, feedback with pop-ups and help features - of representing their understanding of a new 
concept/phenomena and how it relates to their existing understanding of the same idea (Derry, 
1990; Alagic & Palenz, 2004; Moyer, Niezgoda, & Stanley, 2005; Zbiek, Heid, Blume, & Dick, 
2007).

When learning complex new mathematical ideas it helps to interact with multiple 
representations (Cox and Brna, 1995). Virtual manipulatives as external representations may
help learners’ ability to transfer among multiple representations, to extend what has been learned 
in one context to new contexts, developing representational fluency (NRC, 2000; Zbiek, Heid, 
Blume, & Dick, 2007). Virtual manipulatives help develop representational fluency by linking 
symbolic, pictorial and concrete representations. Not making connection between different 
representations may even inhibit learning (Ainsworth, Bibby & Wood, 2002). Representation
standard (NCTM, 2000) articulates representations as crucial components in facilitating 
learners’ conceptual understanding of concepts and relationships. The term representation 
applies to both processes and products. Furthermore, the same term is used for product/process 
that are observable externally (external representations) as well as to those that ensue internally 
(mental models). In this context, virtual manipulatives contribute to richness of representations in 
a unique way, as they often comprise multiplicity of representations – visual, dynamically visual, 
symbolic and verbal (Goldin & Shteingold, 2001; Alagic, 2003).

The literature review of the existing research indicated that learners using virtual 
manipulatives demonstrated improvements in mathematics understanding and achievement (e.g., 
Bolyard, 2006; Moyer et al., 2005; Lee, Silverman, & Montoya, 2002; Lee & Jung, 2004). A 
study described by Reimer & Moyer (2005) about third graders using virtual manipulatives 
during a 2-week long unit on fractions revealed a statistically significant improvement in 
students’ conceptual knowledge. Some research suggested that use of virtual manipulatives 
might have a positive effect on student engagement and developing procedural and conceptual 
understandings (e.g., Moyer, Niezgoda, & Stanley, 2005; Raphael & Wahlstrom, 1989). 
However, mathematical meaning is not necessarily explicit in use of manipulatives and VMs 
cannot be expected to improve learners’ understanding; to be effective, virtual manipulatives use 
must involve active cognitive processing by learners (Ball, 1992; McNeil, 2007; Roberts, 2007; 
Smith, 2009). Many believe that virtual manipulatives can be particularly helpful to students 
with language difficulties, including English language learners (Moyer, Niezgoda, & Stanley, 
2005).

As illustrated, there are a number of studies about teachers’ and pupil’s use of virtual 
manipulatives demonstrating the unique characteristics of these tools for developing conceptual 
understandings and teaching mathematics. However, there is no much research about teacher 
candidates’ understanding of both potential and pitfalls in using virtual manipulatives. 
Mathematical, Cognitive and Pedagogical Fidelity of Virtual Manipulatives 

The mathematical fidelity of a virtual manipulative refers to faithfulness to the defining 
properties of a mathematical concept or a phenomenon that manipulative is attempting to 
represent. Simply, we ask, is a representation provided via virtual manipulative true to the 
mathematical concept that it is trying to represent? “In order to function effectively as a 
representation of a mathematical “object,” the characteristic of a technology-generated external 
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representation must be faithful to the underlying mathematical properties of that object” (Zbiek, 
Heid, Blume, & Dick, 2007, p. 1174). For an example, the answer to a division problem using 
the calculator is truncated, but the calculator is giving you the most feasible answer for the place 
values it allows. “Technology’s limitations are a constant concern for mathematical fidelity …” 
(Bos, 2011, p. 4404). 

The cognitive fidelity of virtual manipulatives is related to user’s cognitive engagement while 
developing patterns and making connections that were only possible in one’s mind. A familiar 
examples are those applets that allow change of a parameter over time (using a slider) resulting 
in changes of a graph, allowing a mental process recognizing a resulting series of graphs. In 
other words, cognitive fidelity leads to question, Is the concept better understood due to the 
user’s capability of acting on the related virtual object? (Bos, 2008). Cognitive Information 
Processing Theory as well as Dual Coding Theory (DCT) is based on the premise that two 
interconnected systems and their sets of codes (visual and verbal) are the base of information 
processes and storage. These collections of codes include both visual and verbal codes, which 
can represent letters, numbers, or words. According to these theories, facilitating learning with 
functionally independent both visual and verbal codes has cumulative effects on their recall 
(Clark & Paivio, 199; Moyer-Packenham, Salkind, & Bolyard, 2008). 

Table 1: Pedagogical, Mathematical, and Cognitive Fidelity Chart to Determine Degree 
of Fidelity (Adapted for VM from Bos, 2009, p. 526.) 

Low Fidelity Medium Fidelity High Fidelity 

P
ed

ag
o
g
ic

al VM interactivity is not 
obvious; not intuitive, 
confusing to use.  Not 
appropriate for the concept 
being represented. VM hard 
to access.

Manipulation/interactivity is 
not intuitive, but after 
reading the directions it is 
doable. May be easier to do 
without the technology.

VM is appropriate for 
activity. Mathematical 
manipulation is doable, 
encourages active 
involvement, and requires 
little or no training.

M
at

h
em

at
ic

al Math concepts behind VM 
either too simplistic or too 
complicated. Patterns are 
not revealed. Not real-life 
related. Leads to rote 
memorizing rather than 
conceptual understanding.

VM patterns lack 
predictability. Mathematical 
significance is minimal. 
Application of mathematics 
unclear.

VM is mathematically 
correct. Maximizes the use 
of patterns. Believable and 
livable use of mathematics. 

C
o
g
n
it

iv
e

VM static with no 
opportunities to formulate 
and test conjectures. 
Patterns do not make sense. 
Difficult to relate to prior 
knowledge; confusing and 
unyielding.

VM provides limited 
opportunity to explore and 
test patterns. Patterns 
require either minimal or 
too much manipulation to 
make sense of the 
mathematical concept 
behind it. 

VM can be used to construct 
and deconstruct, test, and 
revise to understand the 
patterns and structure of 
concepts. Interacting leads 
to the patterns and greater 
depth of understanding. 

The pedagogical fidelity of virtual manipulatives refers to the degree to which a learner 
believes that a virtual manipulative affords her to act mathematically in ways that correspond to 
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the nature of mathematical learning via discovery.  Zbiek, Heid, Blume, & Dick (2007) define 
pedagogical fidelity as “the extent to which teachers (as well as students) believe that a tool 
allows students to act mathematically in ways that correspond to the nature of mathematical 
learning that underlies a teachers practice…” (p. 1187). It is about allowing learners to learn 
mathematics by doing – facilitating the creation of objects, acting on objects, explicating 
evidence -  without being distracted by low quality of the applet or other technology limitations 
(Bos, 2009; Dick, 2008). 

Degree of mathematical, cognitive and pedagogical fidelity may vary for virtual 
manipulatives used in mathematics. The Table 1 is a VM adaptation of a chart for determining 
degree of fidelity that Bos (2009) used in the study of mathematical, cognitive and pedagogical 
fidelity for mathematics related websites. Furthermore, Bos (2008) described a study that 
suggested technology high in mathematical and cognitive fidelity lead to greater student 
mathematical achievement. Selecting a virtual manipulative for instructional purposes requires 
careful consideration of the mathematical, cognitive, and pedagogical fidelity of the virtual 
manipulative as well as its externalized representation will affect mathematics learning and 
teaching (e.g., Zbiek, Heid, Blume, & Dick, 2007). 
Threshold Concept and a Critical Incident: Fill and Pour Virtual Manipulative 

The course Mathematics Investigations (Alagic, 2006) is designed to investigate demands of 
digital technologies integration and inquiry-based approaches to teaching and learning of 
mathematics, while bridging the gap between two traditional courses: Mathematics for 
Elementary Teachers and Instructional Strategies in Elementary Mathematics. The main thrust of 
the course are three Problem Sets assignments, each focusing on one big mathematical 
idea/concept developed around an open-ended, real-life related and challenging problem. The 
problem set consists of 6-7 additional problems scaffolding “down” the main concept. Each 
student is designing a unique collection of problems and submitting their work individually. 
However, students are encouraged to discuss collaboratively their work. Each problem set 
utilizes technology tools in an essential way. At the end of the problem set, a required 
metacognitive reflection reports about students’ thinking during the process of the problem set 
design.

A threshold concept refers to realizing a new and previously unreachable way of thinking 
about a certain concept or phenomena. It represents a transformed way of meaning making or 
interpreting something relevant to learner’s progress in understanding (Land, Meyer, &Smith, 
2008).  In the context of virtual manipulatives it refers to the fact that “Students do not 
necessarily see on the screen what is “evident” [to the software designer and maybe the teacher] 
(Dreyfus, 2002, p. 23). The following is an example of what I consider threshold concept for the 
students in Mathematics Investigations class because it lead to deeper understanding of the need 
to consider fidelity of virtual manipulatives in general. 
Critical incident. During class activities teacher candidates were asked to investigate virtual 
manipulative Fill and Pour (Figure 1), with problems of the following type:

You have a soda fountain but only two unmarked containers (one 5 ounces and one 9 ounces) 
that can be filled or emptied or poured back and forth as needed. Your goal is to get precisely 
the target amount (7 ounces) in one of the containers. 
(http://matti.usu.edu/nlvm/nav/frames_asid_273_g_3_t_4.html).
In a matter of minutes, every teacher candidate in the class was “filling” and “pouring”. 

Some candidates quickly got answers, others struggled. As some candidates were losing their 
patience, a candidate offered a hint, “Just fill and pour in the same direction, eventually you will 
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get an answer”. Very quickly, the idea spread around, everyone was showing off their cherries 
and ducklings (Alagic, 2006).

Teacher candidates were asked to record the process in some way. Most of them described in 
long paragraphs the process they followed. Some used some kind of algorithmic representation 
to capture the process. One of the students neatly captured the following: 

Let’s mark containers with L (left) and R (right). To solve this problem we can
 Fill L => (transfer to) R 
 Fill L => R 
 Empty R 
 Transfer L (1oz) =>R 
 Fill L => R 
 Fill L => R 

Empty R 
 Transfer L (2oz) =>R 

 Fill L => R 
 Fill L => R 
 L has 3oz 

The same candidate provided a description of the opposite process in a similar manner. 
So, correct solution is available through a sequence of automatic “fill” and “pour” steps 

without a deeper consideration how the problem should be solved and what kind of mathematical 
reasoning needs to be involved. This example was an inspiration for the study of mathematical, 
cognitive and pedagogical fidelity of Fill and Pour virtual manipulative. 

Figure 1: Virtual Manipulative Fill and Pour applet from NLVM (2006) 

Mathematical, Cognitive and Pedagogical Fidelity of the Fill and Pour Virtual 

Manipulative: Teacher candidates’ Perceptions 
Mode of Inquiry and Analysis 

Across 6 semesters, total of 224 teacher candidates voluntarily participated in this case study. 
Participants were elementary teacher candidates enrolled in the Mathematics Investigations class. 
Background information on the participants included their prior use of manipulatives and 
technology. All participants had prior experience with physical manipulatives and some 
experience with basic virtual manipulatives, such as virtual base-10 blocks, geoboards, pattern 
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blocks, and tangrams as these were utilized in the required class preceding Mathematics 
Investigations. The critical incident described above was an inspiration for investigating students 
discovery and understanding of the fidelity of VMs in the following 6 semesters. 

Participants were asked to solve problems posed in Fill and Pour in two ways, using (a) 
paper-pencil method, and (b) virtual manipulatives. Half of the participants would first complete 
paper-pencil method and follow by using virtual manipulatives. Other half would work first with 
virtual manipulatives. This assignment was followed by metacognitive reflections required in 
order to better understand how students make meaning of fidelity based on this experience. 
Those metacognitive reflections represented data analysed for this study. Furthermore, students 
were given the chart (Table 1) without fidelity terminology and asked to identify one cell in each 
row that corresponds to their understanding of how virtual manipulative Fill and Pour can be 
characterized.
Results. 75% of participants discovered that there are three types of problems in the Fill and 
Pour virtual manipulative: (i) following the pattern of fill and pour works in both directions 
(from smaller to larger or larger to smaller container – the required amount can fit in either 
container); (ii) following the pattern of fill and pour works only in one direction (required 
amount cannot fit in the smaller container); and (iii) impossible problems (required amount odd 
number and containers hold even number of ounces). Qualitative probing of those participants 
that did not reach this conclusion showed that either they did not know they needed to figure that 
out or that all the problems they tried were of the similar nature. 

Out of these 168 (75%) participants, 120 were in the groups interacting with VMs first, 
before attempting paper and pencil approach. The following table illustrates percentages of 
students identifying mathematical, cognitive and pedagogical fidelity based on only descriptors 
provided in the Table 1 (no fidelity terminology used, yet). 

Table 2: Fidelity Chart with Number of Participants Selecting Pedagogical, 
Mathematical, and Cognitive Fidelity Descriptors Based on Their Interaction with Fill and 

Pour Virtual Manipulative 

Related to
Low

Fidelity
Medium
Fidelity

High
Fidelity

Teaching using Fill and Pour 14 10 200 

Understanding Mathematics behind Fill and Pour 5 39 180 

Recognizing problem solving patterns in Fill and Pour 40 27 157 

Limitations. More attention is necessary to understand challenges that student have about paper-
pencil approach and bridging the two representations– paper-pencil approach vs. virtual 
manipulative Fill and Pour approach to problem solving of this type of problems. 

Discussion and Conclusions 
This study provides an initial examination of participants’ perceptions of mathematical, 

cognitive and pedagogical fidelity based on provided descriptors. The findings illustrate that for 
significant majority of participants, perceptions that using virtual manipulatives to solve 
problems is advantageous regardless of mathematical, cognitive and pedagogical fidelity. For 
80% of participants using virtual manipulative to solve problems of the type Fill and Pour is a 
better choice (high fidelity) regardless of the fact that process is a akin to rote memorizing rather 
than to conceptual understanding. 90 % of participants would teach such problems using virtual 
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manipulatives rather than paper-pencil method. Some participants commented in their reflections 
that “paper-pencil” is too complicated when they know to follow the pattern “fill and pour in the 
same direction, eventually you will get an answer”. In terms of cognitive fidelity, reflections and
qualitative probing seem to identify patterns as types of problems based on (i) the required 
amount can fit in either container; (ii) required amount can fit only in the larger container; and 
(iii) impossible problems. However, it is important to notice that this reasoning is coming from 
somewhat automatic play with virtual manipulative and not from patterns recognized in paper-
pencil problem solving. 

Follow up classroom discussions helped clarify some of the misconceptions inherent in 
mathematics thinking and learning related to problem solving utilized via Fill and Pour virtual 
manipulative. This provides further confirmation that simply using manipulatives without 
follow-up conversations may lead to deepening some misconceptions; not making connection 
between different representations may even inhibit learning (Ainsworth, Bibby & Wood, 2002). 
Implications and Further Research. This study, although focused on only one VM, illustrated 
potential challenges in using dynamic/interactive web-based tools in terms of mathematical, 
cognitive and pedagogical fidelity for three types of learners– students, teachers and instructional 
designers.

There are many follow up questions to be studied, some of which the author is already 
pursuing. This study can be considered as a pretest for understanding students conceptualization 
of of mathematical, cognitive and pedagogical fidelity for a specific virtual manipulative. How 
this threshold concept might be used to sharpen teacher candidates’ inquiry into fidelity of virtual 
manipulatives in general? What is the effect of teacher candidates’ knowledge of problem 
solving on their ability to conceptualize mathematical, cognitive and pedagogical fidelity for 
virtual manipulatives? 
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